diff options
Diffstat (limited to 'drivers')
| -rw-r--r-- | drivers/Makefile | 3 | ||||
| -rw-r--r-- | drivers/e1000.c | 2979 | ||||
| -rw-r--r-- | drivers/e1000.h | 1758 | 
3 files changed, 4739 insertions, 1 deletions
| diff --git a/drivers/Makefile b/drivers/Makefile index 277d6f68c..c1fa4193e 100644 --- a/drivers/Makefile +++ b/drivers/Makefile @@ -30,7 +30,8 @@ LIB	= libdrivers.a  OBJS	= 3c589.o 5701rls.o ali512x.o at91rm9200_ether.o \  	  bcm570x.o bcm570x_autoneg.o cfb_console.o \  	  cs8900.o ct69000.o dc2114x.o          \ -	  eepro100.o i8042.o i82365.o inca-ip_sw.o \ +	  e1000.o eepro100.o \ +	  i8042.o i82365.o inca-ip_sw.o \  	  lan91c96.o             natsemi.o \  	  ns16550.o ns8382x.o ns87308.o \  	  pci.o pci_auto.o pci_indirect.o \ diff --git a/drivers/e1000.c b/drivers/e1000.c new file mode 100644 index 000000000..b4d50b803 --- /dev/null +++ b/drivers/e1000.c @@ -0,0 +1,2979 @@ +/************************************************************************** +Inter Pro 1000 for ppcboot/das-u-boot +Drivers are port from Intel's Linux driver e1000-4.3.15 +and from Etherboot pro 1000 driver by mrakes at vivato dot net +tested on both gig copper and gig fiber boards +***************************************************************************/ +/******************************************************************************* + +   +  Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. +   +  This program is free software; you can redistribute it and/or modify it  +  under the terms of the GNU General Public License as published by the Free  +  Software Foundation; either version 2 of the License, or (at your option)  +  any later version. +   +  This program is distributed in the hope that it will be useful, but WITHOUT  +  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or  +  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for  +  more details. +   +  You should have received a copy of the GNU General Public License along with +  this program; if not, write to the Free Software Foundation, Inc., 59  +  Temple Place - Suite 330, Boston, MA  02111-1307, USA. +   +  The full GNU General Public License is included in this distribution in the +  file called LICENSE. +   +  Contact Information: +  Linux NICS <linux.nics@intel.com> +  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ +/* + *  Copyright (C) Archway Digital Solutions. + * + *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org> + *  2/9/2002 + * + *  Copyright (C) Linux Networx. + *  Massive upgrade to work with the new intel gigabit NICs. + *  <ebiederman at lnxi dot com> + */ + +#include "e1000.h" + +#if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \ +	defined(CONFIG_E1000) + +#define TOUT_LOOP   100000 + +#undef	virt_to_bus +#define	virt_to_bus(x)	((unsigned long)x) +#define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a) +#define mdelay(n)       udelay((n)*1000) + +#define E1000_DEFAULT_PBA    0x00000030 + +/* NIC specific static variables go here */ + +static char tx_pool[128 + 16]; +static char rx_pool[128 + 16]; +static char packet[2096]; + +static struct e1000_tx_desc *tx_base; +static struct e1000_rx_desc *rx_base; + +static int tx_tail; +static int rx_tail, rx_last; + +static struct pci_device_id supported[] = { +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM}, +}; + +/* Function forward declarations */ +static int e1000_setup_link(struct eth_device *nic); +static int e1000_setup_fiber_link(struct eth_device *nic); +static int e1000_setup_copper_link(struct eth_device *nic); +static int e1000_phy_setup_autoneg(struct e1000_hw *hw); +static void e1000_config_collision_dist(struct e1000_hw *hw); +static int e1000_config_mac_to_phy(struct e1000_hw *hw); +static int e1000_config_fc_after_link_up(struct e1000_hw *hw); +static int e1000_check_for_link(struct eth_device *nic); +static int e1000_wait_autoneg(struct e1000_hw *hw); +static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, +				       uint16_t * duplex); +static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, +			      uint16_t * phy_data); +static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, +			       uint16_t phy_data); +static void e1000_phy_hw_reset(struct e1000_hw *hw); +static int e1000_phy_reset(struct e1000_hw *hw); +static int e1000_detect_gig_phy(struct e1000_hw *hw); + +#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg))) +#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg)) +#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\ +			writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))) +#define E1000_READ_REG_ARRAY(a, reg, offset) ( \ +        readl((a)->hw_addr + E1000_##reg + ((offset) << 2))) +#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);} + +/****************************************************************************** + * Raises the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void +e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd) +{ +	/* Raise the clock input to the EEPROM (by setting the SK bit), and then +	 * wait 50 microseconds. +	 */ +	*eecd = *eecd | E1000_EECD_SK; +	E1000_WRITE_REG(hw, EECD, *eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); +} + +/****************************************************************************** + * Lowers the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code  + * eecd - EECD's current value + *****************************************************************************/ +static void +e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd) +{ +	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then  +	 * wait 50 microseconds.  +	 */ +	*eecd = *eecd & ~E1000_EECD_SK; +	E1000_WRITE_REG(hw, EECD, *eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); +} + +/****************************************************************************** + * Shift data bits out to the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * data - data to send to the EEPROM + * count - number of bits to shift out + *****************************************************************************/ +static void +e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) +{ +	uint32_t eecd; +	uint32_t mask; + +	/* We need to shift "count" bits out to the EEPROM. So, value in the +	 * "data" parameter will be shifted out to the EEPROM one bit at a time. +	 * In order to do this, "data" must be broken down into bits.  +	 */ +	mask = 0x01 << (count - 1); +	eecd = E1000_READ_REG(hw, EECD); +	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); +	do { +		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", +		 * and then raising and then lowering the clock (the SK bit controls +		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM +		 * by setting "DI" to "0" and then raising and then lowering the clock. +		 */ +		eecd &= ~E1000_EECD_DI; + +		if (data & mask) +			eecd |= E1000_EECD_DI; + +		E1000_WRITE_REG(hw, EECD, eecd); +		E1000_WRITE_FLUSH(hw); + +		udelay(50); + +		e1000_raise_ee_clk(hw, &eecd); +		e1000_lower_ee_clk(hw, &eecd); + +		mask = mask >> 1; + +	} while (mask); + +	/* We leave the "DI" bit set to "0" when we leave this routine. */ +	eecd &= ~E1000_EECD_DI; +	E1000_WRITE_REG(hw, EECD, eecd); +} + +/****************************************************************************** + * Shift data bits in from the EEPROM + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static uint16_t +e1000_shift_in_ee_bits(struct e1000_hw *hw) +{ +	uint32_t eecd; +	uint32_t i; +	uint16_t data; + +	/* In order to read a register from the EEPROM, we need to shift 16 bits  +	 * in from the EEPROM. Bits are "shifted in" by raising the clock input to +	 * the EEPROM (setting the SK bit), and then reading the value of the "DO" +	 * bit.  During this "shifting in" process the "DI" bit should always be  +	 * clear.. +	 */ + +	eecd = E1000_READ_REG(hw, EECD); + +	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); +	data = 0; + +	for (i = 0; i < 16; i++) { +		data = data << 1; +		e1000_raise_ee_clk(hw, &eecd); + +		eecd = E1000_READ_REG(hw, EECD); + +		eecd &= ~(E1000_EECD_DI); +		if (eecd & E1000_EECD_DO) +			data |= 1; + +		e1000_lower_ee_clk(hw, &eecd); +	} + +	return data; +} + +/****************************************************************************** + * Prepares EEPROM for access + * + * hw - Struct containing variables accessed by shared code + * + * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This  + * function should be called before issuing a command to the EEPROM. + *****************************************************************************/ +static void +e1000_setup_eeprom(struct e1000_hw *hw) +{ +	uint32_t eecd; + +	eecd = E1000_READ_REG(hw, EECD); + +	/* Clear SK and DI */ +	eecd &= ~(E1000_EECD_SK | E1000_EECD_DI); +	E1000_WRITE_REG(hw, EECD, eecd); + +	/* Set CS */ +	eecd |= E1000_EECD_CS; +	E1000_WRITE_REG(hw, EECD, eecd); +} + +/****************************************************************************** + * Returns EEPROM to a "standby" state + *  + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +e1000_standby_eeprom(struct e1000_hw *hw) +{ +	uint32_t eecd; + +	eecd = E1000_READ_REG(hw, EECD); + +	/* Deselct EEPROM */ +	eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); +	E1000_WRITE_REG(hw, EECD, eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); + +	/* Clock high */ +	eecd |= E1000_EECD_SK; +	E1000_WRITE_REG(hw, EECD, eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); + +	/* Select EEPROM */ +	eecd |= E1000_EECD_CS; +	E1000_WRITE_REG(hw, EECD, eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); + +	/* Clock low */ +	eecd &= ~E1000_EECD_SK; +	E1000_WRITE_REG(hw, EECD, eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); +} + +/****************************************************************************** + * Reads a 16 bit word from the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of  word in the EEPROM to read + * data - word read from the EEPROM  + *****************************************************************************/ +static int +e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data) +{ +	uint32_t eecd; +	uint32_t i = 0; +	int large_eeprom = FALSE; + +	/* Request EEPROM Access */ +	if (hw->mac_type > e1000_82544) { +		eecd = E1000_READ_REG(hw, EECD); +		if (eecd & E1000_EECD_SIZE) +			large_eeprom = TRUE; +		eecd |= E1000_EECD_REQ; +		E1000_WRITE_REG(hw, EECD, eecd); +		eecd = E1000_READ_REG(hw, EECD); +		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { +			i++; +			udelay(10); +			eecd = E1000_READ_REG(hw, EECD); +		} +		if (!(eecd & E1000_EECD_GNT)) { +			eecd &= ~E1000_EECD_REQ; +			E1000_WRITE_REG(hw, EECD, eecd); +			DEBUGOUT("Could not acquire EEPROM grant\n"); +			return -E1000_ERR_EEPROM; +		} +	} + +	/*  Prepare the EEPROM for reading  */ +	e1000_setup_eeprom(hw); + +	/*  Send the READ command (opcode + addr)  */ +	e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3); +	e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6); + +	/* Read the data */ +	*data = e1000_shift_in_ee_bits(hw); + +	/* End this read operation */ +	e1000_standby_eeprom(hw); + +	/* Stop requesting EEPROM access */ +	if (hw->mac_type > e1000_82544) { +		eecd = E1000_READ_REG(hw, EECD); +		eecd &= ~E1000_EECD_REQ; +		E1000_WRITE_REG(hw, EECD, eecd); +	} + +	return 0; +} + +#if 0 +static void +e1000_eeprom_cleanup(struct e1000_hw *hw) +{ +	uint32_t eecd; + +	eecd = E1000_READ_REG(hw, EECD); +	eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); +	E1000_WRITE_REG(hw, EECD, eecd); +	e1000_raise_ee_clk(hw, &eecd); +	e1000_lower_ee_clk(hw, &eecd); +} + +static uint16_t +e1000_wait_eeprom_done(struct e1000_hw *hw) +{ +	uint32_t eecd; +	uint32_t i; + +	e1000_standby_eeprom(hw); +	for (i = 0; i < 200; i++) { +		eecd = E1000_READ_REG(hw, EECD); +		if (eecd & E1000_EECD_DO) +			return (TRUE); +		udelay(5); +	} +	return (FALSE); +} + +static int +e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data) +{ +	uint32_t eecd; +	int large_eeprom = FALSE; +	int i = 0; + +	/* Request EEPROM Access */ +	if (hw->mac_type > e1000_82544) { +		eecd = E1000_READ_REG(hw, EECD); +		if (eecd & E1000_EECD_SIZE) +			large_eeprom = TRUE; +		eecd |= E1000_EECD_REQ; +		E1000_WRITE_REG(hw, EECD, eecd); +		eecd = E1000_READ_REG(hw, EECD); +		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { +			i++; +			udelay(5); +			eecd = E1000_READ_REG(hw, EECD); +		} +		if (!(eecd & E1000_EECD_GNT)) { +			eecd &= ~E1000_EECD_REQ; +			E1000_WRITE_REG(hw, EECD, eecd); +			DEBUGOUT("Could not acquire EEPROM grant\n"); +			return FALSE; +		} +	} +	e1000_setup_eeprom(hw); +	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5); +	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); +	e1000_standby_eeprom(hw); +	e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3); +	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6); +	e1000_shift_out_ee_bits(hw, Data, 16); +	if (!e1000_wait_eeprom_done(hw)) { +		return FALSE; +	} +	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5); +	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); +	e1000_eeprom_cleanup(hw); + +	/* Stop requesting EEPROM access */ +	if (hw->mac_type > e1000_82544) { +		eecd = E1000_READ_REG(hw, EECD); +		eecd &= ~E1000_EECD_REQ; +		E1000_WRITE_REG(hw, EECD, eecd); +	} +	i = 0; +	eecd = E1000_READ_REG(hw, EECD); +	while (((eecd & E1000_EECD_GNT)) && (i < 500)) { +		i++; +		udelay(10); +		eecd = E1000_READ_REG(hw, EECD); +	} +	if ((eecd & E1000_EECD_GNT)) { +		DEBUGOUT("Could not release EEPROM grant\n"); +	} +	return TRUE; +} +#endif + +/****************************************************************************** + * Verifies that the EEPROM has a valid checksum + *  + * hw - Struct containing variables accessed by shared code + * + * Reads the first 64 16 bit words of the EEPROM and sums the values read. + * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is + * valid. + *****************************************************************************/ +static int +e1000_validate_eeprom_checksum(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint16_t checksum = 0; +	uint16_t i, eeprom_data; + +	DEBUGFUNC(); + +	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { +		if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) { +			DEBUGOUT("EEPROM Read Error\n"); +			return -E1000_ERR_EEPROM; +		} +		checksum += eeprom_data; +	} +	 +	if (checksum == (uint16_t) EEPROM_SUM) { +		return 0; +	} else { +		DEBUGOUT("EEPROM Checksum Invalid\n"); +		return -E1000_ERR_EEPROM; +	} +} + +/****************************************************************************** + * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the + * second function of dual function devices + * + * nic - Struct containing variables accessed by shared code + *****************************************************************************/ +static int +e1000_read_mac_addr(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint16_t offset; +	uint16_t eeprom_data; +	int i; + +	DEBUGFUNC(); + +	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { +		offset = i >> 1; +		if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) { +			DEBUGOUT("EEPROM Read Error\n"); +			return -E1000_ERR_EEPROM; +		} +		nic->enetaddr[i] = eeprom_data & 0xff; +		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff; +	} +	if ((hw->mac_type == e1000_82546) && +	    (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { +		/* Invert the last bit if this is the second device */ +		nic->enetaddr[5] += 1; +	} +	return 0; +} + +/****************************************************************************** + * Initializes receive address filters. + * + * hw - Struct containing variables accessed by shared code  + * + * Places the MAC address in receive address register 0 and clears the rest + * of the receive addresss registers. Clears the multicast table. Assumes + * the receiver is in reset when the routine is called. + *****************************************************************************/ +static void +e1000_init_rx_addrs(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t i; +	uint32_t addr_low; +	uint32_t addr_high; + +	DEBUGFUNC(); + +	/* Setup the receive address. */ +	DEBUGOUT("Programming MAC Address into RAR[0]\n"); +	addr_low = (nic->enetaddr[0] | +		    (nic->enetaddr[1] << 8) | +		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24)); + +	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV); + +	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); +	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); + +	/* Zero out the other 15 receive addresses. */ +	DEBUGOUT("Clearing RAR[1-15]\n"); +	for (i = 1; i < E1000_RAR_ENTRIES; i++) { +		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); +		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); +	} +} + +/****************************************************************************** + * Clears the VLAN filer table + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +e1000_clear_vfta(struct e1000_hw *hw) +{ +	uint32_t offset; + +	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) +		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); +} + +/****************************************************************************** + * Set the mac type member in the hw struct. + *  + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static int +e1000_set_mac_type(struct e1000_hw *hw) +{ +	DEBUGFUNC(); + +	switch (hw->device_id) { +	case E1000_DEV_ID_82542: +		switch (hw->revision_id) { +		case E1000_82542_2_0_REV_ID: +			hw->mac_type = e1000_82542_rev2_0; +			break; +		case E1000_82542_2_1_REV_ID: +			hw->mac_type = e1000_82542_rev2_1; +			break; +		default: +			/* Invalid 82542 revision ID */ +			return -E1000_ERR_MAC_TYPE; +		} +		break; +	case E1000_DEV_ID_82543GC_FIBER: +	case E1000_DEV_ID_82543GC_COPPER: +		hw->mac_type = e1000_82543; +		break; +	case E1000_DEV_ID_82544EI_COPPER: +	case E1000_DEV_ID_82544EI_FIBER: +	case E1000_DEV_ID_82544GC_COPPER: +	case E1000_DEV_ID_82544GC_LOM: +		hw->mac_type = e1000_82544; +		break; +	case E1000_DEV_ID_82540EM: +	case E1000_DEV_ID_82540EM_LOM: +		hw->mac_type = e1000_82540; +		break; +	case E1000_DEV_ID_82545EM_COPPER: +	case E1000_DEV_ID_82545EM_FIBER: +		hw->mac_type = e1000_82545; +		break; +	case E1000_DEV_ID_82546EB_COPPER: +	case E1000_DEV_ID_82546EB_FIBER: +		hw->mac_type = e1000_82546; +		break; +	default: +		/* Should never have loaded on this device */ +		return -E1000_ERR_MAC_TYPE; +	} +	return E1000_SUCCESS; +} + +/****************************************************************************** + * Reset the transmit and receive units; mask and clear all interrupts. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +e1000_reset_hw(struct e1000_hw *hw) +{ +	uint32_t ctrl; +	uint32_t ctrl_ext; +	uint32_t icr; +	uint32_t manc; + +	DEBUGFUNC(); + +	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */ +	if (hw->mac_type == e1000_82542_rev2_0) { +		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); +		pci_write_config_word(hw->pdev, PCI_COMMAND, +				      hw-> +				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE); +	} + +	/* Clear interrupt mask to stop board from generating interrupts */ +	DEBUGOUT("Masking off all interrupts\n"); +	E1000_WRITE_REG(hw, IMC, 0xffffffff); + +	/* Disable the Transmit and Receive units.  Then delay to allow +	 * any pending transactions to complete before we hit the MAC with +	 * the global reset. +	 */ +	E1000_WRITE_REG(hw, RCTL, 0); +	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); +	E1000_WRITE_FLUSH(hw); + +	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ +	hw->tbi_compatibility_on = FALSE; + +	/* Delay to allow any outstanding PCI transactions to complete before +	 * resetting the device +	 */ +	mdelay(10); + +	/* Issue a global reset to the MAC.  This will reset the chip's +	 * transmit, receive, DMA, and link units.  It will not effect +	 * the current PCI configuration.  The global reset bit is self- +	 * clearing, and should clear within a microsecond. +	 */ +	DEBUGOUT("Issuing a global reset to MAC\n"); +	ctrl = E1000_READ_REG(hw, CTRL); + +#if 0 +	if (hw->mac_type > e1000_82543) +		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); +	else +#endif +		E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + +	/* Force a reload from the EEPROM if necessary */ +	if (hw->mac_type < e1000_82540) { +		/* Wait for reset to complete */ +		udelay(10); +		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); +		ctrl_ext |= E1000_CTRL_EXT_EE_RST; +		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); +		E1000_WRITE_FLUSH(hw); +		/* Wait for EEPROM reload */ +		mdelay(2); +	} else { +		/* Wait for EEPROM reload (it happens automatically) */ +		mdelay(4); +		/* Dissable HW ARPs on ASF enabled adapters */ +		manc = E1000_READ_REG(hw, MANC); +		manc &= ~(E1000_MANC_ARP_EN); +		E1000_WRITE_REG(hw, MANC, manc); +	} + +	/* Clear interrupt mask to stop board from generating interrupts */ +	DEBUGOUT("Masking off all interrupts\n"); +	E1000_WRITE_REG(hw, IMC, 0xffffffff); + +	/* Clear any pending interrupt events. */ +	icr = E1000_READ_REG(hw, ICR); + +	/* If MWI was previously enabled, reenable it. */ +	if (hw->mac_type == e1000_82542_rev2_0) { +		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); +	} +} + +/****************************************************************************** + * Performs basic configuration of the adapter. + * + * hw - Struct containing variables accessed by shared code + *  + * Assumes that the controller has previously been reset and is in a  + * post-reset uninitialized state. Initializes the receive address registers, + * multicast table, and VLAN filter table. Calls routines to setup link + * configuration and flow control settings. Clears all on-chip counters. Leaves + * the transmit and receive units disabled and uninitialized. + *****************************************************************************/ +static int +e1000_init_hw(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t ctrl, status; +	uint32_t i; +	int32_t ret_val; +	uint16_t pcix_cmd_word; +	uint16_t pcix_stat_hi_word; +	uint16_t cmd_mmrbc; +	uint16_t stat_mmrbc; +	e1000_bus_type bus_type = e1000_bus_type_unknown; + +	DEBUGFUNC(); +#if 0 +	/* Initialize Identification LED */ +	ret_val = e1000_id_led_init(hw); +	if (ret_val < 0) { +		DEBUGOUT("Error Initializing Identification LED\n"); +		return ret_val; +	} +#endif +	/* Set the Media Type and exit with error if it is not valid. */ +	if (hw->mac_type != e1000_82543) { +		/* tbi_compatibility is only valid on 82543 */ +		hw->tbi_compatibility_en = FALSE; +	} + +	if (hw->mac_type >= e1000_82543) { +		status = E1000_READ_REG(hw, STATUS); +		if (status & E1000_STATUS_TBIMODE) { +			hw->media_type = e1000_media_type_fiber; +			/* tbi_compatibility not valid on fiber */ +			hw->tbi_compatibility_en = FALSE; +		} else { +			hw->media_type = e1000_media_type_copper; +		} +	} else { +		/* This is an 82542 (fiber only) */ +		hw->media_type = e1000_media_type_fiber; +	} + +	/* Disabling VLAN filtering. */ +	DEBUGOUT("Initializing the IEEE VLAN\n"); +	E1000_WRITE_REG(hw, VET, 0); + +	e1000_clear_vfta(hw); + +	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ +	if (hw->mac_type == e1000_82542_rev2_0) { +		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); +		pci_write_config_word(hw->pdev, PCI_COMMAND, +				      hw-> +				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE); +		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); +		E1000_WRITE_FLUSH(hw); +		mdelay(5); +	} + +	/* Setup the receive address. This involves initializing all of the Receive +	 * Address Registers (RARs 0 - 15). +	 */ +	e1000_init_rx_addrs(nic); + +	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ +	if (hw->mac_type == e1000_82542_rev2_0) { +		E1000_WRITE_REG(hw, RCTL, 0); +		E1000_WRITE_FLUSH(hw); +		mdelay(1); +		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); +	} + +	/* Zero out the Multicast HASH table */ +	DEBUGOUT("Zeroing the MTA\n"); +	for (i = 0; i < E1000_MC_TBL_SIZE; i++) +		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + +#if 0 +	/* Set the PCI priority bit correctly in the CTRL register.  This +	 * determines if the adapter gives priority to receives, or if it +	 * gives equal priority to transmits and receives. +	 */ +	if (hw->dma_fairness) { +		ctrl = E1000_READ_REG(hw, CTRL); +		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); +	} +#endif +	if (hw->mac_type >= e1000_82543) { +		status = E1000_READ_REG(hw, STATUS); +		bus_type = (status & E1000_STATUS_PCIX_MODE) ? +		    e1000_bus_type_pcix : e1000_bus_type_pci; +	} +	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ +	if (bus_type == e1000_bus_type_pcix) { +		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, +				     &pcix_cmd_word); +		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, +				     &pcix_stat_hi_word); +		cmd_mmrbc = +		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> +		    PCIX_COMMAND_MMRBC_SHIFT; +		stat_mmrbc = +		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> +		    PCIX_STATUS_HI_MMRBC_SHIFT; +		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) +			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; +		if (cmd_mmrbc > stat_mmrbc) { +			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; +			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; +			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, +					      pcix_cmd_word); +		} +	} + +	/* Call a subroutine to configure the link and setup flow control. */ +	ret_val = e1000_setup_link(nic); + +	/* Set the transmit descriptor write-back policy */ +	if (hw->mac_type > e1000_82544) { +		ctrl = E1000_READ_REG(hw, TXDCTL); +		ctrl = +		    (ctrl & ~E1000_TXDCTL_WTHRESH) | +		    E1000_TXDCTL_FULL_TX_DESC_WB; +		E1000_WRITE_REG(hw, TXDCTL, ctrl); +	} +#if 0 +	/* Clear all of the statistics registers (clear on read).  It is +	 * important that we do this after we have tried to establish link +	 * because the symbol error count will increment wildly if there +	 * is no link. +	 */ +	e1000_clear_hw_cntrs(hw); +#endif + +	return ret_val; +} + +/****************************************************************************** + * Configures flow control and link settings. + *  + * hw - Struct containing variables accessed by shared code + *  + * Determines which flow control settings to use. Calls the apropriate media- + * specific link configuration function. Configures the flow control settings. + * Assuming the adapter has a valid link partner, a valid link should be + * established. Assumes the hardware has previously been reset and the  + * transmitter and receiver are not enabled. + *****************************************************************************/ +static int +e1000_setup_link(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t ctrl_ext; +	int32_t ret_val; +	uint16_t eeprom_data; + +	DEBUGFUNC(); + +	/* Read and store word 0x0F of the EEPROM. This word contains bits +	 * that determine the hardware's default PAUSE (flow control) mode, +	 * a bit that determines whether the HW defaults to enabling or +	 * disabling auto-negotiation, and the direction of the +	 * SW defined pins. If there is no SW over-ride of the flow +	 * control setting, then the variable hw->fc will +	 * be initialized based on a value in the EEPROM. +	 */ +	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) { +		DEBUGOUT("EEPROM Read Error\n"); +		return -E1000_ERR_EEPROM; +	} + +	if (hw->fc == e1000_fc_default) { +		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) +			hw->fc = e1000_fc_none; +		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == +			 EEPROM_WORD0F_ASM_DIR) +			hw->fc = e1000_fc_tx_pause; +		else +			hw->fc = e1000_fc_full; +	} + +	/* We want to save off the original Flow Control configuration just +	 * in case we get disconnected and then reconnected into a different +	 * hub or switch with different Flow Control capabilities. +	 */ +	if (hw->mac_type == e1000_82542_rev2_0) +		hw->fc &= (~e1000_fc_tx_pause); + +	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) +		hw->fc &= (~e1000_fc_rx_pause); + +	hw->original_fc = hw->fc; + +	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc); + +	/* Take the 4 bits from EEPROM word 0x0F that determine the initial +	 * polarity value for the SW controlled pins, and setup the +	 * Extended Device Control reg with that info. +	 * This is needed because one of the SW controlled pins is used for +	 * signal detection.  So this should be done before e1000_setup_pcs_link() +	 * or e1000_phy_setup() is called. +	 */ +	if (hw->mac_type == e1000_82543) { +		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << +			    SWDPIO__EXT_SHIFT); +		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); +	} + +	/* Call the necessary subroutine to configure the link. */ +	ret_val = (hw->media_type == e1000_media_type_fiber) ? +	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic); +	if (ret_val < 0) { +		return ret_val; +	} + +	/* Initialize the flow control address, type, and PAUSE timer +	 * registers to their default values.  This is done even if flow +	 * control is disabled, because it does not hurt anything to +	 * initialize these registers. +	 */ +	DEBUGOUT +	    ("Initializing the Flow Control address, type and timer regs\n"); + +	E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); +	E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); +	E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); +	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); + +	/* Set the flow control receive threshold registers.  Normally, +	 * these registers will be set to a default threshold that may be +	 * adjusted later by the driver's runtime code.  However, if the +	 * ability to transmit pause frames in not enabled, then these +	 * registers will be set to 0.  +	 */ +	if (!(hw->fc & e1000_fc_tx_pause)) { +		E1000_WRITE_REG(hw, FCRTL, 0); +		E1000_WRITE_REG(hw, FCRTH, 0); +	} else { +		/* We need to set up the Receive Threshold high and low water marks +		 * as well as (optionally) enabling the transmission of XON frames. +		 */ +		if (hw->fc_send_xon) { +			E1000_WRITE_REG(hw, FCRTL, +					(hw->fc_low_water | E1000_FCRTL_XONE)); +			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); +		} else { +			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); +			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); +		} +	} +	return ret_val; +} + +/****************************************************************************** + * Sets up link for a fiber based adapter + * + * hw - Struct containing variables accessed by shared code + * + * Manipulates Physical Coding Sublayer functions in order to configure + * link. Assumes the hardware has been previously reset and the transmitter + * and receiver are not enabled. + *****************************************************************************/ +static int +e1000_setup_fiber_link(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t ctrl; +	uint32_t status; +	uint32_t txcw = 0; +	uint32_t i; +	uint32_t signal; +	int32_t ret_val; + +	DEBUGFUNC(); +	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be  +	 * set when the optics detect a signal. On older adapters, it will be  +	 * cleared when there is a signal +	 */ +	ctrl = E1000_READ_REG(hw, CTRL); +	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) +		signal = E1000_CTRL_SWDPIN1; +	else +		signal = 0; + +	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal, +	       ctrl); +	/* Take the link out of reset */ +	ctrl &= ~(E1000_CTRL_LRST); + +	e1000_config_collision_dist(hw); + +	/* Check for a software override of the flow control settings, and setup +	 * the device accordingly.  If auto-negotiation is enabled, then software +	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit +	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if +	 * auto-negotiation is disabled, then software will have to manually  +	 * configure the two flow control enable bits in the CTRL register. +	 * +	 * The possible values of the "fc" parameter are: +	 *      0:  Flow control is completely disabled +	 *      1:  Rx flow control is enabled (we can receive pause frames, but  +	 *          not send pause frames). +	 *      2:  Tx flow control is enabled (we can send pause frames but we do +	 *          not support receiving pause frames). +	 *      3:  Both Rx and TX flow control (symmetric) are enabled. +	 */ +	switch (hw->fc) { +	case e1000_fc_none: +		/* Flow control is completely disabled by a software over-ride. */ +		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); +		break; +	case e1000_fc_rx_pause: +		/* RX Flow control is enabled and TX Flow control is disabled by a  +		 * software over-ride. Since there really isn't a way to advertise  +		 * that we are capable of RX Pause ONLY, we will advertise that we +		 * support both symmetric and asymmetric RX PAUSE. Later, we will +		 *  disable the adapter's ability to send PAUSE frames. +		 */ +		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); +		break; +	case e1000_fc_tx_pause: +		/* TX Flow control is enabled, and RX Flow control is disabled, by a  +		 * software over-ride. +		 */ +		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); +		break; +	case e1000_fc_full: +		/* Flow control (both RX and TX) is enabled by a software over-ride. */ +		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); +		break; +	default: +		DEBUGOUT("Flow control param set incorrectly\n"); +		return -E1000_ERR_CONFIG; +		break; +	} + +	/* Since auto-negotiation is enabled, take the link out of reset (the link +	 * will be in reset, because we previously reset the chip). This will +	 * restart auto-negotiation.  If auto-neogtiation is successful then the +	 * link-up status bit will be set and the flow control enable bits (RFCE +	 * and TFCE) will be set according to their negotiated value. +	 */ +	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw); + +	E1000_WRITE_REG(hw, TXCW, txcw); +	E1000_WRITE_REG(hw, CTRL, ctrl); +	E1000_WRITE_FLUSH(hw); + +	hw->txcw = txcw; +	mdelay(1); + +	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up" +	 * indication in the Device Status Register.  Time-out if a link isn't  +	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in  +	 * less than 500 milliseconds even if the other end is doing it in SW). +	 */ +	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { +		DEBUGOUT("Looking for Link\n"); +		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { +			mdelay(10); +			status = E1000_READ_REG(hw, STATUS); +			if (status & E1000_STATUS_LU) +				break; +		} +		if (i == (LINK_UP_TIMEOUT / 10)) { +			/* AutoNeg failed to achieve a link, so we'll call  +			 * e1000_check_for_link. This routine will force the link up if we +			 * detect a signal. This will allow us to communicate with +			 * non-autonegotiating link partners. +			 */ +			DEBUGOUT("Never got a valid link from auto-neg!!!\n"); +			hw->autoneg_failed = 1; +			ret_val = e1000_check_for_link(nic); +			if (ret_val < 0) { +				DEBUGOUT("Error while checking for link\n"); +				return ret_val; +			} +			hw->autoneg_failed = 0; +		} else { +			hw->autoneg_failed = 0; +			DEBUGOUT("Valid Link Found\n"); +		} +	} else { +		DEBUGOUT("No Signal Detected\n"); +		return -E1000_ERR_NOLINK; +	} +	return 0; +} + +/****************************************************************************** +* Detects which PHY is present and the speed and duplex +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int +e1000_setup_copper_link(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t ctrl; +	int32_t ret_val; +	uint16_t i; +	uint16_t phy_data; + +	DEBUGFUNC(); + +	ctrl = E1000_READ_REG(hw, CTRL); +	/* With 82543, we need to force speed and duplex on the MAC equal to what +	 * the PHY speed and duplex configuration is. In addition, we need to +	 * perform a hardware reset on the PHY to take it out of reset. +	 */ +	if (hw->mac_type > e1000_82543) { +		ctrl |= E1000_CTRL_SLU; +		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); +		E1000_WRITE_REG(hw, CTRL, ctrl); +	} else { +		ctrl |= +		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); +		E1000_WRITE_REG(hw, CTRL, ctrl); +		e1000_phy_hw_reset(hw); +	} + +	/* Make sure we have a valid PHY */ +	ret_val = e1000_detect_gig_phy(hw); +	if (ret_val < 0) { +		DEBUGOUT("Error, did not detect valid phy.\n"); +		return ret_val; +	} +	DEBUGOUT("Phy ID = %x \n", hw->phy_id); + +	/* Enable CRS on TX. This must be set for half-duplex operation. */ +	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + +#if 0 +	/* Options: +	 *   MDI/MDI-X = 0 (default) +	 *   0 - Auto for all speeds +	 *   1 - MDI mode +	 *   2 - MDI-X mode +	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) +	 */ +	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; +	switch (hw->mdix) { +	case 1: +		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; +		break; +	case 2: +		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; +		break; +	case 3: +		phy_data |= M88E1000_PSCR_AUTO_X_1000T; +		break; +	case 0: +	default: +		phy_data |= M88E1000_PSCR_AUTO_X_MODE; +		break; +	} +#else +	phy_data |= M88E1000_PSCR_AUTO_X_MODE; +#endif + +#if 0 +	/* Options: +	 *   disable_polarity_correction = 0 (default) +	 *       Automatic Correction for Reversed Cable Polarity +	 *   0 - Disabled +	 *   1 - Enabled +	 */ +	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; +	if (hw->disable_polarity_correction == 1) +		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; +#else +	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; +#endif +	if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} + +	/* Force TX_CLK in the Extended PHY Specific Control Register +	 * to 25MHz clock. +	 */ +	if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	phy_data |= M88E1000_EPSCR_TX_CLK_25; +	/* Configure Master and Slave downshift values */ +	phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | +		      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); +	phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | +		     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); +	if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} + +	/* SW Reset the PHY so all changes take effect */ +	ret_val = e1000_phy_reset(hw); +	if (ret_val < 0) { +		DEBUGOUT("Error Resetting the PHY\n"); +		return ret_val; +	} + +	/* Options: +	 *   autoneg = 1 (default) +	 *      PHY will advertise value(s) parsed from +	 *      autoneg_advertised and fc +	 *   autoneg = 0 +	 *      PHY will be set to 10H, 10F, 100H, or 100F +	 *      depending on value parsed from forced_speed_duplex. +	 */ + +	/* Is autoneg enabled?  This is enabled by default or by software override. +	 * If so, call e1000_phy_setup_autoneg routine to parse the +	 * autoneg_advertised and fc options. If autoneg is NOT enabled, then the +	 * user should have provided a speed/duplex override.  If so, then call +	 * e1000_phy_force_speed_duplex to parse and set this up. +	 */ +	/* Perform some bounds checking on the hw->autoneg_advertised +	 * parameter.  If this variable is zero, then set it to the default. +	 */ +	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; + +	/* If autoneg_advertised is zero, we assume it was not defaulted +	 * by the calling code so we set to advertise full capability. +	 */ +	if (hw->autoneg_advertised == 0) +		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + +	DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); +	ret_val = e1000_phy_setup_autoneg(hw); +	if (ret_val < 0) { +		DEBUGOUT("Error Setting up Auto-Negotiation\n"); +		return ret_val; +	} +	DEBUGOUT("Restarting Auto-Neg\n"); + +	/* Restart auto-negotiation by setting the Auto Neg Enable bit and +	 * the Auto Neg Restart bit in the PHY control register. +	 */ +	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); +	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} +#if 0 +	/* Does the user want to wait for Auto-Neg to complete here, or +	 * check at a later time (for example, callback routine). +	 */ +	if (hw->wait_autoneg_complete) { +		ret_val = e1000_wait_autoneg(hw); +		if (ret_val < 0) { +			DEBUGOUT +			    ("Error while waiting for autoneg to complete\n"); +			return ret_val; +		} +	} +#else +	/* If we do not wait for autonegtation to complete I  +	 * do not see a valid link status. +	 */ +	ret_val = e1000_wait_autoneg(hw); +	if (ret_val < 0) { +		DEBUGOUT("Error while waiting for autoneg to complete\n"); +		return ret_val; +	} +#endif + +	/* Check link status. Wait up to 100 microseconds for link to become +	 * valid. +	 */ +	for (i = 0; i < 10; i++) { +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} +		if (phy_data & MII_SR_LINK_STATUS) { +			/* We have link, so we need to finish the config process: +			 *   1) Set up the MAC to the current PHY speed/duplex +			 *      if we are on 82543.  If we +			 *      are on newer silicon, we only need to configure +			 *      collision distance in the Transmit Control Register. +			 *   2) Set up flow control on the MAC to that established with +			 *      the link partner. +			 */ +			if (hw->mac_type >= e1000_82544) { +				e1000_config_collision_dist(hw); +			} else { +				ret_val = e1000_config_mac_to_phy(hw); +				if (ret_val < 0) { +					DEBUGOUT +					    ("Error configuring MAC to PHY settings\n"); +					return ret_val; +				} +			} +			ret_val = e1000_config_fc_after_link_up(hw); +			if (ret_val < 0) { +				DEBUGOUT("Error Configuring Flow Control\n"); +				return ret_val; +			} +			DEBUGOUT("Valid link established!!!\n"); +			return 0; +		} +		udelay(10); +	} + +	DEBUGOUT("Unable to establish link!!!\n"); +	return -E1000_ERR_NOLINK; +} + +/****************************************************************************** +* Configures PHY autoneg and flow control advertisement settings +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int +e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ +	uint16_t mii_autoneg_adv_reg; +	uint16_t mii_1000t_ctrl_reg; + +	DEBUGFUNC(); + +	/* Read the MII Auto-Neg Advertisement Register (Address 4). */ +	if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} + +	/* Read the MII 1000Base-T Control Register (Address 9). */ +	if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} + +	/* Need to parse both autoneg_advertised and fc and set up +	 * the appropriate PHY registers.  First we will parse for +	 * autoneg_advertised software override.  Since we can advertise +	 * a plethora of combinations, we need to check each bit +	 * individually. +	 */ + +	/* First we clear all the 10/100 mb speed bits in the Auto-Neg +	 * Advertisement Register (Address 4) and the 1000 mb speed bits in +	 * the  1000Base-T Control Register (Address 9). +	 */ +	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; +	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; + +	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised); + +	/* Do we want to advertise 10 Mb Half Duplex? */ +	if (hw->autoneg_advertised & ADVERTISE_10_HALF) { +		DEBUGOUT("Advertise 10mb Half duplex\n"); +		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; +	} + +	/* Do we want to advertise 10 Mb Full Duplex? */ +	if (hw->autoneg_advertised & ADVERTISE_10_FULL) { +		DEBUGOUT("Advertise 10mb Full duplex\n"); +		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; +	} + +	/* Do we want to advertise 100 Mb Half Duplex? */ +	if (hw->autoneg_advertised & ADVERTISE_100_HALF) { +		DEBUGOUT("Advertise 100mb Half duplex\n"); +		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; +	} + +	/* Do we want to advertise 100 Mb Full Duplex? */ +	if (hw->autoneg_advertised & ADVERTISE_100_FULL) { +		DEBUGOUT("Advertise 100mb Full duplex\n"); +		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; +	} + +	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */ +	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { +		DEBUGOUT +		    ("Advertise 1000mb Half duplex requested, request denied!\n"); +	} + +	/* Do we want to advertise 1000 Mb Full Duplex? */ +	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { +		DEBUGOUT("Advertise 1000mb Full duplex\n"); +		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; +	} + +	/* Check for a software override of the flow control settings, and +	 * setup the PHY advertisement registers accordingly.  If +	 * auto-negotiation is enabled, then software will have to set the +	 * "PAUSE" bits to the correct value in the Auto-Negotiation +	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. +	 * +	 * The possible values of the "fc" parameter are: +	 *      0:  Flow control is completely disabled +	 *      1:  Rx flow control is enabled (we can receive pause frames +	 *          but not send pause frames). +	 *      2:  Tx flow control is enabled (we can send pause frames +	 *          but we do not support receiving pause frames). +	 *      3:  Both Rx and TX flow control (symmetric) are enabled. +	 *  other:  No software override.  The flow control configuration +	 *          in the EEPROM is used. +	 */ +	switch (hw->fc) { +	case e1000_fc_none:	/* 0 */ +		/* Flow control (RX & TX) is completely disabled by a +		 * software over-ride. +		 */ +		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); +		break; +	case e1000_fc_rx_pause:	/* 1 */ +		/* RX Flow control is enabled, and TX Flow control is +		 * disabled, by a software over-ride. +		 */ +		/* Since there really isn't a way to advertise that we are +		 * capable of RX Pause ONLY, we will advertise that we +		 * support both symmetric and asymmetric RX PAUSE.  Later +		 * (in e1000_config_fc_after_link_up) we will disable the +		 *hw's ability to send PAUSE frames. +		 */ +		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); +		break; +	case e1000_fc_tx_pause:	/* 2 */ +		/* TX Flow control is enabled, and RX Flow control is +		 * disabled, by a software over-ride. +		 */ +		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; +		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; +		break; +	case e1000_fc_full:	/* 3 */ +		/* Flow control (both RX and TX) is enabled by a software +		 * over-ride. +		 */ +		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); +		break; +	default: +		DEBUGOUT("Flow control param set incorrectly\n"); +		return -E1000_ERR_CONFIG; +	} + +	if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} + +	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + +	if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} +	return 0; +} + +/****************************************************************************** +* Sets the collision distance in the Transmit Control register +* +* hw - Struct containing variables accessed by shared code +* +* Link should have been established previously. Reads the speed and duplex +* information from the Device Status register. +******************************************************************************/ +static void +e1000_config_collision_dist(struct e1000_hw *hw) +{ +	uint32_t tctl; + +	tctl = E1000_READ_REG(hw, TCTL); + +	tctl &= ~E1000_TCTL_COLD; +	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + +	E1000_WRITE_REG(hw, TCTL, tctl); +	E1000_WRITE_FLUSH(hw); +} + +/****************************************************************************** +* Sets MAC speed and duplex settings to reflect the those in the PHY +* +* hw - Struct containing variables accessed by shared code +* mii_reg - data to write to the MII control register +* +* The contents of the PHY register containing the needed information need to +* be passed in. +******************************************************************************/ +static int +e1000_config_mac_to_phy(struct e1000_hw *hw) +{ +	uint32_t ctrl; +	uint16_t phy_data; + +	DEBUGFUNC(); + +	/* Read the Device Control Register and set the bits to Force Speed +	 * and Duplex. +	 */ +	ctrl = E1000_READ_REG(hw, CTRL); +	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); +	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + +	/* Set up duplex in the Device Control and Transmit Control +	 * registers depending on negotiated values. +	 */ +	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	if (phy_data & M88E1000_PSSR_DPLX) +		ctrl |= E1000_CTRL_FD; +	else +		ctrl &= ~E1000_CTRL_FD; + +	e1000_config_collision_dist(hw); + +	/* Set up speed in the Device Control register depending on +	 * negotiated values. +	 */ +	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) +		ctrl |= E1000_CTRL_SPD_1000; +	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) +		ctrl |= E1000_CTRL_SPD_100; +	/* Write the configured values back to the Device Control Reg. */ +	E1000_WRITE_REG(hw, CTRL, ctrl); +	return 0; +} + +/****************************************************************************** + * Forces the MAC's flow control settings. + *  + * hw - Struct containing variables accessed by shared code + * + * Sets the TFCE and RFCE bits in the device control register to reflect + * the adapter settings. TFCE and RFCE need to be explicitly set by + * software when a Copper PHY is used because autonegotiation is managed + * by the PHY rather than the MAC. Software must also configure these + * bits when link is forced on a fiber connection. + *****************************************************************************/ +static int +e1000_force_mac_fc(struct e1000_hw *hw) +{ +	uint32_t ctrl; + +	DEBUGFUNC(); + +	/* Get the current configuration of the Device Control Register */ +	ctrl = E1000_READ_REG(hw, CTRL); + +	/* Because we didn't get link via the internal auto-negotiation +	 * mechanism (we either forced link or we got link via PHY +	 * auto-neg), we have to manually enable/disable transmit an +	 * receive flow control. +	 * +	 * The "Case" statement below enables/disable flow control +	 * according to the "hw->fc" parameter. +	 * +	 * The possible values of the "fc" parameter are: +	 *      0:  Flow control is completely disabled +	 *      1:  Rx flow control is enabled (we can receive pause +	 *          frames but not send pause frames). +	 *      2:  Tx flow control is enabled (we can send pause frames +	 *          frames but we do not receive pause frames). +	 *      3:  Both Rx and TX flow control (symmetric) is enabled. +	 *  other:  No other values should be possible at this point. +	 */ + +	switch (hw->fc) { +	case e1000_fc_none: +		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); +		break; +	case e1000_fc_rx_pause: +		ctrl &= (~E1000_CTRL_TFCE); +		ctrl |= E1000_CTRL_RFCE; +		break; +	case e1000_fc_tx_pause: +		ctrl &= (~E1000_CTRL_RFCE); +		ctrl |= E1000_CTRL_TFCE; +		break; +	case e1000_fc_full: +		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); +		break; +	default: +		DEBUGOUT("Flow control param set incorrectly\n"); +		return -E1000_ERR_CONFIG; +	} + +	/* Disable TX Flow Control for 82542 (rev 2.0) */ +	if (hw->mac_type == e1000_82542_rev2_0) +		ctrl &= (~E1000_CTRL_TFCE); + +	E1000_WRITE_REG(hw, CTRL, ctrl); +	return 0; +} + +/****************************************************************************** + * Configures flow control settings after link is established + *  + * hw - Struct containing variables accessed by shared code + * + * Should be called immediately after a valid link has been established. + * Forces MAC flow control settings if link was forced. When in MII/GMII mode + * and autonegotiation is enabled, the MAC flow control settings will be set + * based on the flow control negotiated by the PHY. In TBI mode, the TFCE + * and RFCE bits will be automaticaly set to the negotiated flow control mode. + *****************************************************************************/ +static int +e1000_config_fc_after_link_up(struct e1000_hw *hw) +{ +	int32_t ret_val; +	uint16_t mii_status_reg; +	uint16_t mii_nway_adv_reg; +	uint16_t mii_nway_lp_ability_reg; +	uint16_t speed; +	uint16_t duplex; + +	DEBUGFUNC(); + +	/* Check for the case where we have fiber media and auto-neg failed +	 * so we had to force link.  In this case, we need to force the +	 * configuration of the MAC to match the "fc" parameter. +	 */ +	if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) { +		ret_val = e1000_force_mac_fc(hw); +		if (ret_val < 0) { +			DEBUGOUT("Error forcing flow control settings\n"); +			return ret_val; +		} +	} + +	/* Check for the case where we have copper media and auto-neg is +	 * enabled.  In this case, we need to check and see if Auto-Neg +	 * has completed, and if so, how the PHY and link partner has +	 * flow control configured. +	 */ +	if (hw->media_type == e1000_media_type_copper) { +		/* Read the MII Status Register and check to see if AutoNeg +		 * has completed.  We read this twice because this reg has +		 * some "sticky" (latched) bits. +		 */ +		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { +			DEBUGOUT("PHY Read Error \n"); +			return -E1000_ERR_PHY; +		} +		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { +			DEBUGOUT("PHY Read Error \n"); +			return -E1000_ERR_PHY; +		} + +		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { +			/* The AutoNeg process has completed, so we now need to +			 * read both the Auto Negotiation Advertisement Register +			 * (Address 4) and the Auto_Negotiation Base Page Ability +			 * Register (Address 5) to determine how flow control was +			 * negotiated. +			 */ +			if (e1000_read_phy_reg +			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { +				DEBUGOUT("PHY Read Error\n"); +				return -E1000_ERR_PHY; +			} +			if (e1000_read_phy_reg +			    (hw, PHY_LP_ABILITY, +			     &mii_nway_lp_ability_reg) < 0) { +				DEBUGOUT("PHY Read Error\n"); +				return -E1000_ERR_PHY; +			} + +			/* Two bits in the Auto Negotiation Advertisement Register +			 * (Address 4) and two bits in the Auto Negotiation Base +			 * Page Ability Register (Address 5) determine flow control +			 * for both the PHY and the link partner.  The following +			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, +			 * 1999, describes these PAUSE resolution bits and how flow +			 * control is determined based upon these settings. +			 * NOTE:  DC = Don't Care +			 * +			 *   LOCAL DEVICE  |   LINK PARTNER +			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution +			 *-------|---------|-------|---------|-------------------- +			 *   0   |    0    |  DC   |   DC    | e1000_fc_none +			 *   0   |    1    |   0   |   DC    | e1000_fc_none +			 *   0   |    1    |   1   |    0    | e1000_fc_none +			 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause +			 *   1   |    0    |   0   |   DC    | e1000_fc_none +			 *   1   |   DC    |   1   |   DC    | e1000_fc_full +			 *   1   |    1    |   0   |    0    | e1000_fc_none +			 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause +			 * +			 */ +			/* Are both PAUSE bits set to 1?  If so, this implies +			 * Symmetric Flow Control is enabled at both ends.  The +			 * ASM_DIR bits are irrelevant per the spec. +			 * +			 * For Symmetric Flow Control: +			 * +			 *   LOCAL DEVICE  |   LINK PARTNER +			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +			 *-------|---------|-------|---------|-------------------- +			 *   1   |   DC    |   1   |   DC    | e1000_fc_full +			 * +			 */ +			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && +			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { +				/* Now we need to check if the user selected RX ONLY +				 * of pause frames.  In this case, we had to advertise +				 * FULL flow control because we could not advertise RX +				 * ONLY. Hence, we must now check to see if we need to +				 * turn OFF  the TRANSMISSION of PAUSE frames. +				 */ +				if (hw->original_fc == e1000_fc_full) { +					hw->fc = e1000_fc_full; +					DEBUGOUT("Flow Control = FULL.\r\n"); +				} else { +					hw->fc = e1000_fc_rx_pause; +					DEBUGOUT +					    ("Flow Control = RX PAUSE frames only.\r\n"); +				} +			} +			/* For receiving PAUSE frames ONLY. +			 * +			 *   LOCAL DEVICE  |   LINK PARTNER +			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +			 *-------|---------|-------|---------|-------------------- +			 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause +			 * +			 */ +			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && +				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && +				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && +				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) +			{ +				hw->fc = e1000_fc_tx_pause; +				DEBUGOUT +				    ("Flow Control = TX PAUSE frames only.\r\n"); +			} +			/* For transmitting PAUSE frames ONLY. +			 * +			 *   LOCAL DEVICE  |   LINK PARTNER +			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +			 *-------|---------|-------|---------|-------------------- +			 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause +			 * +			 */ +			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && +				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && +				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && +				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) +			{ +				hw->fc = e1000_fc_rx_pause; +				DEBUGOUT +				    ("Flow Control = RX PAUSE frames only.\r\n"); +			} +			/* Per the IEEE spec, at this point flow control should be +			 * disabled.  However, we want to consider that we could +			 * be connected to a legacy switch that doesn't advertise +			 * desired flow control, but can be forced on the link +			 * partner.  So if we advertised no flow control, that is +			 * what we will resolve to.  If we advertised some kind of +			 * receive capability (Rx Pause Only or Full Flow Control) +			 * and the link partner advertised none, we will configure +			 * ourselves to enable Rx Flow Control only.  We can do +			 * this safely for two reasons:  If the link partner really +			 * didn't want flow control enabled, and we enable Rx, no +			 * harm done since we won't be receiving any PAUSE frames +			 * anyway.  If the intent on the link partner was to have +			 * flow control enabled, then by us enabling RX only, we +			 * can at least receive pause frames and process them. +			 * This is a good idea because in most cases, since we are +			 * predominantly a server NIC, more times than not we will +			 * be asked to delay transmission of packets than asking +			 * our link partner to pause transmission of frames. +			 */ +			else if (hw->original_fc == e1000_fc_none || +				 hw->original_fc == e1000_fc_tx_pause) { +				hw->fc = e1000_fc_none; +				DEBUGOUT("Flow Control = NONE.\r\n"); +			} else { +				hw->fc = e1000_fc_rx_pause; +				DEBUGOUT +				    ("Flow Control = RX PAUSE frames only.\r\n"); +			} + +			/* Now we need to do one last check...  If we auto- +			 * negotiated to HALF DUPLEX, flow control should not be +			 * enabled per IEEE 802.3 spec. +			 */ +			e1000_get_speed_and_duplex(hw, &speed, &duplex); + +			if (duplex == HALF_DUPLEX) +				hw->fc = e1000_fc_none; + +			/* Now we call a subroutine to actually force the MAC +			 * controller to use the correct flow control settings. +			 */ +			ret_val = e1000_force_mac_fc(hw); +			if (ret_val < 0) { +				DEBUGOUT +				    ("Error forcing flow control settings\n"); +				return ret_val; +			} +		} else { +			DEBUGOUT +			    ("Copper PHY and Auto Neg has not completed.\r\n"); +		} +	} +	return 0; +} + +/****************************************************************************** + * Checks to see if the link status of the hardware has changed. + * + * hw - Struct containing variables accessed by shared code + * + * Called by any function that needs to check the link status of the adapter. + *****************************************************************************/ +static int +e1000_check_for_link(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t rxcw; +	uint32_t ctrl; +	uint32_t status; +	uint32_t rctl; +	uint32_t signal; +	int32_t ret_val; +	uint16_t phy_data; +	uint16_t lp_capability; + +	DEBUGFUNC(); + +	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be  +	 * set when the optics detect a signal. On older adapters, it will be  +	 * cleared when there is a signal +	 */ +	ctrl = E1000_READ_REG(hw, CTRL); +	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) +		signal = E1000_CTRL_SWDPIN1; +	else +		signal = 0; + +	status = E1000_READ_REG(hw, STATUS); +	rxcw = E1000_READ_REG(hw, RXCW); +	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw); + +	/* If we have a copper PHY then we only want to go out to the PHY +	 * registers to see if Auto-Neg has completed and/or if our link +	 * status has changed.  The get_link_status flag will be set if we +	 * receive a Link Status Change interrupt or we have Rx Sequence +	 * Errors. +	 */ +	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { +		/* First we want to see if the MII Status Register reports +		 * link.  If so, then we want to get the current speed/duplex +		 * of the PHY. +		 * Read the register twice since the link bit is sticky. +		 */ +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} + +		if (phy_data & MII_SR_LINK_STATUS) { +			hw->get_link_status = FALSE; +		} else { +			/* No link detected */ +			return -E1000_ERR_NOLINK; +		} + +		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we +		 * have Si on board that is 82544 or newer, Auto +		 * Speed Detection takes care of MAC speed/duplex +		 * configuration.  So we only need to configure Collision +		 * Distance in the MAC.  Otherwise, we need to force +		 * speed/duplex on the MAC to the current PHY speed/duplex +		 * settings. +		 */ +		if (hw->mac_type >= e1000_82544) +			e1000_config_collision_dist(hw); +		else { +			ret_val = e1000_config_mac_to_phy(hw); +			if (ret_val < 0) { +				DEBUGOUT +				    ("Error configuring MAC to PHY settings\n"); +				return ret_val; +			} +		} + +		/* Configure Flow Control now that Auto-Neg has completed. First, we  +		 * need to restore the desired flow control settings because we may +		 * have had to re-autoneg with a different link partner. +		 */ +		ret_val = e1000_config_fc_after_link_up(hw); +		if (ret_val < 0) { +			DEBUGOUT("Error configuring flow control\n"); +			return ret_val; +		} + +		/* At this point we know that we are on copper and we have +		 * auto-negotiated link.  These are conditions for checking the link +		 * parter capability register.  We use the link partner capability to +		 * determine if TBI Compatibility needs to be turned on or off.  If +		 * the link partner advertises any speed in addition to Gigabit, then +		 * we assume that they are GMII-based, and TBI compatibility is not +		 * needed. If no other speeds are advertised, we assume the link +		 * partner is TBI-based, and we turn on TBI Compatibility. +		 */ +		if (hw->tbi_compatibility_en) { +			if (e1000_read_phy_reg +			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) { +				DEBUGOUT("PHY Read Error\n"); +				return -E1000_ERR_PHY; +			} +			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS | +					     NWAY_LPAR_10T_FD_CAPS | +					     NWAY_LPAR_100TX_HD_CAPS | +					     NWAY_LPAR_100TX_FD_CAPS | +					     NWAY_LPAR_100T4_CAPS)) { +				/* If our link partner advertises anything in addition to  +				 * gigabit, we do not need to enable TBI compatibility. +				 */ +				if (hw->tbi_compatibility_on) { +					/* If we previously were in the mode, turn it off. */ +					rctl = E1000_READ_REG(hw, RCTL); +					rctl &= ~E1000_RCTL_SBP; +					E1000_WRITE_REG(hw, RCTL, rctl); +					hw->tbi_compatibility_on = FALSE; +				} +			} else { +				/* If TBI compatibility is was previously off, turn it on. For +				 * compatibility with a TBI link partner, we will store bad +				 * packets. Some frames have an additional byte on the end and +				 * will look like CRC errors to to the hardware. +				 */ +				if (!hw->tbi_compatibility_on) { +					hw->tbi_compatibility_on = TRUE; +					rctl = E1000_READ_REG(hw, RCTL); +					rctl |= E1000_RCTL_SBP; +					E1000_WRITE_REG(hw, RCTL, rctl); +				} +			} +		} +	} +	/* If we don't have link (auto-negotiation failed or link partner cannot +	 * auto-negotiate), the cable is plugged in (we have signal), and our +	 * link partner is not trying to auto-negotiate with us (we are receiving +	 * idles or data), we need to force link up. We also need to give +	 * auto-negotiation time to complete, in case the cable was just plugged +	 * in. The autoneg_failed flag does this. +	 */ +	else if ((hw->media_type == e1000_media_type_fiber) && +		 (!(status & E1000_STATUS_LU)) && +		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) && +		 (!(rxcw & E1000_RXCW_C))) { +		if (hw->autoneg_failed == 0) { +			hw->autoneg_failed = 1; +			return 0; +		} +		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); + +		/* Disable auto-negotiation in the TXCW register */ +		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); + +		/* Force link-up and also force full-duplex. */ +		ctrl = E1000_READ_REG(hw, CTRL); +		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); +		E1000_WRITE_REG(hw, CTRL, ctrl); + +		/* Configure Flow Control after forcing link up. */ +		ret_val = e1000_config_fc_after_link_up(hw); +		if (ret_val < 0) { +			DEBUGOUT("Error configuring flow control\n"); +			return ret_val; +		} +	} +	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable +	 * auto-negotiation in the TXCW register and disable forced link in the +	 * Device Control register in an attempt to auto-negotiate with our link +	 * partner. +	 */ +	else if ((hw->media_type == e1000_media_type_fiber) && +		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { +		DEBUGOUT +		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); +		E1000_WRITE_REG(hw, TXCW, hw->txcw); +		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); +	} +	return 0; +} + +/****************************************************************************** + * Detects the current speed and duplex settings of the hardware. + * + * hw - Struct containing variables accessed by shared code + * speed - Speed of the connection + * duplex - Duplex setting of the connection + *****************************************************************************/ +static void +e1000_get_speed_and_duplex(struct e1000_hw *hw, +			   uint16_t * speed, uint16_t * duplex) +{ +	uint32_t status; + +	DEBUGFUNC(); + +	if (hw->mac_type >= e1000_82543) { +		status = E1000_READ_REG(hw, STATUS); +		if (status & E1000_STATUS_SPEED_1000) { +			*speed = SPEED_1000; +			DEBUGOUT("1000 Mbs, "); +		} else if (status & E1000_STATUS_SPEED_100) { +			*speed = SPEED_100; +			DEBUGOUT("100 Mbs, "); +		} else { +			*speed = SPEED_10; +			DEBUGOUT("10 Mbs, "); +		} + +		if (status & E1000_STATUS_FD) { +			*duplex = FULL_DUPLEX; +			DEBUGOUT("Full Duplex\r\n"); +		} else { +			*duplex = HALF_DUPLEX; +			DEBUGOUT(" Half Duplex\r\n"); +		} +	} else { +		DEBUGOUT("1000 Mbs, Full Duplex\r\n"); +		*speed = SPEED_1000; +		*duplex = FULL_DUPLEX; +	} +} + +/****************************************************************************** +* Blocks until autoneg completes or times out (~4.5 seconds) +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int +e1000_wait_autoneg(struct e1000_hw *hw) +{ +	uint16_t i; +	uint16_t phy_data; + +	DEBUGFUNC(); +	DEBUGOUT("Waiting for Auto-Neg to complete.\n"); + +	/* We will wait for autoneg to complete or 4.5 seconds to expire. */ +	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { +		/* Read the MII Status Register and wait for Auto-Neg +		 * Complete bit to be set. +		 */ +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} +		if (phy_data & MII_SR_AUTONEG_COMPLETE) { +			DEBUGOUT("Auto-Neg complete.\n"); +			return 0; +		} +		mdelay(100); +	} +	DEBUGOUT("Auto-Neg timedout.\n"); +	return -E1000_ERR_TIMEOUT; +} + +/****************************************************************************** +* Raises the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void +e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) +{ +	/* Raise the clock input to the Management Data Clock (by setting the MDC +	 * bit), and then delay 2 microseconds. +	 */ +	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); +	E1000_WRITE_FLUSH(hw); +	udelay(2); +} + +/****************************************************************************** +* Lowers the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void +e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) +{ +	/* Lower the clock input to the Management Data Clock (by clearing the MDC +	 * bit), and then delay 2 microseconds. +	 */ +	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); +	E1000_WRITE_FLUSH(hw); +	udelay(2); +} + +/****************************************************************************** +* Shifts data bits out to the PHY +* +* hw - Struct containing variables accessed by shared code +* data - Data to send out to the PHY +* count - Number of bits to shift out +* +* Bits are shifted out in MSB to LSB order. +******************************************************************************/ +static void +e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) +{ +	uint32_t ctrl; +	uint32_t mask; + +	/* We need to shift "count" number of bits out to the PHY. So, the value +	 * in the "data" parameter will be shifted out to the PHY one bit at a  +	 * time. In order to do this, "data" must be broken down into bits. +	 */ +	mask = 0x01; +	mask <<= (count - 1); + +	ctrl = E1000_READ_REG(hw, CTRL); + +	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ +	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + +	while (mask) { +		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and +		 * then raising and lowering the Management Data Clock. A "0" is +		 * shifted out to the PHY by setting the MDIO bit to "0" and then +		 * raising and lowering the clock. +		 */ +		if (data & mask) +			ctrl |= E1000_CTRL_MDIO; +		else +			ctrl &= ~E1000_CTRL_MDIO; + +		E1000_WRITE_REG(hw, CTRL, ctrl); +		E1000_WRITE_FLUSH(hw); + +		udelay(2); + +		e1000_raise_mdi_clk(hw, &ctrl); +		e1000_lower_mdi_clk(hw, &ctrl); + +		mask = mask >> 1; +	} +} + +/****************************************************************************** +* Shifts data bits in from the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Bits are shifted in in MSB to LSB order.  +******************************************************************************/ +static uint16_t +e1000_shift_in_mdi_bits(struct e1000_hw *hw) +{ +	uint32_t ctrl; +	uint16_t data = 0; +	uint8_t i; + +	/* In order to read a register from the PHY, we need to shift in a total +	 * of 18 bits from the PHY. The first two bit (turnaround) times are used +	 * to avoid contention on the MDIO pin when a read operation is performed. +	 * These two bits are ignored by us and thrown away. Bits are "shifted in" +	 * by raising the input to the Management Data Clock (setting the MDC bit), +	 * and then reading the value of the MDIO bit. +	 */ +	ctrl = E1000_READ_REG(hw, CTRL); + +	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ +	ctrl &= ~E1000_CTRL_MDIO_DIR; +	ctrl &= ~E1000_CTRL_MDIO; + +	E1000_WRITE_REG(hw, CTRL, ctrl); +	E1000_WRITE_FLUSH(hw); + +	/* Raise and Lower the clock before reading in the data. This accounts for +	 * the turnaround bits. The first clock occurred when we clocked out the +	 * last bit of the Register Address. +	 */ +	e1000_raise_mdi_clk(hw, &ctrl); +	e1000_lower_mdi_clk(hw, &ctrl); + +	for (data = 0, i = 0; i < 16; i++) { +		data = data << 1; +		e1000_raise_mdi_clk(hw, &ctrl); +		ctrl = E1000_READ_REG(hw, CTRL); +		/* Check to see if we shifted in a "1". */ +		if (ctrl & E1000_CTRL_MDIO) +			data |= 1; +		e1000_lower_mdi_clk(hw, &ctrl); +	} + +	e1000_raise_mdi_clk(hw, &ctrl); +	e1000_lower_mdi_clk(hw, &ctrl); + +	return data; +} + +/***************************************************************************** +* Reads the value from a PHY register +* +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to read +******************************************************************************/ +static int +e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data) +{ +	uint32_t i; +	uint32_t mdic = 0; +	const uint32_t phy_addr = 1; + +	if (reg_addr > MAX_PHY_REG_ADDRESS) { +		DEBUGOUT("PHY Address %d is out of range\n", reg_addr); +		return -E1000_ERR_PARAM; +	} + +	if (hw->mac_type > e1000_82543) { +		/* Set up Op-code, Phy Address, and register address in the MDI +		 * Control register.  The MAC will take care of interfacing with the +		 * PHY to retrieve the desired data. +		 */ +		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | +			(phy_addr << E1000_MDIC_PHY_SHIFT) | +			(E1000_MDIC_OP_READ)); + +		E1000_WRITE_REG(hw, MDIC, mdic); + +		/* Poll the ready bit to see if the MDI read completed */ +		for (i = 0; i < 64; i++) { +			udelay(10); +			mdic = E1000_READ_REG(hw, MDIC); +			if (mdic & E1000_MDIC_READY) +				break; +		} +		if (!(mdic & E1000_MDIC_READY)) { +			DEBUGOUT("MDI Read did not complete\n"); +			return -E1000_ERR_PHY; +		} +		if (mdic & E1000_MDIC_ERROR) { +			DEBUGOUT("MDI Error\n"); +			return -E1000_ERR_PHY; +		} +		*phy_data = (uint16_t) mdic; +	} else { +		/* We must first send a preamble through the MDIO pin to signal the +		 * beginning of an MII instruction.  This is done by sending 32 +		 * consecutive "1" bits. +		 */ +		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + +		/* Now combine the next few fields that are required for a read +		 * operation.  We use this method instead of calling the +		 * e1000_shift_out_mdi_bits routine five different times. The format of +		 * a MII read instruction consists of a shift out of 14 bits and is +		 * defined as follows: +		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr> +		 * followed by a shift in of 18 bits.  This first two bits shifted in +		 * are TurnAround bits used to avoid contention on the MDIO pin when a +		 * READ operation is performed.  These two bits are thrown away +		 * followed by a shift in of 16 bits which contains the desired data. +		 */ +		mdic = ((reg_addr) | (phy_addr << 5) | +			(PHY_OP_READ << 10) | (PHY_SOF << 12)); + +		e1000_shift_out_mdi_bits(hw, mdic, 14); + +		/* Now that we've shifted out the read command to the MII, we need to +		 * "shift in" the 16-bit value (18 total bits) of the requested PHY +		 * register address. +		 */ +		*phy_data = e1000_shift_in_mdi_bits(hw); +	} +	return 0; +} + +/****************************************************************************** +* Writes a value to a PHY register +* +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to write +* data - data to write to the PHY +******************************************************************************/ +static int +e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) +{ +	uint32_t i; +	uint32_t mdic = 0; +	const uint32_t phy_addr = 1; + +	if (reg_addr > MAX_PHY_REG_ADDRESS) { +		DEBUGOUT("PHY Address %d is out of range\n", reg_addr); +		return -E1000_ERR_PARAM; +	} + +	if (hw->mac_type > e1000_82543) { +		/* Set up Op-code, Phy Address, register address, and data intended +		 * for the PHY register in the MDI Control register.  The MAC will take +		 * care of interfacing with the PHY to send the desired data. +		 */ +		mdic = (((uint32_t) phy_data) | +			(reg_addr << E1000_MDIC_REG_SHIFT) | +			(phy_addr << E1000_MDIC_PHY_SHIFT) | +			(E1000_MDIC_OP_WRITE)); + +		E1000_WRITE_REG(hw, MDIC, mdic); + +		/* Poll the ready bit to see if the MDI read completed */ +		for (i = 0; i < 64; i++) { +			udelay(10); +			mdic = E1000_READ_REG(hw, MDIC); +			if (mdic & E1000_MDIC_READY) +				break; +		} +		if (!(mdic & E1000_MDIC_READY)) { +			DEBUGOUT("MDI Write did not complete\n"); +			return -E1000_ERR_PHY; +		} +	} else { +		/* We'll need to use the SW defined pins to shift the write command +		 * out to the PHY. We first send a preamble to the PHY to signal the +		 * beginning of the MII instruction.  This is done by sending 32  +		 * consecutive "1" bits. +		 */ +		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + +		/* Now combine the remaining required fields that will indicate a  +		 * write operation. We use this method instead of calling the +		 * e1000_shift_out_mdi_bits routine for each field in the command. The +		 * format of a MII write instruction is as follows: +		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. +		 */ +		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | +			(PHY_OP_WRITE << 12) | (PHY_SOF << 14)); +		mdic <<= 16; +		mdic |= (uint32_t) phy_data; + +		e1000_shift_out_mdi_bits(hw, mdic, 32); +	} +	return 0; +} + +/****************************************************************************** +* Returns the PHY to the power-on reset state +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static void +e1000_phy_hw_reset(struct e1000_hw *hw) +{ +	uint32_t ctrl; +	uint32_t ctrl_ext; + +	DEBUGFUNC(); + +	DEBUGOUT("Resetting Phy...\n"); + +	if (hw->mac_type > e1000_82543) { +		/* Read the device control register and assert the E1000_CTRL_PHY_RST +		 * bit. Then, take it out of reset. +		 */ +		ctrl = E1000_READ_REG(hw, CTRL); +		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); +		E1000_WRITE_FLUSH(hw); +		mdelay(10); +		E1000_WRITE_REG(hw, CTRL, ctrl); +		E1000_WRITE_FLUSH(hw); +	} else { +		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR +		 * bit to put the PHY into reset. Then, take it out of reset. +		 */ +		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); +		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; +		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; +		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); +		E1000_WRITE_FLUSH(hw); +		mdelay(10); +		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; +		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); +		E1000_WRITE_FLUSH(hw); +	} +	udelay(150); +} + +/****************************************************************************** +* Resets the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Sets bit 15 of the MII Control regiser +******************************************************************************/ +static int +e1000_phy_reset(struct e1000_hw *hw) +{ +	uint16_t phy_data; + +	DEBUGFUNC(); + +	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	phy_data |= MII_CR_RESET; +	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} +	udelay(1); +	return 0; +} + +/****************************************************************************** +* Probes the expected PHY address for known PHY IDs +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int +e1000_detect_gig_phy(struct e1000_hw *hw) +{ +	uint16_t phy_id_high, phy_id_low; +	int match = FALSE; + +	DEBUGFUNC(); + +	/* Read the PHY ID Registers to identify which PHY is onboard. */ +	if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	hw->phy_id = (uint32_t) (phy_id_high << 16); +	udelay(2); +	if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); + +	switch (hw->mac_type) { +	case e1000_82543: +		if (hw->phy_id == M88E1000_E_PHY_ID) +			match = TRUE; +		break; +	case e1000_82544: +		if (hw->phy_id == M88E1000_I_PHY_ID) +			match = TRUE; +		break; +	case e1000_82540: +	case e1000_82545: +	case e1000_82546: +		if (hw->phy_id == M88E1011_I_PHY_ID) +			match = TRUE; +		break; +	default: +		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type); +		return -E1000_ERR_CONFIG; +	} +	if (match) { +		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id); +		return 0; +	} +	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id); +	return -E1000_ERR_PHY; +} + +/** + * e1000_sw_init - Initialize general software structures (struct e1000_adapter) + * + * e1000_sw_init initializes the Adapter private data structure. + * Fields are initialized based on PCI device information and + * OS network device settings (MTU size). + **/ + +static int +e1000_sw_init(struct eth_device *nic, int cardnum) +{ +	struct e1000_hw *hw = (typeof(hw)) nic->priv; +	int result; + +	/* PCI config space info */ +	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); +	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); +	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID, +			     &hw->subsystem_vendor_id); +	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); + +	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); +	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); + +	/* identify the MAC */ +	result = e1000_set_mac_type(hw); +	if (result) { +		E1000_ERR("Unknown MAC Type\n"); +		return result; +	} + +	/* lan a vs. lan b settings */ +	if (hw->mac_type == e1000_82546) +		/*this also works w/ multiple 82546 cards */ +		/*but not if they're intermingled /w other e1000s */ +		hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a; +	else +		hw->lan_loc = e1000_lan_a; + +	/* flow control settings */ +	hw->fc_high_water = E1000_FC_HIGH_THRESH; +	hw->fc_low_water = E1000_FC_LOW_THRESH; +	hw->fc_pause_time = E1000_FC_PAUSE_TIME; +	hw->fc_send_xon = 1; + +	/* Media type - copper or fiber */ + +	if (hw->mac_type >= e1000_82543) { +		uint32_t status = E1000_READ_REG(hw, STATUS); + +		if (status & E1000_STATUS_TBIMODE) { +			DEBUGOUT("fiber interface\n"); +			hw->media_type = e1000_media_type_fiber; +		} else { +			DEBUGOUT("copper interface\n"); +			hw->media_type = e1000_media_type_copper; +		} +	} else { +		hw->media_type = e1000_media_type_fiber; +	} + +	if (hw->mac_type < e1000_82543) +		hw->report_tx_early = 0; +	else +		hw->report_tx_early = 1; + +	hw->tbi_compatibility_en = TRUE; +#if 0 +	hw->wait_autoneg_complete = FALSE; +	hw->adaptive_ifs = TRUE; + +	/* Copper options */ +	if (hw->media_type == e1000_media_type_copper) { +		hw->mdix = AUTO_ALL_MODES; +		hw->disable_polarity_correction = FALSE; +	} +#endif +	return E1000_SUCCESS; +} + +void +fill_rx(struct e1000_hw *hw) +{ +	struct e1000_rx_desc *rd; + +	rx_last = rx_tail; +	rd = rx_base + rx_tail; +	rx_tail = (rx_tail + 1) % 8; +	memset(rd, 0, 16); +	rd->buffer_addr = cpu_to_le64((u32) & packet); +	E1000_WRITE_REG(hw, RDT, rx_tail); +} + +/** + * e1000_configure_tx - Configure 8254x Transmit Unit after Reset + * @adapter: board private structure + * + * Configure the Tx unit of the MAC after a reset. + **/ + +static void +e1000_configure_tx(struct e1000_hw *hw) +{ +	unsigned long ptr; +	unsigned long tctl; +	unsigned long tipg; + +	ptr = (u32) tx_pool; +	if (ptr & 0xf) +		ptr = (ptr + 0x10) & (~0xf); + +	tx_base = (typeof(tx_base)) ptr; + +	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base); +	E1000_WRITE_REG(hw, TDBAH, 0); + +	E1000_WRITE_REG(hw, TDLEN, 128); + +	/* Setup the HW Tx Head and Tail descriptor pointers */ +	E1000_WRITE_REG(hw, TDH, 0); +	E1000_WRITE_REG(hw, TDT, 0); +	tx_tail = 0; + +	/* Set the default values for the Tx Inter Packet Gap timer */ +	switch (hw->mac_type) { +	case e1000_82542_rev2_0: +	case e1000_82542_rev2_1: +		tipg = DEFAULT_82542_TIPG_IPGT; +		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; +		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; +		break; +	default: +		if (hw->media_type == e1000_media_type_fiber) +			tipg = DEFAULT_82543_TIPG_IPGT_FIBER; +		else +			tipg = DEFAULT_82543_TIPG_IPGT_COPPER; +		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; +		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; +	} +	E1000_WRITE_REG(hw, TIPG, tipg); +#if 0 +	/* Set the Tx Interrupt Delay register */ +	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); +	if (hw->mac_type >= e1000_82540) +		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); +#endif +	/* Program the Transmit Control Register */ +	tctl = E1000_READ_REG(hw, TCTL); +	tctl &= ~E1000_TCTL_CT; +	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | +	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); +	E1000_WRITE_REG(hw, TCTL, tctl); + +	e1000_config_collision_dist(hw); +#if 0 +	/* Setup Transmit Descriptor Settings for this adapter */ +	adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE; + +	if (adapter->hw.report_tx_early == 1) +		adapter->txd_cmd |= E1000_TXD_CMD_RS; +	else +		adapter->txd_cmd |= E1000_TXD_CMD_RPS; +#endif +} + +/** + * e1000_setup_rctl - configure the receive control register + * @adapter: Board private structure + **/ +static void +e1000_setup_rctl(struct e1000_hw *hw) +{ +	uint32_t rctl; + +	rctl = E1000_READ_REG(hw, RCTL); + +	rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + +	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF;	/* | +												   (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ + +	if (hw->tbi_compatibility_on == 1) +		rctl |= E1000_RCTL_SBP; +	else +		rctl &= ~E1000_RCTL_SBP; + +	rctl &= ~(E1000_RCTL_SZ_4096); +#if 0 +	switch (adapter->rx_buffer_len) { +	case E1000_RXBUFFER_2048: +	default: +#endif +		rctl |= E1000_RCTL_SZ_2048; +		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); +#if 0 +		break; +	case E1000_RXBUFFER_4096: +		rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE; +		break; +	case E1000_RXBUFFER_8192: +		rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE; +		break; +	case E1000_RXBUFFER_16384: +		rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE; +		break; +	} +#endif +	E1000_WRITE_REG(hw, RCTL, rctl); +} + +/** + * e1000_configure_rx - Configure 8254x Receive Unit after Reset + * @adapter: board private structure + * + * Configure the Rx unit of the MAC after a reset. + **/ +static void +e1000_configure_rx(struct e1000_hw *hw) +{ +	unsigned long ptr; +	unsigned long rctl; +#if 0 +	unsigned long rxcsum; +#endif +	rx_tail = 0; +	/* make sure receives are disabled while setting up the descriptors */ +	rctl = E1000_READ_REG(hw, RCTL); +	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); +#if 0 +	/* set the Receive Delay Timer Register */ + +	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); +#endif +	if (hw->mac_type >= e1000_82540) { +#if 0 +		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); +#endif +		/* Set the interrupt throttling rate.  Value is calculated +		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ +#define MAX_INTS_PER_SEC        8000 +#define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256) +		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); +	} + +	/* Setup the Base and Length of the Rx Descriptor Ring */ +	ptr = (u32) rx_pool; +	if (ptr & 0xf) +		ptr = (ptr + 0x10) & (~0xf); +	rx_base = (typeof(rx_base)) ptr; +	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base); +	E1000_WRITE_REG(hw, RDBAH, 0); + +	E1000_WRITE_REG(hw, RDLEN, 128); + +	/* Setup the HW Rx Head and Tail Descriptor Pointers */ +	E1000_WRITE_REG(hw, RDH, 0); +	E1000_WRITE_REG(hw, RDT, 0); +#if 0 +	/* Enable 82543 Receive Checksum Offload for TCP and UDP */ +	if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) { +		rxcsum = E1000_READ_REG(hw, RXCSUM); +		rxcsum |= E1000_RXCSUM_TUOFL; +		E1000_WRITE_REG(hw, RXCSUM, rxcsum); +	} +#endif +	/* Enable Receives */ + +	E1000_WRITE_REG(hw, RCTL, rctl); +	fill_rx(hw); +} + +/************************************************************************** +POLL - Wait for a frame +***************************************************************************/ +static int +e1000_poll(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	struct e1000_rx_desc *rd; +	/* return true if there's an ethernet packet ready to read */ +	rd = rx_base + rx_last; +	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) +		return 0; +	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */ +	NetReceive(packet, le32_to_cpu(rd->length)); +	fill_rx(hw); +	return 1; +} + +/************************************************************************** +TRANSMIT - Transmit a frame +***************************************************************************/ +static int +e1000_transmit(struct eth_device *nic, volatile void *packet, int length) +{ +	struct e1000_hw *hw = nic->priv; +	struct e1000_tx_desc *txp; +	int i = 0; + +	txp = tx_base + tx_tail; +	tx_tail = (tx_tail + 1) % 8; + +	txp->buffer_addr = cpu_to_le64(virt_to_bus(packet)); +	txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | +				      E1000_TXD_CMD_IFCS | length); +	txp->upper.data = 0; +	E1000_WRITE_REG(hw, TDT, tx_tail); + +	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) { +		if (i++ > TOUT_LOOP) { +			DEBUGOUT("e1000: tx timeout\n"); +			return 0; +		} +		udelay(10);	/* give the nic a chance to write to the register */ +	} +	return 1; +} + +/*reset function*/ +static inline int +e1000_reset(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; + +	e1000_reset_hw(hw); +	if (hw->mac_type >= e1000_82544) { +		E1000_WRITE_REG(hw, WUC, 0); +	} +	return e1000_init_hw(nic); +} + +/************************************************************************** +DISABLE - Turn off ethernet interface +***************************************************************************/ +static void +e1000_disable(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; + +	/* Turn off the ethernet interface */ +	E1000_WRITE_REG(hw, RCTL, 0); +	E1000_WRITE_REG(hw, TCTL, 0); + +	/* Clear the transmit ring */ +	E1000_WRITE_REG(hw, TDH, 0); +	E1000_WRITE_REG(hw, TDT, 0); + +	/* Clear the receive ring */ +	E1000_WRITE_REG(hw, RDH, 0); +	E1000_WRITE_REG(hw, RDT, 0); + +	/* put the card in its initial state */ +#if 0 +	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST); +#endif +	mdelay(10); + +} + +/************************************************************************** +INIT - set up ethernet interface(s) +***************************************************************************/ +static int +e1000_init(struct eth_device *nic, bd_t * bis) +{ +	struct e1000_hw *hw = nic->priv; +	int ret_val = 0; + +	ret_val = e1000_reset(nic); +	if (ret_val < 0) { +		if ((ret_val == -E1000_ERR_NOLINK) || +		    (ret_val == -E1000_ERR_TIMEOUT)) { +			E1000_ERR("Valid Link not detected\n"); +		} else { +			E1000_ERR("Hardware Initialization Failed\n"); +		} +		return 0; +	} +	e1000_configure_tx(hw); +	e1000_setup_rctl(hw); +	e1000_configure_rx(hw); +	return 1; +} + +/************************************************************************** +PROBE - Look for an adapter, this routine's visible to the outside +You should omit the last argument struct pci_device * for a non-PCI NIC +***************************************************************************/ +int +e1000_initialize(bd_t * bis) +{ +	pci_dev_t devno; +	int card_number = 0; +	struct eth_device *nic = NULL; +	struct e1000_hw *hw = NULL; +	u32 iobase; +	int idx = 0; +	u32 PciCommandWord; + +	while (1) {		/* Find PCI device(s) */ +		if ((devno = pci_find_devices(supported, idx++)) < 0) { +			break; +		} + +		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase); +		iobase &= ~0xf;	/* Mask the bits that say "this is an io addr" */ +		DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase); + +		pci_write_config_dword(devno, PCI_COMMAND, +				       PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); +		/* Check if I/O accesses and Bus Mastering are enabled. */ +		pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord); +		if (!(PciCommandWord & PCI_COMMAND_MEMORY)) { +			printf("Error: Can not enable MEM access.\n"); +			continue; +		} else if (!(PciCommandWord & PCI_COMMAND_MASTER)) { +			printf("Error: Can not enable Bus Mastering.\n"); +			continue; +		} + +		nic = (struct eth_device *) malloc(sizeof (*nic)); +		hw = (struct e1000_hw *) malloc(sizeof (*hw)); +		hw->pdev = devno; +		nic->priv = hw; +		nic->iobase = bus_to_phys(devno, iobase); + +		sprintf(nic->name, "e1000#%d", card_number); + +		/* Are these variables needed? */ +#if 0 +		hw->fc = e1000_fc_none; +		hw->original_fc = e1000_fc_none; +#else +		hw->fc = e1000_fc_default; +		hw->original_fc = e1000_fc_default; +#endif +		hw->autoneg_failed = 0; +		hw->get_link_status = TRUE; +		hw->hw_addr = (typeof(hw->hw_addr)) iobase; +		hw->mac_type = e1000_undefined; + +		/* MAC and Phy settings */ +		if (e1000_sw_init(nic, card_number) < 0) { +			free(hw); +			free(nic); +			return 0; +		} +		if (e1000_validate_eeprom_checksum(nic) < 0) { +			printf("The EEPROM Checksum Is Not Valid\n"); +			free(hw); +			free(nic); +			return 0; +		} +		e1000_read_mac_addr(nic); + +		E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA); + +		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n", +		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2], +		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]); + +		nic->init = e1000_init; +		nic->recv = e1000_poll; +		nic->send = e1000_transmit; +		nic->halt = e1000_disable; + +		eth_register(nic); + +		card_number++; +	} +	return 1; +} + +#endif diff --git a/drivers/e1000.h b/drivers/e1000.h new file mode 100644 index 000000000..ba05ac075 --- /dev/null +++ b/drivers/e1000.h @@ -0,0 +1,1758 @@ +/******************************************************************************* + +   +  Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. +   +  This program is free software; you can redistribute it and/or modify it  +  under the terms of the GNU General Public License as published by the Free  +  Software Foundation; either version 2 of the License, or (at your option)  +  any later version. +   +  This program is distributed in the hope that it will be useful, but WITHOUT  +  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or  +  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for  +  more details. +   +  You should have received a copy of the GNU General Public License along with +  this program; if not, write to the Free Software Foundation, Inc., 59  +  Temple Place - Suite 330, Boston, MA  02111-1307, USA. +   +  The full GNU General Public License is included in this distribution in the +  file called LICENSE. +   +  Contact Information: +  Linux NICS <linux.nics@intel.com> +  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +/* e1000_hw.h + * Structures, enums, and macros for the MAC + */ + +#ifndef _E1000_HW_H_ +#define _E1000_HW_H_ + +#include <common.h> +#include <malloc.h> +#include <net.h> +#include <asm/io.h> +#include <pci.h> + +#define E1000_ERR(args...) printf("e1000: " args) + +#ifdef E1000_DEBUG +#define E1000_DBG(args...)	printf("e1000: " args) +#define DEBUGOUT(fmt,args...) printf(fmt ,##args) +#define DEBUGFUNC()        printf("%s\n", __FUNCTION__); +#else +#define E1000_DBG(args...) +#define DEBUGFUNC() +#define DEBUGOUT(fmt,args...) +#endif + +/* Forward declarations of structures used by the shared code */ +struct e1000_hw; +struct e1000_hw_stats; + +typedef enum { +	FALSE = 0, +	TRUE = 1 +} boolean_t; + +/* Enumerated types specific to the e1000 hardware */ +/* Media Access Controlers */ +typedef enum { +	e1000_undefined = 0, +	e1000_82542_rev2_0, +	e1000_82542_rev2_1, +	e1000_82543, +	e1000_82544, +	e1000_82540, +	e1000_82545, +	e1000_82546, +	e1000_num_macs +} e1000_mac_type; + +/* Media Types */ +typedef enum { +	e1000_media_type_copper = 0, +	e1000_media_type_fiber = 1, +	e1000_num_media_types +} e1000_media_type; + +typedef enum { +	e1000_10_half = 0, +	e1000_10_full = 1, +	e1000_100_half = 2, +	e1000_100_full = 3 +} e1000_speed_duplex_type; + +typedef enum { +	e1000_lan_a = 0, +	e1000_lan_b = 1 +} e1000_lan_loc; + +/* Flow Control Settings */ +typedef enum { +	e1000_fc_none = 0, +	e1000_fc_rx_pause = 1, +	e1000_fc_tx_pause = 2, +	e1000_fc_full = 3, +	e1000_fc_default = 0xFF +} e1000_fc_type; + +/* PCI bus types */ +typedef enum { +	e1000_bus_type_unknown = 0, +	e1000_bus_type_pci, +	e1000_bus_type_pcix +} e1000_bus_type; + +/* PCI bus speeds */ +typedef enum { +	e1000_bus_speed_unknown = 0, +	e1000_bus_speed_33, +	e1000_bus_speed_66, +	e1000_bus_speed_100, +	e1000_bus_speed_133, +	e1000_bus_speed_reserved +} e1000_bus_speed; + +/* PCI bus widths */ +typedef enum { +	e1000_bus_width_unknown = 0, +	e1000_bus_width_32, +	e1000_bus_width_64 +} e1000_bus_width; + +/* PHY status info structure and supporting enums */ +typedef enum { +	e1000_cable_length_50 = 0, +	e1000_cable_length_50_80, +	e1000_cable_length_80_110, +	e1000_cable_length_110_140, +	e1000_cable_length_140, +	e1000_cable_length_undefined = 0xFF +} e1000_cable_length; + +typedef enum { +	e1000_10bt_ext_dist_enable_normal = 0, +	e1000_10bt_ext_dist_enable_lower, +	e1000_10bt_ext_dist_enable_undefined = 0xFF +} e1000_10bt_ext_dist_enable; + +typedef enum { +	e1000_rev_polarity_normal = 0, +	e1000_rev_polarity_reversed, +	e1000_rev_polarity_undefined = 0xFF +} e1000_rev_polarity; + +typedef enum { +	e1000_polarity_reversal_enabled = 0, +	e1000_polarity_reversal_disabled, +	e1000_polarity_reversal_undefined = 0xFF +} e1000_polarity_reversal; + +typedef enum { +	e1000_auto_x_mode_manual_mdi = 0, +	e1000_auto_x_mode_manual_mdix, +	e1000_auto_x_mode_auto1, +	e1000_auto_x_mode_auto2, +	e1000_auto_x_mode_undefined = 0xFF +} e1000_auto_x_mode; + +typedef enum { +	e1000_1000t_rx_status_not_ok = 0, +	e1000_1000t_rx_status_ok, +	e1000_1000t_rx_status_undefined = 0xFF +} e1000_1000t_rx_status; + +struct e1000_phy_info { +	e1000_cable_length cable_length; +	e1000_10bt_ext_dist_enable extended_10bt_distance; +	e1000_rev_polarity cable_polarity; +	e1000_polarity_reversal polarity_correction; +	e1000_auto_x_mode mdix_mode; +	e1000_1000t_rx_status local_rx; +	e1000_1000t_rx_status remote_rx; +}; + +struct e1000_phy_stats { +	uint32_t idle_errors; +	uint32_t receive_errors; +}; + +/* Error Codes */ +#define E1000_SUCCESS      0 +#define E1000_ERR_EEPROM   1 +#define E1000_ERR_PHY      2 +#define E1000_ERR_CONFIG   3 +#define E1000_ERR_PARAM    4 +#define E1000_ERR_MAC_TYPE 5 +#define E1000_ERR_NOLINK   6 +#define E1000_ERR_TIMEOUT  7 + +/* PCI Device IDs */ +#define E1000_DEV_ID_82542          0x1000 +#define E1000_DEV_ID_82543GC_FIBER  0x1001 +#define E1000_DEV_ID_82543GC_COPPER 0x1004 +#define E1000_DEV_ID_82544EI_COPPER 0x1008 +#define E1000_DEV_ID_82544EI_FIBER  0x1009 +#define E1000_DEV_ID_82544GC_COPPER 0x100C +#define E1000_DEV_ID_82544GC_LOM    0x100D +#define E1000_DEV_ID_82540EM        0x100E +#define E1000_DEV_ID_82540EM_LOM    0x1015 +#define E1000_DEV_ID_82545EM_COPPER 0x100F +#define E1000_DEV_ID_82545EM_FIBER  0x1011 +#define E1000_DEV_ID_82546EB_COPPER 0x1010 +#define E1000_DEV_ID_82546EB_FIBER  0x1012 +#define NUM_DEV_IDS 13 + +#define NODE_ADDRESS_SIZE 6 +#define ETH_LENGTH_OF_ADDRESS 6 + +/* MAC decode size is 128K - This is the size of BAR0 */ +#define MAC_DECODE_SIZE (128 * 1024) + +#define E1000_82542_2_0_REV_ID 2 +#define E1000_82542_2_1_REV_ID 3 + +#define SPEED_10    10 +#define SPEED_100   100 +#define SPEED_1000  1000 +#define HALF_DUPLEX 1 +#define FULL_DUPLEX 2 + +/* The sizes (in bytes) of a ethernet packet */ +#define ENET_HEADER_SIZE             14 +#define MAXIMUM_ETHERNET_FRAME_SIZE  1518	/* With FCS */ +#define MINIMUM_ETHERNET_FRAME_SIZE  64	/* With FCS */ +#define ETHERNET_FCS_SIZE            4 +#define MAXIMUM_ETHERNET_PACKET_SIZE \ +    (MAXIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) +#define MINIMUM_ETHERNET_PACKET_SIZE \ +    (MINIMUM_ETHERNET_FRAME_SIZE - ETHERNET_FCS_SIZE) +#define CRC_LENGTH                   ETHERNET_FCS_SIZE +#define MAX_JUMBO_FRAME_SIZE         0x3F00 + +/* 802.1q VLAN Packet Sizes */ +#define VLAN_TAG_SIZE                     4	/* 802.3ac tag (not DMAed) */ + +/* Ethertype field values */ +#define ETHERNET_IEEE_VLAN_TYPE 0x8100	/* 802.3ac packet */ +#define ETHERNET_IP_TYPE        0x0800	/* IP packets */ +#define ETHERNET_ARP_TYPE       0x0806	/* Address Resolution Protocol (ARP) */ + +/* Packet Header defines */ +#define IP_PROTOCOL_TCP    6 +#define IP_PROTOCOL_UDP    0x11 + +/* This defines the bits that are set in the Interrupt Mask + * Set/Read Register.  Each bit is documented below: + *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + *   o RXSEQ  = Receive Sequence Error  + */ +#define POLL_IMS_ENABLE_MASK ( \ +    E1000_IMS_RXDMT0 |         \ +    E1000_IMS_RXSEQ) + +/* This defines the bits that are set in the Interrupt Mask + * Set/Read Register.  Each bit is documented below: + *   o RXT0   = Receiver Timer Interrupt (ring 0) + *   o TXDW   = Transmit Descriptor Written Back + *   o RXDMT0 = Receive Descriptor Minimum Threshold hit (ring 0) + *   o RXSEQ  = Receive Sequence Error + *   o LSC    = Link Status Change + */ +#define IMS_ENABLE_MASK ( \ +    E1000_IMS_RXT0   |    \ +    E1000_IMS_TXDW   |    \ +    E1000_IMS_RXDMT0 |    \ +    E1000_IMS_RXSEQ  |    \ +    E1000_IMS_LSC) + +/* The number of high/low register pairs in the RAR. The RAR (Receive Address + * Registers) holds the directed and multicast addresses that we monitor. We + * reserve one of these spots for our directed address, allowing us room for + * E1000_RAR_ENTRIES - 1 multicast addresses.  + */ +#define E1000_RAR_ENTRIES 16 + +#define MIN_NUMBER_OF_DESCRIPTORS 8 +#define MAX_NUMBER_OF_DESCRIPTORS 0xFFF8 + +/* Receive Descriptor */ +struct e1000_rx_desc { +	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */ +	uint16_t length;	/* Length of data DMAed into data buffer */ +	uint16_t csum;		/* Packet checksum */ +	uint8_t status;		/* Descriptor status */ +	uint8_t errors;		/* Descriptor Errors */ +	uint16_t special; +}; + +/* Receive Decriptor bit definitions */ +#define E1000_RXD_STAT_DD       0x01	/* Descriptor Done */ +#define E1000_RXD_STAT_EOP      0x02	/* End of Packet */ +#define E1000_RXD_STAT_IXSM     0x04	/* Ignore checksum */ +#define E1000_RXD_STAT_VP       0x08	/* IEEE VLAN Packet */ +#define E1000_RXD_STAT_TCPCS    0x20	/* TCP xsum calculated */ +#define E1000_RXD_STAT_IPCS     0x40	/* IP xsum calculated */ +#define E1000_RXD_STAT_PIF      0x80	/* passed in-exact filter */ +#define E1000_RXD_ERR_CE        0x01	/* CRC Error */ +#define E1000_RXD_ERR_SE        0x02	/* Symbol Error */ +#define E1000_RXD_ERR_SEQ       0x04	/* Sequence Error */ +#define E1000_RXD_ERR_CXE       0x10	/* Carrier Extension Error */ +#define E1000_RXD_ERR_TCPE      0x20	/* TCP/UDP Checksum Error */ +#define E1000_RXD_ERR_IPE       0x40	/* IP Checksum Error */ +#define E1000_RXD_ERR_RXE       0x80	/* Rx Data Error */ +#define E1000_RXD_SPC_VLAN_MASK 0x0FFF	/* VLAN ID is in lower 12 bits */ +#define E1000_RXD_SPC_PRI_MASK  0xE000	/* Priority is in upper 3 bits */ +#define E1000_RXD_SPC_PRI_SHIFT 0x000D	/* Priority is in upper 3 of 16 */ +#define E1000_RXD_SPC_CFI_MASK  0x1000	/* CFI is bit 12 */ +#define E1000_RXD_SPC_CFI_SHIFT 0x000C	/* CFI is bit 12 */ + +/* mask to determine if packets should be dropped due to frame errors */ +#define E1000_RXD_ERR_FRAME_ERR_MASK ( \ +    E1000_RXD_ERR_CE  |                \ +    E1000_RXD_ERR_SE  |                \ +    E1000_RXD_ERR_SEQ |                \ +    E1000_RXD_ERR_CXE |                \ +    E1000_RXD_ERR_RXE) + +/* Transmit Descriptor */ +struct e1000_tx_desc { +	uint64_t buffer_addr;	/* Address of the descriptor's data buffer */ +	union { +		uint32_t data; +		struct { +			uint16_t length;	/* Data buffer length */ +			uint8_t cso;	/* Checksum offset */ +			uint8_t cmd;	/* Descriptor control */ +		} flags; +	} lower; +	union { +		uint32_t data; +		struct { +			uint8_t status;	/* Descriptor status */ +			uint8_t css;	/* Checksum start */ +			uint16_t special; +		} fields; +	} upper; +}; + +/* Transmit Descriptor bit definitions */ +#define E1000_TXD_DTYP_D     0x00100000	/* Data Descriptor */ +#define E1000_TXD_DTYP_C     0x00000000	/* Context Descriptor */ +#define E1000_TXD_POPTS_IXSM 0x01	/* Insert IP checksum */ +#define E1000_TXD_POPTS_TXSM 0x02	/* Insert TCP/UDP checksum */ +#define E1000_TXD_CMD_EOP    0x01000000	/* End of Packet */ +#define E1000_TXD_CMD_IFCS   0x02000000	/* Insert FCS (Ethernet CRC) */ +#define E1000_TXD_CMD_IC     0x04000000	/* Insert Checksum */ +#define E1000_TXD_CMD_RS     0x08000000	/* Report Status */ +#define E1000_TXD_CMD_RPS    0x10000000	/* Report Packet Sent */ +#define E1000_TXD_CMD_DEXT   0x20000000	/* Descriptor extension (0 = legacy) */ +#define E1000_TXD_CMD_VLE    0x40000000	/* Add VLAN tag */ +#define E1000_TXD_CMD_IDE    0x80000000	/* Enable Tidv register */ +#define E1000_TXD_STAT_DD    0x00000001	/* Descriptor Done */ +#define E1000_TXD_STAT_EC    0x00000002	/* Excess Collisions */ +#define E1000_TXD_STAT_LC    0x00000004	/* Late Collisions */ +#define E1000_TXD_STAT_TU    0x00000008	/* Transmit underrun */ +#define E1000_TXD_CMD_TCP    0x01000000	/* TCP packet */ +#define E1000_TXD_CMD_IP     0x02000000	/* IP packet */ +#define E1000_TXD_CMD_TSE    0x04000000	/* TCP Seg enable */ +#define E1000_TXD_STAT_TC    0x00000004	/* Tx Underrun */ + +/* Offload Context Descriptor */ +struct e1000_context_desc { +	union { +		uint32_t ip_config; +		struct { +			uint8_t ipcss;	/* IP checksum start */ +			uint8_t ipcso;	/* IP checksum offset */ +			uint16_t ipcse;	/* IP checksum end */ +		} ip_fields; +	} lower_setup; +	union { +		uint32_t tcp_config; +		struct { +			uint8_t tucss;	/* TCP checksum start */ +			uint8_t tucso;	/* TCP checksum offset */ +			uint16_t tucse;	/* TCP checksum end */ +		} tcp_fields; +	} upper_setup; +	uint32_t cmd_and_length;	/* */ +	union { +		uint32_t data; +		struct { +			uint8_t status;	/* Descriptor status */ +			uint8_t hdr_len;	/* Header length */ +			uint16_t mss;	/* Maximum segment size */ +		} fields; +	} tcp_seg_setup; +}; + +/* Offload data descriptor */ +struct e1000_data_desc { +	uint64_t buffer_addr;	/* Address of the descriptor's buffer address */ +	union { +		uint32_t data; +		struct { +			uint16_t length;	/* Data buffer length */ +			uint8_t typ_len_ext;	/* */ +			uint8_t cmd;	/* */ +		} flags; +	} lower; +	union { +		uint32_t data; +		struct { +			uint8_t status;	/* Descriptor status */ +			uint8_t popts;	/* Packet Options */ +			uint16_t special;	/* */ +		} fields; +	} upper; +}; + +/* Filters */ +#define E1000_NUM_UNICAST          16	/* Unicast filter entries */ +#define E1000_MC_TBL_SIZE          128	/* Multicast Filter Table (4096 bits) */ +#define E1000_VLAN_FILTER_TBL_SIZE 128	/* VLAN Filter Table (4096 bits) */ + +/* Receive Address Register */ +struct e1000_rar { +	volatile uint32_t low;	/* receive address low */ +	volatile uint32_t high;	/* receive address high */ +}; + +/* The number of entries in the Multicast Table Array (MTA). */ +#define E1000_NUM_MTA_REGISTERS 128 + +/* IPv4 Address Table Entry */ +struct e1000_ipv4_at_entry { +	volatile uint32_t ipv4_addr;	/* IP Address (RW) */ +	volatile uint32_t reserved; +}; + +/* Four wakeup IP addresses are supported */ +#define E1000_WAKEUP_IP_ADDRESS_COUNT_MAX 4 +#define E1000_IP4AT_SIZE                  E1000_WAKEUP_IP_ADDRESS_COUNT_MAX +#define E1000_IP6AT_SIZE                  1 + +/* IPv6 Address Table Entry */ +struct e1000_ipv6_at_entry { +	volatile uint8_t ipv6_addr[16]; +}; + +/* Flexible Filter Length Table Entry */ +struct e1000_fflt_entry { +	volatile uint32_t length;	/* Flexible Filter Length (RW) */ +	volatile uint32_t reserved; +}; + +/* Flexible Filter Mask Table Entry */ +struct e1000_ffmt_entry { +	volatile uint32_t mask;	/* Flexible Filter Mask (RW) */ +	volatile uint32_t reserved; +}; + +/* Flexible Filter Value Table Entry */ +struct e1000_ffvt_entry { +	volatile uint32_t value;	/* Flexible Filter Value (RW) */ +	volatile uint32_t reserved; +}; + +/* Four Flexible Filters are supported */ +#define E1000_FLEXIBLE_FILTER_COUNT_MAX 4 + +/* Each Flexible Filter is at most 128 (0x80) bytes in length */ +#define E1000_FLEXIBLE_FILTER_SIZE_MAX  128 + +#define E1000_FFLT_SIZE E1000_FLEXIBLE_FILTER_COUNT_MAX +#define E1000_FFMT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX +#define E1000_FFVT_SIZE E1000_FLEXIBLE_FILTER_SIZE_MAX + +/* Register Set. (82543, 82544) + * + * Registers are defined to be 32 bits and  should be accessed as 32 bit values. + * These registers are physically located on the NIC, but are mapped into the  + * host memory address space. + * + * RW - register is both readable and writable + * RO - register is read only + * WO - register is write only + * R/clr - register is read only and is cleared when read + * A - register array + */ +#define E1000_CTRL     0x00000	/* Device Control - RW */ +#define E1000_STATUS   0x00008	/* Device Status - RO */ +#define E1000_EECD     0x00010	/* EEPROM/Flash Control - RW */ +#define E1000_EERD     0x00014	/* EEPROM Read - RW */ +#define E1000_CTRL_EXT 0x00018	/* Extended Device Control - RW */ +#define E1000_MDIC     0x00020	/* MDI Control - RW */ +#define E1000_FCAL     0x00028	/* Flow Control Address Low - RW */ +#define E1000_FCAH     0x0002C	/* Flow Control Address High -RW */ +#define E1000_FCT      0x00030	/* Flow Control Type - RW */ +#define E1000_VET      0x00038	/* VLAN Ether Type - RW */ +#define E1000_ICR      0x000C0	/* Interrupt Cause Read - R/clr */ +#define E1000_ITR      0x000C4	/* Interrupt Throttling Rate - RW */ +#define E1000_ICS      0x000C8	/* Interrupt Cause Set - WO */ +#define E1000_IMS      0x000D0	/* Interrupt Mask Set - RW */ +#define E1000_IMC      0x000D8	/* Interrupt Mask Clear - WO */ +#define E1000_RCTL     0x00100	/* RX Control - RW */ +#define E1000_FCTTV    0x00170	/* Flow Control Transmit Timer Value - RW */ +#define E1000_TXCW     0x00178	/* TX Configuration Word - RW */ +#define E1000_RXCW     0x00180	/* RX Configuration Word - RO */ +#define E1000_TCTL     0x00400	/* TX Control - RW */ +#define E1000_TIPG     0x00410	/* TX Inter-packet gap -RW */ +#define E1000_TBT      0x00448	/* TX Burst Timer - RW */ +#define E1000_AIT      0x00458	/* Adaptive Interframe Spacing Throttle - RW */ +#define E1000_LEDCTL   0x00E00	/* LED Control - RW */ +#define E1000_PBA      0x01000	/* Packet Buffer Allocation - RW */ +#define E1000_FCRTL    0x02160	/* Flow Control Receive Threshold Low - RW */ +#define E1000_FCRTH    0x02168	/* Flow Control Receive Threshold High - RW */ +#define E1000_RDBAL    0x02800	/* RX Descriptor Base Address Low - RW */ +#define E1000_RDBAH    0x02804	/* RX Descriptor Base Address High - RW */ +#define E1000_RDLEN    0x02808	/* RX Descriptor Length - RW */ +#define E1000_RDH      0x02810	/* RX Descriptor Head - RW */ +#define E1000_RDT      0x02818	/* RX Descriptor Tail - RW */ +#define E1000_RDTR     0x02820	/* RX Delay Timer - RW */ +#define E1000_RXDCTL   0x02828	/* RX Descriptor Control - RW */ +#define E1000_RADV     0x0282C	/* RX Interrupt Absolute Delay Timer - RW */ +#define E1000_RSRPD    0x02C00	/* RX Small Packet Detect - RW */ +#define E1000_TXDMAC   0x03000	/* TX DMA Control - RW */ +#define E1000_TDBAL    0x03800	/* TX Descriptor Base Address Low - RW */ +#define E1000_TDBAH    0x03804	/* TX Descriptor Base Address High - RW */ +#define E1000_TDLEN    0x03808	/* TX Descriptor Length - RW */ +#define E1000_TDH      0x03810	/* TX Descriptor Head - RW */ +#define E1000_TDT      0x03818	/* TX Descripotr Tail - RW */ +#define E1000_TIDV     0x03820	/* TX Interrupt Delay Value - RW */ +#define E1000_TXDCTL   0x03828	/* TX Descriptor Control - RW */ +#define E1000_TADV     0x0382C	/* TX Interrupt Absolute Delay Val - RW */ +#define E1000_TSPMT    0x03830	/* TCP Segmentation PAD & Min Threshold - RW */ +#define E1000_CRCERRS  0x04000	/* CRC Error Count - R/clr */ +#define E1000_ALGNERRC 0x04004	/* Alignment Error Count - R/clr */ +#define E1000_SYMERRS  0x04008	/* Symbol Error Count - R/clr */ +#define E1000_RXERRC   0x0400C	/* Receive Error Count - R/clr */ +#define E1000_MPC      0x04010	/* Missed Packet Count - R/clr */ +#define E1000_SCC      0x04014	/* Single Collision Count - R/clr */ +#define E1000_ECOL     0x04018	/* Excessive Collision Count - R/clr */ +#define E1000_MCC      0x0401C	/* Multiple Collision Count - R/clr */ +#define E1000_LATECOL  0x04020	/* Late Collision Count - R/clr */ +#define E1000_COLC     0x04028	/* Collision Count - R/clr */ +#define E1000_DC       0x04030	/* Defer Count - R/clr */ +#define E1000_TNCRS    0x04034	/* TX-No CRS - R/clr */ +#define E1000_SEC      0x04038	/* Sequence Error Count - R/clr */ +#define E1000_CEXTERR  0x0403C	/* Carrier Extension Error Count - R/clr */ +#define E1000_RLEC     0x04040	/* Receive Length Error Count - R/clr */ +#define E1000_XONRXC   0x04048	/* XON RX Count - R/clr */ +#define E1000_XONTXC   0x0404C	/* XON TX Count - R/clr */ +#define E1000_XOFFRXC  0x04050	/* XOFF RX Count - R/clr */ +#define E1000_XOFFTXC  0x04054	/* XOFF TX Count - R/clr */ +#define E1000_FCRUC    0x04058	/* Flow Control RX Unsupported Count- R/clr */ +#define E1000_PRC64    0x0405C	/* Packets RX (64 bytes) - R/clr */ +#define E1000_PRC127   0x04060	/* Packets RX (65-127 bytes) - R/clr */ +#define E1000_PRC255   0x04064	/* Packets RX (128-255 bytes) - R/clr */ +#define E1000_PRC511   0x04068	/* Packets RX (255-511 bytes) - R/clr */ +#define E1000_PRC1023  0x0406C	/* Packets RX (512-1023 bytes) - R/clr */ +#define E1000_PRC1522  0x04070	/* Packets RX (1024-1522 bytes) - R/clr */ +#define E1000_GPRC     0x04074	/* Good Packets RX Count - R/clr */ +#define E1000_BPRC     0x04078	/* Broadcast Packets RX Count - R/clr */ +#define E1000_MPRC     0x0407C	/* Multicast Packets RX Count - R/clr */ +#define E1000_GPTC     0x04080	/* Good Packets TX Count - R/clr */ +#define E1000_GORCL    0x04088	/* Good Octets RX Count Low - R/clr */ +#define E1000_GORCH    0x0408C	/* Good Octets RX Count High - R/clr */ +#define E1000_GOTCL    0x04090	/* Good Octets TX Count Low - R/clr */ +#define E1000_GOTCH    0x04094	/* Good Octets TX Count High - R/clr */ +#define E1000_RNBC     0x040A0	/* RX No Buffers Count - R/clr */ +#define E1000_RUC      0x040A4	/* RX Undersize Count - R/clr */ +#define E1000_RFC      0x040A8	/* RX Fragment Count - R/clr */ +#define E1000_ROC      0x040AC	/* RX Oversize Count - R/clr */ +#define E1000_RJC      0x040B0	/* RX Jabber Count - R/clr */ +#define E1000_MGTPRC   0x040B4	/* Management Packets RX Count - R/clr */ +#define E1000_MGTPDC   0x040B8	/* Management Packets Dropped Count - R/clr */ +#define E1000_MGTPTC   0x040BC	/* Management Packets TX Count - R/clr */ +#define E1000_TORL     0x040C0	/* Total Octets RX Low - R/clr */ +#define E1000_TORH     0x040C4	/* Total Octets RX High - R/clr */ +#define E1000_TOTL     0x040C8	/* Total Octets TX Low - R/clr */ +#define E1000_TOTH     0x040CC	/* Total Octets TX High - R/clr */ +#define E1000_TPR      0x040D0	/* Total Packets RX - R/clr */ +#define E1000_TPT      0x040D4	/* Total Packets TX - R/clr */ +#define E1000_PTC64    0x040D8	/* Packets TX (64 bytes) - R/clr */ +#define E1000_PTC127   0x040DC	/* Packets TX (65-127 bytes) - R/clr */ +#define E1000_PTC255   0x040E0	/* Packets TX (128-255 bytes) - R/clr */ +#define E1000_PTC511   0x040E4	/* Packets TX (256-511 bytes) - R/clr */ +#define E1000_PTC1023  0x040E8	/* Packets TX (512-1023 bytes) - R/clr */ +#define E1000_PTC1522  0x040EC	/* Packets TX (1024-1522 Bytes) - R/clr */ +#define E1000_MPTC     0x040F0	/* Multicast Packets TX Count - R/clr */ +#define E1000_BPTC     0x040F4	/* Broadcast Packets TX Count - R/clr */ +#define E1000_TSCTC    0x040F8	/* TCP Segmentation Context TX - R/clr */ +#define E1000_TSCTFC   0x040FC	/* TCP Segmentation Context TX Fail - R/clr */ +#define E1000_RXCSUM   0x05000	/* RX Checksum Control - RW */ +#define E1000_MTA      0x05200	/* Multicast Table Array - RW Array */ +#define E1000_RA       0x05400	/* Receive Address - RW Array */ +#define E1000_VFTA     0x05600	/* VLAN Filter Table Array - RW Array */ +#define E1000_WUC      0x05800	/* Wakeup Control - RW */ +#define E1000_WUFC     0x05808	/* Wakeup Filter Control - RW */ +#define E1000_WUS      0x05810	/* Wakeup Status - RO */ +#define E1000_MANC     0x05820	/* Management Control - RW */ +#define E1000_IPAV     0x05838	/* IP Address Valid - RW */ +#define E1000_IP4AT    0x05840	/* IPv4 Address Table - RW Array */ +#define E1000_IP6AT    0x05880	/* IPv6 Address Table - RW Array */ +#define E1000_WUPL     0x05900	/* Wakeup Packet Length - RW */ +#define E1000_WUPM     0x05A00	/* Wakeup Packet Memory - RO A */ +#define E1000_FFLT     0x05F00	/* Flexible Filter Length Table - RW Array */ +#define E1000_FFMT     0x09000	/* Flexible Filter Mask Table - RW Array */ +#define E1000_FFVT     0x09800	/* Flexible Filter Value Table - RW Array */ + +/* Register Set (82542) + * + * Some of the 82542 registers are located at different offsets than they are + * in more current versions of the 8254x. Despite the difference in location, + * the registers function in the same manner. + */ +#define E1000_82542_CTRL     E1000_CTRL +#define E1000_82542_STATUS   E1000_STATUS +#define E1000_82542_EECD     E1000_EECD +#define E1000_82542_EERD     E1000_EERD +#define E1000_82542_CTRL_EXT E1000_CTRL_EXT +#define E1000_82542_MDIC     E1000_MDIC +#define E1000_82542_FCAL     E1000_FCAL +#define E1000_82542_FCAH     E1000_FCAH +#define E1000_82542_FCT      E1000_FCT +#define E1000_82542_VET      E1000_VET +#define E1000_82542_RA       0x00040 +#define E1000_82542_ICR      E1000_ICR +#define E1000_82542_ITR      E1000_ITR +#define E1000_82542_ICS      E1000_ICS +#define E1000_82542_IMS      E1000_IMS +#define E1000_82542_IMC      E1000_IMC +#define E1000_82542_RCTL     E1000_RCTL +#define E1000_82542_RDTR     0x00108 +#define E1000_82542_RDBAL    0x00110 +#define E1000_82542_RDBAH    0x00114 +#define E1000_82542_RDLEN    0x00118 +#define E1000_82542_RDH      0x00120 +#define E1000_82542_RDT      0x00128 +#define E1000_82542_FCRTH    0x00160 +#define E1000_82542_FCRTL    0x00168 +#define E1000_82542_FCTTV    E1000_FCTTV +#define E1000_82542_TXCW     E1000_TXCW +#define E1000_82542_RXCW     E1000_RXCW +#define E1000_82542_MTA      0x00200 +#define E1000_82542_TCTL     E1000_TCTL +#define E1000_82542_TIPG     E1000_TIPG +#define E1000_82542_TDBAL    0x00420 +#define E1000_82542_TDBAH    0x00424 +#define E1000_82542_TDLEN    0x00428 +#define E1000_82542_TDH      0x00430 +#define E1000_82542_TDT      0x00438 +#define E1000_82542_TIDV     0x00440 +#define E1000_82542_TBT      E1000_TBT +#define E1000_82542_AIT      E1000_AIT +#define E1000_82542_VFTA     0x00600 +#define E1000_82542_LEDCTL   E1000_LEDCTL +#define E1000_82542_PBA      E1000_PBA +#define E1000_82542_RXDCTL   E1000_RXDCTL +#define E1000_82542_RADV     E1000_RADV +#define E1000_82542_RSRPD    E1000_RSRPD +#define E1000_82542_TXDMAC   E1000_TXDMAC +#define E1000_82542_TXDCTL   E1000_TXDCTL +#define E1000_82542_TADV     E1000_TADV +#define E1000_82542_TSPMT    E1000_TSPMT +#define E1000_82542_CRCERRS  E1000_CRCERRS +#define E1000_82542_ALGNERRC E1000_ALGNERRC +#define E1000_82542_SYMERRS  E1000_SYMERRS +#define E1000_82542_RXERRC   E1000_RXERRC +#define E1000_82542_MPC      E1000_MPC +#define E1000_82542_SCC      E1000_SCC +#define E1000_82542_ECOL     E1000_ECOL +#define E1000_82542_MCC      E1000_MCC +#define E1000_82542_LATECOL  E1000_LATECOL +#define E1000_82542_COLC     E1000_COLC +#define E1000_82542_DC       E1000_DC +#define E1000_82542_TNCRS    E1000_TNCRS +#define E1000_82542_SEC      E1000_SEC +#define E1000_82542_CEXTERR  E1000_CEXTERR +#define E1000_82542_RLEC     E1000_RLEC +#define E1000_82542_XONRXC   E1000_XONRXC +#define E1000_82542_XONTXC   E1000_XONTXC +#define E1000_82542_XOFFRXC  E1000_XOFFRXC +#define E1000_82542_XOFFTXC  E1000_XOFFTXC +#define E1000_82542_FCRUC    E1000_FCRUC +#define E1000_82542_PRC64    E1000_PRC64 +#define E1000_82542_PRC127   E1000_PRC127 +#define E1000_82542_PRC255   E1000_PRC255 +#define E1000_82542_PRC511   E1000_PRC511 +#define E1000_82542_PRC1023  E1000_PRC1023 +#define E1000_82542_PRC1522  E1000_PRC1522 +#define E1000_82542_GPRC     E1000_GPRC +#define E1000_82542_BPRC     E1000_BPRC +#define E1000_82542_MPRC     E1000_MPRC +#define E1000_82542_GPTC     E1000_GPTC +#define E1000_82542_GORCL    E1000_GORCL +#define E1000_82542_GORCH    E1000_GORCH +#define E1000_82542_GOTCL    E1000_GOTCL +#define E1000_82542_GOTCH    E1000_GOTCH +#define E1000_82542_RNBC     E1000_RNBC +#define E1000_82542_RUC      E1000_RUC +#define E1000_82542_RFC      E1000_RFC +#define E1000_82542_ROC      E1000_ROC +#define E1000_82542_RJC      E1000_RJC +#define E1000_82542_MGTPRC   E1000_MGTPRC +#define E1000_82542_MGTPDC   E1000_MGTPDC +#define E1000_82542_MGTPTC   E1000_MGTPTC +#define E1000_82542_TORL     E1000_TORL +#define E1000_82542_TORH     E1000_TORH +#define E1000_82542_TOTL     E1000_TOTL +#define E1000_82542_TOTH     E1000_TOTH +#define E1000_82542_TPR      E1000_TPR +#define E1000_82542_TPT      E1000_TPT +#define E1000_82542_PTC64    E1000_PTC64 +#define E1000_82542_PTC127   E1000_PTC127 +#define E1000_82542_PTC255   E1000_PTC255 +#define E1000_82542_PTC511   E1000_PTC511 +#define E1000_82542_PTC1023  E1000_PTC1023 +#define E1000_82542_PTC1522  E1000_PTC1522 +#define E1000_82542_MPTC     E1000_MPTC +#define E1000_82542_BPTC     E1000_BPTC +#define E1000_82542_TSCTC    E1000_TSCTC +#define E1000_82542_TSCTFC   E1000_TSCTFC +#define E1000_82542_RXCSUM   E1000_RXCSUM +#define E1000_82542_WUC      E1000_WUC +#define E1000_82542_WUFC     E1000_WUFC +#define E1000_82542_WUS      E1000_WUS +#define E1000_82542_MANC     E1000_MANC +#define E1000_82542_IPAV     E1000_IPAV +#define E1000_82542_IP4AT    E1000_IP4AT +#define E1000_82542_IP6AT    E1000_IP6AT +#define E1000_82542_WUPL     E1000_WUPL +#define E1000_82542_WUPM     E1000_WUPM +#define E1000_82542_FFLT     E1000_FFLT +#define E1000_82542_FFMT     E1000_FFMT +#define E1000_82542_FFVT     E1000_FFVT + +/* Statistics counters collected by the MAC */ +struct e1000_hw_stats { +	uint64_t crcerrs; +	uint64_t algnerrc; +	uint64_t symerrs; +	uint64_t rxerrc; +	uint64_t mpc; +	uint64_t scc; +	uint64_t ecol; +	uint64_t mcc; +	uint64_t latecol; +	uint64_t colc; +	uint64_t dc; +	uint64_t tncrs; +	uint64_t sec; +	uint64_t cexterr; +	uint64_t rlec; +	uint64_t xonrxc; +	uint64_t xontxc; +	uint64_t xoffrxc; +	uint64_t xofftxc; +	uint64_t fcruc; +	uint64_t prc64; +	uint64_t prc127; +	uint64_t prc255; +	uint64_t prc511; +	uint64_t prc1023; +	uint64_t prc1522; +	uint64_t gprc; +	uint64_t bprc; +	uint64_t mprc; +	uint64_t gptc; +	uint64_t gorcl; +	uint64_t gorch; +	uint64_t gotcl; +	uint64_t gotch; +	uint64_t rnbc; +	uint64_t ruc; +	uint64_t rfc; +	uint64_t roc; +	uint64_t rjc; +	uint64_t mgprc; +	uint64_t mgpdc; +	uint64_t mgptc; +	uint64_t torl; +	uint64_t torh; +	uint64_t totl; +	uint64_t toth; +	uint64_t tpr; +	uint64_t tpt; +	uint64_t ptc64; +	uint64_t ptc127; +	uint64_t ptc255; +	uint64_t ptc511; +	uint64_t ptc1023; +	uint64_t ptc1522; +	uint64_t mptc; +	uint64_t bptc; +	uint64_t tsctc; +	uint64_t tsctfc; +}; + +/* Structure containing variables used by the shared code (e1000_hw.c) */ +struct e1000_hw { +	pci_dev_t pdev; +	uint8_t *hw_addr; +	e1000_mac_type mac_type; +	e1000_media_type media_type; +	e1000_lan_loc lan_loc; +	e1000_fc_type fc; +#if 0 +	e1000_bus_speed bus_speed; +	e1000_bus_width bus_width; +	e1000_bus_type bus_type; +	uint32_t io_base; +#endif +	uint32_t phy_id; +	uint32_t phy_addr; +	uint32_t original_fc; +	uint32_t txcw; +	uint32_t autoneg_failed; +#if 0 +	uint32_t max_frame_size; +	uint32_t min_frame_size; +	uint32_t mc_filter_type; +	uint32_t num_mc_addrs; +	uint32_t collision_delta; +	uint32_t tx_packet_delta; +	uint32_t ledctl_default; +	uint32_t ledctl_mode1; +	uint32_t ledctl_mode2; +#endif +	uint16_t autoneg_advertised; +	uint16_t pci_cmd_word; +	uint16_t fc_high_water; +	uint16_t fc_low_water; +	uint16_t fc_pause_time; +#if 0 +	uint16_t current_ifs_val; +	uint16_t ifs_min_val; +	uint16_t ifs_max_val; +	uint16_t ifs_step_size; +	uint16_t ifs_ratio; +#endif +	uint16_t device_id; +	uint16_t vendor_id; +	uint16_t subsystem_id; +	uint16_t subsystem_vendor_id; +	uint8_t revision_id; +#if 0 +	uint8_t autoneg; +	uint8_t mdix; +	uint8_t forced_speed_duplex; +	uint8_t wait_autoneg_complete; +	uint8_t dma_fairness; +#endif +#if 0 +	uint8_t perm_mac_addr[NODE_ADDRESS_SIZE]; +	boolean_t disable_polarity_correction; +#endif +	boolean_t get_link_status; +	boolean_t tbi_compatibility_en; +	boolean_t tbi_compatibility_on; +	boolean_t fc_send_xon; +	boolean_t report_tx_early; +#if 0 +	boolean_t adaptive_ifs; +	boolean_t ifs_params_forced; +	boolean_t in_ifs_mode; +#endif +}; + +#define E1000_EEPROM_SWDPIN0   0x0001	/* SWDPIN 0 EEPROM Value */ +#define E1000_EEPROM_LED_LOGIC 0x0020	/* Led Logic Word */ + +/* Register Bit Masks */ +/* Device Control */ +#define E1000_CTRL_FD       0x00000001	/* Full duplex.0=half; 1=full */ +#define E1000_CTRL_BEM      0x00000002	/* Endian Mode.0=little,1=big */ +#define E1000_CTRL_PRIOR    0x00000004	/* Priority on PCI. 0=rx,1=fair */ +#define E1000_CTRL_LRST     0x00000008	/* Link reset. 0=normal,1=reset */ +#define E1000_CTRL_TME      0x00000010	/* Test mode. 0=normal,1=test */ +#define E1000_CTRL_SLE      0x00000020	/* Serial Link on 0=dis,1=en */ +#define E1000_CTRL_ASDE     0x00000020	/* Auto-speed detect enable */ +#define E1000_CTRL_SLU      0x00000040	/* Set link up (Force Link) */ +#define E1000_CTRL_ILOS     0x00000080	/* Invert Loss-Of Signal */ +#define E1000_CTRL_SPD_SEL  0x00000300	/* Speed Select Mask */ +#define E1000_CTRL_SPD_10   0x00000000	/* Force 10Mb */ +#define E1000_CTRL_SPD_100  0x00000100	/* Force 100Mb */ +#define E1000_CTRL_SPD_1000 0x00000200	/* Force 1Gb */ +#define E1000_CTRL_BEM32    0x00000400	/* Big Endian 32 mode */ +#define E1000_CTRL_FRCSPD   0x00000800	/* Force Speed */ +#define E1000_CTRL_FRCDPX   0x00001000	/* Force Duplex */ +#define E1000_CTRL_SWDPIN0  0x00040000	/* SWDPIN 0 value */ +#define E1000_CTRL_SWDPIN1  0x00080000	/* SWDPIN 1 value */ +#define E1000_CTRL_SWDPIN2  0x00100000	/* SWDPIN 2 value */ +#define E1000_CTRL_SWDPIN3  0x00200000	/* SWDPIN 3 value */ +#define E1000_CTRL_SWDPIO0  0x00400000	/* SWDPIN 0 Input or output */ +#define E1000_CTRL_SWDPIO1  0x00800000	/* SWDPIN 1 input or output */ +#define E1000_CTRL_SWDPIO2  0x01000000	/* SWDPIN 2 input or output */ +#define E1000_CTRL_SWDPIO3  0x02000000	/* SWDPIN 3 input or output */ +#define E1000_CTRL_RST      0x04000000	/* Global reset */ +#define E1000_CTRL_RFCE     0x08000000	/* Receive Flow Control enable */ +#define E1000_CTRL_TFCE     0x10000000	/* Transmit flow control enable */ +#define E1000_CTRL_RTE      0x20000000	/* Routing tag enable */ +#define E1000_CTRL_VME      0x40000000	/* IEEE VLAN mode enable */ +#define E1000_CTRL_PHY_RST  0x80000000	/* PHY Reset */ + +/* Device Status */ +#define E1000_STATUS_FD         0x00000001	/* Full duplex.0=half,1=full */ +#define E1000_STATUS_LU         0x00000002	/* Link up.0=no,1=link */ +#define E1000_STATUS_FUNC_MASK  0x0000000C	/* PCI Function Mask */ +#define E1000_STATUS_FUNC_0     0x00000000	/* Function 0 */ +#define E1000_STATUS_FUNC_1     0x00000004	/* Function 1 */ +#define E1000_STATUS_TXOFF      0x00000010	/* transmission paused */ +#define E1000_STATUS_TBIMODE    0x00000020	/* TBI mode */ +#define E1000_STATUS_SPEED_MASK 0x000000C0 +#define E1000_STATUS_SPEED_10   0x00000000	/* Speed 10Mb/s */ +#define E1000_STATUS_SPEED_100  0x00000040	/* Speed 100Mb/s */ +#define E1000_STATUS_SPEED_1000 0x00000080	/* Speed 1000Mb/s */ +#define E1000_STATUS_ASDV       0x00000300	/* Auto speed detect value */ +#define E1000_STATUS_MTXCKOK    0x00000400	/* MTX clock running OK */ +#define E1000_STATUS_PCI66      0x00000800	/* In 66Mhz slot */ +#define E1000_STATUS_BUS64      0x00001000	/* In 64 bit slot */ +#define E1000_STATUS_PCIX_MODE  0x00002000	/* PCI-X mode */ +#define E1000_STATUS_PCIX_SPEED 0x0000C000	/* PCI-X bus speed */ + +/* Constants used to intrepret the masked PCI-X bus speed. */ +#define E1000_STATUS_PCIX_SPEED_66  0x00000000	/* PCI-X bus speed  50-66 MHz */ +#define E1000_STATUS_PCIX_SPEED_100 0x00004000	/* PCI-X bus speed  66-100 MHz */ +#define E1000_STATUS_PCIX_SPEED_133 0x00008000	/* PCI-X bus speed 100-133 MHz */ + +/* EEPROM/Flash Control */ +#define E1000_EECD_SK        0x00000001	/* EEPROM Clock */ +#define E1000_EECD_CS        0x00000002	/* EEPROM Chip Select */ +#define E1000_EECD_DI        0x00000004	/* EEPROM Data In */ +#define E1000_EECD_DO        0x00000008	/* EEPROM Data Out */ +#define E1000_EECD_FWE_MASK  0x00000030 +#define E1000_EECD_FWE_DIS   0x00000010	/* Disable FLASH writes */ +#define E1000_EECD_FWE_EN    0x00000020	/* Enable FLASH writes */ +#define E1000_EECD_FWE_SHIFT 4 +#define E1000_EECD_SIZE      0x00000200	/* EEPROM Size (0=64 word 1=256 word) */ +#define E1000_EECD_REQ       0x00000040	/* EEPROM Access Request */ +#define E1000_EECD_GNT       0x00000080	/* EEPROM Access Grant */ +#define E1000_EECD_PRES      0x00000100	/* EEPROM Present */ + +/* EEPROM Read */ +#define E1000_EERD_START      0x00000001	/* Start Read */ +#define E1000_EERD_DONE       0x00000010	/* Read Done */ +#define E1000_EERD_ADDR_SHIFT 8 +#define E1000_EERD_ADDR_MASK  0x0000FF00	/* Read Address */ +#define E1000_EERD_DATA_SHIFT 16 +#define E1000_EERD_DATA_MASK  0xFFFF0000	/* Read Data */ + +/* Extended Device Control */ +#define E1000_CTRL_EXT_GPI0_EN   0x00000001	/* Maps SDP4 to GPI0 */ +#define E1000_CTRL_EXT_GPI1_EN   0x00000002	/* Maps SDP5 to GPI1 */ +#define E1000_CTRL_EXT_PHYINT_EN E1000_CTRL_EXT_GPI1_EN +#define E1000_CTRL_EXT_GPI2_EN   0x00000004	/* Maps SDP6 to GPI2 */ +#define E1000_CTRL_EXT_GPI3_EN   0x00000008	/* Maps SDP7 to GPI3 */ +#define E1000_CTRL_EXT_SDP4_DATA 0x00000010	/* Value of SW Defineable Pin 4 */ +#define E1000_CTRL_EXT_SDP5_DATA 0x00000020	/* Value of SW Defineable Pin 5 */ +#define E1000_CTRL_EXT_PHY_INT   E1000_CTRL_EXT_SDP5_DATA +#define E1000_CTRL_EXT_SDP6_DATA 0x00000040	/* Value of SW Defineable Pin 6 */ +#define E1000_CTRL_EXT_SWDPIN6 	 0x00000040	/* SWDPIN 6 value */ +#define E1000_CTRL_EXT_SDP7_DATA 0x00000080	/* Value of SW Defineable Pin 7 */ +#define E1000_CTRL_EXT_SWDPIN7 	 0x00000080	/* SWDPIN 7 value */ +#define E1000_CTRL_EXT_SDP4_DIR  0x00000100	/* Direction of SDP4 0=in 1=out */ +#define E1000_CTRL_EXT_SDP5_DIR  0x00000200	/* Direction of SDP5 0=in 1=out */ +#define E1000_CTRL_EXT_SDP6_DIR  0x00000400	/* Direction of SDP6 0=in 1=out */ +#define E1000_CTRL_EXT_SWDPIO6   0x00000400	/* SWDPIN 6 Input or output */ +#define E1000_CTRL_EXT_SDP7_DIR  0x00000800	/* Direction of SDP7 0=in 1=out */ +#define E1000_CTRL_EXT_SWDPIO7   0x00000800	/* SWDPIN 7 Input or output */ +#define E1000_CTRL_EXT_ASDCHK    0x00001000	/* Initiate an ASD sequence */ +#define E1000_CTRL_EXT_EE_RST    0x00002000	/* Reinitialize from EEPROM */ +#define E1000_CTRL_EXT_IPS       0x00004000	/* Invert Power State */ +#define E1000_CTRL_EXT_SPD_BYPS  0x00008000	/* Speed Select Bypass */ +#define E1000_CTRL_EXT_LINK_MODE_MASK 0x00C00000 +#define E1000_CTRL_EXT_LINK_MODE_GMII 0x00000000 +#define E1000_CTRL_EXT_LINK_MODE_TBI  0x00C00000 +#define E1000_CTRL_EXT_WR_WMARK_MASK  0x03000000 +#define E1000_CTRL_EXT_WR_WMARK_256   0x00000000 +#define E1000_CTRL_EXT_WR_WMARK_320   0x01000000 +#define E1000_CTRL_EXT_WR_WMARK_384   0x02000000 +#define E1000_CTRL_EXT_WR_WMARK_448   0x03000000 + +/* MDI Control */ +#define E1000_MDIC_DATA_MASK 0x0000FFFF +#define E1000_MDIC_REG_MASK  0x001F0000 +#define E1000_MDIC_REG_SHIFT 16 +#define E1000_MDIC_PHY_MASK  0x03E00000 +#define E1000_MDIC_PHY_SHIFT 21 +#define E1000_MDIC_OP_WRITE  0x04000000 +#define E1000_MDIC_OP_READ   0x08000000 +#define E1000_MDIC_READY     0x10000000 +#define E1000_MDIC_INT_EN    0x20000000 +#define E1000_MDIC_ERROR     0x40000000 + +/* LED Control */ +#define E1000_LEDCTL_LED0_MODE_MASK  0x0000000F +#define E1000_LEDCTL_LED0_MODE_SHIFT 0 +#define E1000_LEDCTL_LED0_IVRT       0x00000040 +#define E1000_LEDCTL_LED0_BLINK      0x00000080 +#define E1000_LEDCTL_LED1_MODE_MASK  0x00000F00 +#define E1000_LEDCTL_LED1_MODE_SHIFT 8 +#define E1000_LEDCTL_LED1_IVRT       0x00004000 +#define E1000_LEDCTL_LED1_BLINK      0x00008000 +#define E1000_LEDCTL_LED2_MODE_MASK  0x000F0000 +#define E1000_LEDCTL_LED2_MODE_SHIFT 16 +#define E1000_LEDCTL_LED2_IVRT       0x00400000 +#define E1000_LEDCTL_LED2_BLINK      0x00800000 +#define E1000_LEDCTL_LED3_MODE_MASK  0x0F000000 +#define E1000_LEDCTL_LED3_MODE_SHIFT 24 +#define E1000_LEDCTL_LED3_IVRT       0x40000000 +#define E1000_LEDCTL_LED3_BLINK      0x80000000 + +#define E1000_LEDCTL_MODE_LINK_10_1000  0x0 +#define E1000_LEDCTL_MODE_LINK_100_1000 0x1 +#define E1000_LEDCTL_MODE_LINK_UP       0x2 +#define E1000_LEDCTL_MODE_ACTIVITY      0x3 +#define E1000_LEDCTL_MODE_LINK_ACTIVITY 0x4 +#define E1000_LEDCTL_MODE_LINK_10       0x5 +#define E1000_LEDCTL_MODE_LINK_100      0x6 +#define E1000_LEDCTL_MODE_LINK_1000     0x7 +#define E1000_LEDCTL_MODE_PCIX_MODE     0x8 +#define E1000_LEDCTL_MODE_FULL_DUPLEX   0x9 +#define E1000_LEDCTL_MODE_COLLISION     0xA +#define E1000_LEDCTL_MODE_BUS_SPEED     0xB +#define E1000_LEDCTL_MODE_BUS_SIZE      0xC +#define E1000_LEDCTL_MODE_PAUSED        0xD +#define E1000_LEDCTL_MODE_LED_ON        0xE +#define E1000_LEDCTL_MODE_LED_OFF       0xF + +/* Receive Address */ +#define E1000_RAH_AV  0x80000000	/* Receive descriptor valid */ + +/* Interrupt Cause Read */ +#define E1000_ICR_TXDW    0x00000001	/* Transmit desc written back */ +#define E1000_ICR_TXQE    0x00000002	/* Transmit Queue empty */ +#define E1000_ICR_LSC     0x00000004	/* Link Status Change */ +#define E1000_ICR_RXSEQ   0x00000008	/* rx sequence error */ +#define E1000_ICR_RXDMT0  0x00000010	/* rx desc min. threshold (0) */ +#define E1000_ICR_RXO     0x00000040	/* rx overrun */ +#define E1000_ICR_RXT0    0x00000080	/* rx timer intr (ring 0) */ +#define E1000_ICR_MDAC    0x00000200	/* MDIO access complete */ +#define E1000_ICR_RXCFG   0x00000400	/* RX /c/ ordered set */ +#define E1000_ICR_GPI_EN0 0x00000800	/* GP Int 0 */ +#define E1000_ICR_GPI_EN1 0x00001000	/* GP Int 1 */ +#define E1000_ICR_GPI_EN2 0x00002000	/* GP Int 2 */ +#define E1000_ICR_GPI_EN3 0x00004000	/* GP Int 3 */ +#define E1000_ICR_TXD_LOW 0x00008000 +#define E1000_ICR_SRPD    0x00010000 + +/* Interrupt Cause Set */ +#define E1000_ICS_TXDW    E1000_ICR_TXDW	/* Transmit desc written back */ +#define E1000_ICS_TXQE    E1000_ICR_TXQE	/* Transmit Queue empty */ +#define E1000_ICS_LSC     E1000_ICR_LSC	/* Link Status Change */ +#define E1000_ICS_RXSEQ   E1000_ICR_RXSEQ	/* rx sequence error */ +#define E1000_ICS_RXDMT0  E1000_ICR_RXDMT0	/* rx desc min. threshold */ +#define E1000_ICS_RXO     E1000_ICR_RXO	/* rx overrun */ +#define E1000_ICS_RXT0    E1000_ICR_RXT0	/* rx timer intr */ +#define E1000_ICS_MDAC    E1000_ICR_MDAC	/* MDIO access complete */ +#define E1000_ICS_RXCFG   E1000_ICR_RXCFG	/* RX /c/ ordered set */ +#define E1000_ICS_GPI_EN0 E1000_ICR_GPI_EN0	/* GP Int 0 */ +#define E1000_ICS_GPI_EN1 E1000_ICR_GPI_EN1	/* GP Int 1 */ +#define E1000_ICS_GPI_EN2 E1000_ICR_GPI_EN2	/* GP Int 2 */ +#define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3	/* GP Int 3 */ +#define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_ICS_SRPD    E1000_ICR_SRPD + +/* Interrupt Mask Set */ +#define E1000_IMS_TXDW    E1000_ICR_TXDW	/* Transmit desc written back */ +#define E1000_IMS_TXQE    E1000_ICR_TXQE	/* Transmit Queue empty */ +#define E1000_IMS_LSC     E1000_ICR_LSC	/* Link Status Change */ +#define E1000_IMS_RXSEQ   E1000_ICR_RXSEQ	/* rx sequence error */ +#define E1000_IMS_RXDMT0  E1000_ICR_RXDMT0	/* rx desc min. threshold */ +#define E1000_IMS_RXO     E1000_ICR_RXO	/* rx overrun */ +#define E1000_IMS_RXT0    E1000_ICR_RXT0	/* rx timer intr */ +#define E1000_IMS_MDAC    E1000_ICR_MDAC	/* MDIO access complete */ +#define E1000_IMS_RXCFG   E1000_ICR_RXCFG	/* RX /c/ ordered set */ +#define E1000_IMS_GPI_EN0 E1000_ICR_GPI_EN0	/* GP Int 0 */ +#define E1000_IMS_GPI_EN1 E1000_ICR_GPI_EN1	/* GP Int 1 */ +#define E1000_IMS_GPI_EN2 E1000_ICR_GPI_EN2	/* GP Int 2 */ +#define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3	/* GP Int 3 */ +#define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMS_SRPD    E1000_ICR_SRPD + +/* Interrupt Mask Clear */ +#define E1000_IMC_TXDW    E1000_ICR_TXDW	/* Transmit desc written back */ +#define E1000_IMC_TXQE    E1000_ICR_TXQE	/* Transmit Queue empty */ +#define E1000_IMC_LSC     E1000_ICR_LSC	/* Link Status Change */ +#define E1000_IMC_RXSEQ   E1000_ICR_RXSEQ	/* rx sequence error */ +#define E1000_IMC_RXDMT0  E1000_ICR_RXDMT0	/* rx desc min. threshold */ +#define E1000_IMC_RXO     E1000_ICR_RXO	/* rx overrun */ +#define E1000_IMC_RXT0    E1000_ICR_RXT0	/* rx timer intr */ +#define E1000_IMC_MDAC    E1000_ICR_MDAC	/* MDIO access complete */ +#define E1000_IMC_RXCFG   E1000_ICR_RXCFG	/* RX /c/ ordered set */ +#define E1000_IMC_GPI_EN0 E1000_ICR_GPI_EN0	/* GP Int 0 */ +#define E1000_IMC_GPI_EN1 E1000_ICR_GPI_EN1	/* GP Int 1 */ +#define E1000_IMC_GPI_EN2 E1000_ICR_GPI_EN2	/* GP Int 2 */ +#define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3	/* GP Int 3 */ +#define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW +#define E1000_IMC_SRPD    E1000_ICR_SRPD + +/* Receive Control */ +#define E1000_RCTL_RST          0x00000001	/* Software reset */ +#define E1000_RCTL_EN           0x00000002	/* enable */ +#define E1000_RCTL_SBP          0x00000004	/* store bad packet */ +#define E1000_RCTL_UPE          0x00000008	/* unicast promiscuous enable */ +#define E1000_RCTL_MPE          0x00000010	/* multicast promiscuous enab */ +#define E1000_RCTL_LPE          0x00000020	/* long packet enable */ +#define E1000_RCTL_LBM_NO       0x00000000	/* no loopback mode */ +#define E1000_RCTL_LBM_MAC      0x00000040	/* MAC loopback mode */ +#define E1000_RCTL_LBM_SLP      0x00000080	/* serial link loopback mode */ +#define E1000_RCTL_LBM_TCVR     0x000000C0	/* tcvr loopback mode */ +#define E1000_RCTL_RDMTS_HALF   0x00000000	/* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_QUAT   0x00000100	/* rx desc min threshold size */ +#define E1000_RCTL_RDMTS_EIGTH  0x00000200	/* rx desc min threshold size */ +#define E1000_RCTL_MO_SHIFT     12	/* multicast offset shift */ +#define E1000_RCTL_MO_0         0x00000000	/* multicast offset 11:0 */ +#define E1000_RCTL_MO_1         0x00001000	/* multicast offset 12:1 */ +#define E1000_RCTL_MO_2         0x00002000	/* multicast offset 13:2 */ +#define E1000_RCTL_MO_3         0x00003000	/* multicast offset 15:4 */ +#define E1000_RCTL_MDR          0x00004000	/* multicast desc ring 0 */ +#define E1000_RCTL_BAM          0x00008000	/* broadcast enable */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 0 */ +#define E1000_RCTL_SZ_2048      0x00000000	/* rx buffer size 2048 */ +#define E1000_RCTL_SZ_1024      0x00010000	/* rx buffer size 1024 */ +#define E1000_RCTL_SZ_512       0x00020000	/* rx buffer size 512 */ +#define E1000_RCTL_SZ_256       0x00030000	/* rx buffer size 256 */ +/* these buffer sizes are valid if E1000_RCTL_BSEX is 1 */ +#define E1000_RCTL_SZ_16384     0x00010000	/* rx buffer size 16384 */ +#define E1000_RCTL_SZ_8192      0x00020000	/* rx buffer size 8192 */ +#define E1000_RCTL_SZ_4096      0x00030000	/* rx buffer size 4096 */ +#define E1000_RCTL_VFE          0x00040000	/* vlan filter enable */ +#define E1000_RCTL_CFIEN        0x00080000	/* canonical form enable */ +#define E1000_RCTL_CFI          0x00100000	/* canonical form indicator */ +#define E1000_RCTL_DPF          0x00400000	/* discard pause frames */ +#define E1000_RCTL_PMCF         0x00800000	/* pass MAC control frames */ +#define E1000_RCTL_BSEX         0x02000000	/* Buffer size extension */ + +/* Receive Descriptor */ +#define E1000_RDT_DELAY 0x0000ffff	/* Delay timer (1=1024us) */ +#define E1000_RDT_FPDB  0x80000000	/* Flush descriptor block */ +#define E1000_RDLEN_LEN 0x0007ff80	/* descriptor length */ +#define E1000_RDH_RDH   0x0000ffff	/* receive descriptor head */ +#define E1000_RDT_RDT   0x0000ffff	/* receive descriptor tail */ + +/* Flow Control */ +#define E1000_FCRTH_RTH  0x0000FFF8	/* Mask Bits[15:3] for RTH */ +#define E1000_FCRTH_XFCE 0x80000000	/* External Flow Control Enable */ +#define E1000_FCRTL_RTL  0x0000FFF8	/* Mask Bits[15:3] for RTL */ +#define E1000_FCRTL_XONE 0x80000000	/* Enable XON frame transmission */ + +/* Receive Descriptor Control */ +#define E1000_RXDCTL_PTHRESH 0x0000003F	/* RXDCTL Prefetch Threshold */ +#define E1000_RXDCTL_HTHRESH 0x00003F00	/* RXDCTL Host Threshold */ +#define E1000_RXDCTL_WTHRESH 0x003F0000	/* RXDCTL Writeback Threshold */ +#define E1000_RXDCTL_GRAN    0x01000000	/* RXDCTL Granularity */ + +/* Transmit Descriptor Control */ +#define E1000_TXDCTL_PTHRESH 0x000000FF	/* TXDCTL Prefetch Threshold */ +#define E1000_TXDCTL_HTHRESH 0x0000FF00	/* TXDCTL Host Threshold */ +#define E1000_TXDCTL_WTHRESH 0x00FF0000	/* TXDCTL Writeback Threshold */ +#define E1000_TXDCTL_GRAN    0x01000000	/* TXDCTL Granularity */ +#define E1000_TXDCTL_LWTHRESH 0xFE000000	/* TXDCTL Low Threshold */ +#define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000	/* GRAN=1, WTHRESH=1 */ + +/* Transmit Configuration Word */ +#define E1000_TXCW_FD         0x00000020	/* TXCW full duplex */ +#define E1000_TXCW_HD         0x00000040	/* TXCW half duplex */ +#define E1000_TXCW_PAUSE      0x00000080	/* TXCW sym pause request */ +#define E1000_TXCW_ASM_DIR    0x00000100	/* TXCW astm pause direction */ +#define E1000_TXCW_PAUSE_MASK 0x00000180	/* TXCW pause request mask */ +#define E1000_TXCW_RF         0x00003000	/* TXCW remote fault */ +#define E1000_TXCW_NP         0x00008000	/* TXCW next page */ +#define E1000_TXCW_CW         0x0000ffff	/* TxConfigWord mask */ +#define E1000_TXCW_TXC        0x40000000	/* Transmit Config control */ +#define E1000_TXCW_ANE        0x80000000	/* Auto-neg enable */ + +/* Receive Configuration Word */ +#define E1000_RXCW_CW    0x0000ffff	/* RxConfigWord mask */ +#define E1000_RXCW_NC    0x04000000	/* Receive config no carrier */ +#define E1000_RXCW_IV    0x08000000	/* Receive config invalid */ +#define E1000_RXCW_CC    0x10000000	/* Receive config change */ +#define E1000_RXCW_C     0x20000000	/* Receive config */ +#define E1000_RXCW_SYNCH 0x40000000	/* Receive config synch */ +#define E1000_RXCW_ANC   0x80000000	/* Auto-neg complete */ + +/* Transmit Control */ +#define E1000_TCTL_RST    0x00000001	/* software reset */ +#define E1000_TCTL_EN     0x00000002	/* enable tx */ +#define E1000_TCTL_BCE    0x00000004	/* busy check enable */ +#define E1000_TCTL_PSP    0x00000008	/* pad short packets */ +#define E1000_TCTL_CT     0x00000ff0	/* collision threshold */ +#define E1000_TCTL_COLD   0x003ff000	/* collision distance */ +#define E1000_TCTL_SWXOFF 0x00400000	/* SW Xoff transmission */ +#define E1000_TCTL_PBE    0x00800000	/* Packet Burst Enable */ +#define E1000_TCTL_RTLC   0x01000000	/* Re-transmit on late collision */ +#define E1000_TCTL_NRTU   0x02000000	/* No Re-transmit on underrun */ + +/* Receive Checksum Control */ +#define E1000_RXCSUM_PCSS_MASK 0x000000FF	/* Packet Checksum Start */ +#define E1000_RXCSUM_IPOFL     0x00000100	/* IPv4 checksum offload */ +#define E1000_RXCSUM_TUOFL     0x00000200	/* TCP / UDP checksum offload */ +#define E1000_RXCSUM_IPV6OFL   0x00000400	/* IPv6 checksum offload */ + +/* Definitions for power management and wakeup registers */ +/* Wake Up Control */ +#define E1000_WUC_APME       0x00000001	/* APM Enable */ +#define E1000_WUC_PME_EN     0x00000002	/* PME Enable */ +#define E1000_WUC_PME_STATUS 0x00000004	/* PME Status */ +#define E1000_WUC_APMPME     0x00000008	/* Assert PME on APM Wakeup */ + +/* Wake Up Filter Control */ +#define E1000_WUFC_LNKC 0x00000001	/* Link Status Change Wakeup Enable */ +#define E1000_WUFC_MAG  0x00000002	/* Magic Packet Wakeup Enable */ +#define E1000_WUFC_EX   0x00000004	/* Directed Exact Wakeup Enable */ +#define E1000_WUFC_MC   0x00000008	/* Directed Multicast Wakeup Enable */ +#define E1000_WUFC_BC   0x00000010	/* Broadcast Wakeup Enable */ +#define E1000_WUFC_ARP  0x00000020	/* ARP Request Packet Wakeup Enable */ +#define E1000_WUFC_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Enable */ +#define E1000_WUFC_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Enable */ +#define E1000_WUFC_FLX0 0x00010000	/* Flexible Filter 0 Enable */ +#define E1000_WUFC_FLX1 0x00020000	/* Flexible Filter 1 Enable */ +#define E1000_WUFC_FLX2 0x00040000	/* Flexible Filter 2 Enable */ +#define E1000_WUFC_FLX3 0x00080000	/* Flexible Filter 3 Enable */ +#define E1000_WUFC_ALL_FILTERS 0x000F00FF	/* Mask for all wakeup filters */ +#define E1000_WUFC_FLX_OFFSET 16	/* Offset to the Flexible Filters bits */ +#define E1000_WUFC_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */ + +/* Wake Up Status */ +#define E1000_WUS_LNKC 0x00000001	/* Link Status Changed */ +#define E1000_WUS_MAG  0x00000002	/* Magic Packet Received */ +#define E1000_WUS_EX   0x00000004	/* Directed Exact Received */ +#define E1000_WUS_MC   0x00000008	/* Directed Multicast Received */ +#define E1000_WUS_BC   0x00000010	/* Broadcast Received */ +#define E1000_WUS_ARP  0x00000020	/* ARP Request Packet Received */ +#define E1000_WUS_IPV4 0x00000040	/* Directed IPv4 Packet Wakeup Received */ +#define E1000_WUS_IPV6 0x00000080	/* Directed IPv6 Packet Wakeup Received */ +#define E1000_WUS_FLX0 0x00010000	/* Flexible Filter 0 Match */ +#define E1000_WUS_FLX1 0x00020000	/* Flexible Filter 1 Match */ +#define E1000_WUS_FLX2 0x00040000	/* Flexible Filter 2 Match */ +#define E1000_WUS_FLX3 0x00080000	/* Flexible Filter 3 Match */ +#define E1000_WUS_FLX_FILTERS 0x000F0000	/* Mask for the 4 flexible filters */ + +/* Management Control */ +#define E1000_MANC_SMBUS_EN      0x00000001	/* SMBus Enabled - RO */ +#define E1000_MANC_ASF_EN        0x00000002	/* ASF Enabled - RO */ +#define E1000_MANC_R_ON_FORCE    0x00000004	/* Reset on Force TCO - RO */ +#define E1000_MANC_RMCP_EN       0x00000100	/* Enable RCMP 026Fh Filtering */ +#define E1000_MANC_0298_EN       0x00000200	/* Enable RCMP 0298h Filtering */ +#define E1000_MANC_IPV4_EN       0x00000400	/* Enable IPv4 */ +#define E1000_MANC_IPV6_EN       0x00000800	/* Enable IPv6 */ +#define E1000_MANC_SNAP_EN       0x00001000	/* Accept LLC/SNAP */ +#define E1000_MANC_ARP_EN        0x00002000	/* Enable ARP Request Filtering */ +#define E1000_MANC_NEIGHBOR_EN   0x00004000	/* Enable Neighbor Discovery  +						 * Filtering */ +#define E1000_MANC_TCO_RESET     0x00010000	/* TCO Reset Occurred */ +#define E1000_MANC_RCV_TCO_EN    0x00020000	/* Receive TCO Packets Enabled */ +#define E1000_MANC_REPORT_STATUS 0x00040000	/* Status Reporting Enabled */ +#define E1000_MANC_SMB_REQ       0x01000000	/* SMBus Request */ +#define E1000_MANC_SMB_GNT       0x02000000	/* SMBus Grant */ +#define E1000_MANC_SMB_CLK_IN    0x04000000	/* SMBus Clock In */ +#define E1000_MANC_SMB_DATA_IN   0x08000000	/* SMBus Data In */ +#define E1000_MANC_SMB_DATA_OUT  0x10000000	/* SMBus Data Out */ +#define E1000_MANC_SMB_CLK_OUT   0x20000000	/* SMBus Clock Out */ + +#define E1000_MANC_SMB_DATA_OUT_SHIFT  28	/* SMBus Data Out Shift */ +#define E1000_MANC_SMB_CLK_OUT_SHIFT   29	/* SMBus Clock Out Shift */ + +/* Wake Up Packet Length */ +#define E1000_WUPL_LENGTH_MASK 0x0FFF	/* Only the lower 12 bits are valid */ + +#define E1000_MDALIGN          4096 + +/* EEPROM Commands */ +#define EEPROM_READ_OPCODE  0x6	/* EERPOM read opcode */ +#define EEPROM_WRITE_OPCODE 0x5	/* EERPOM write opcode */ +#define EEPROM_ERASE_OPCODE 0x7	/* EERPOM erase opcode */ +#define EEPROM_EWEN_OPCODE  0x13	/* EERPOM erase/write enable */ +#define EEPROM_EWDS_OPCODE  0x10	/* EERPOM erast/write disable */ + +/* EEPROM Word Offsets */ +#define EEPROM_COMPAT              0x0003 +#define EEPROM_ID_LED_SETTINGS     0x0004 +#define EEPROM_INIT_CONTROL1_REG   0x000A +#define EEPROM_INIT_CONTROL2_REG   0x000F +#define EEPROM_FLASH_VERSION       0x0032 +#define EEPROM_CHECKSUM_REG        0x003F + +/* Word definitions for ID LED Settings */ +#define ID_LED_RESERVED_0000 0x0000 +#define ID_LED_RESERVED_FFFF 0xFFFF +#define ID_LED_DEFAULT       ((ID_LED_OFF1_ON2 << 12) | \ +                              (ID_LED_OFF1_OFF2 << 8) | \ +                              (ID_LED_DEF1_DEF2 << 4) | \ +                              (ID_LED_DEF1_DEF2)) +#define ID_LED_DEF1_DEF2     0x1 +#define ID_LED_DEF1_ON2      0x2 +#define ID_LED_DEF1_OFF2     0x3 +#define ID_LED_ON1_DEF2      0x4 +#define ID_LED_ON1_ON2       0x5 +#define ID_LED_ON1_OFF2      0x6 +#define ID_LED_OFF1_DEF2     0x7 +#define ID_LED_OFF1_ON2      0x8 +#define ID_LED_OFF1_OFF2     0x9 + +/* Mask bits for fields in Word 0x03 of the EEPROM */ +#define EEPROM_COMPAT_SERVER 0x0400 +#define EEPROM_COMPAT_CLIENT 0x0200 + +/* Mask bits for fields in Word 0x0a of the EEPROM */ +#define EEPROM_WORD0A_ILOS   0x0010 +#define EEPROM_WORD0A_SWDPIO 0x01E0 +#define EEPROM_WORD0A_LRST   0x0200 +#define EEPROM_WORD0A_FD     0x0400 +#define EEPROM_WORD0A_66MHZ  0x0800 + +/* Mask bits for fields in Word 0x0f of the EEPROM */ +#define EEPROM_WORD0F_PAUSE_MASK 0x3000 +#define EEPROM_WORD0F_PAUSE      0x1000 +#define EEPROM_WORD0F_ASM_DIR    0x2000 +#define EEPROM_WORD0F_ANE        0x0800 +#define EEPROM_WORD0F_SWPDIO_EXT 0x00F0 + +/* For checksumming, the sum of all words in the EEPROM should equal 0xBABA. */ +#define EEPROM_SUM 0xBABA + +/* EEPROM Map defines (WORD OFFSETS)*/ +#define EEPROM_NODE_ADDRESS_BYTE_0 0 +#define EEPROM_PBA_BYTE_1          8 + +/* EEPROM Map Sizes (Byte Counts) */ +#define PBA_SIZE 4 + +/* Collision related configuration parameters */ +#define E1000_COLLISION_THRESHOLD       16 +#define E1000_CT_SHIFT                  4 +#define E1000_COLLISION_DISTANCE        64 +#define E1000_FDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE +#define E1000_HDX_COLLISION_DISTANCE    E1000_COLLISION_DISTANCE +#define E1000_GB_HDX_COLLISION_DISTANCE 512 +#define E1000_COLD_SHIFT                12 + +/* The number of Transmit and Receive Descriptors must be a multiple of 8 */ +#define REQ_TX_DESCRIPTOR_MULTIPLE  8 +#define REQ_RX_DESCRIPTOR_MULTIPLE  8 + +/* Default values for the transmit IPG register */ +#define DEFAULT_82542_TIPG_IPGT        10 +#define DEFAULT_82543_TIPG_IPGT_FIBER  9 +#define DEFAULT_82543_TIPG_IPGT_COPPER 8 + +#define E1000_TIPG_IPGT_MASK  0x000003FF +#define E1000_TIPG_IPGR1_MASK 0x000FFC00 +#define E1000_TIPG_IPGR2_MASK 0x3FF00000 + +#define DEFAULT_82542_TIPG_IPGR1 2 +#define DEFAULT_82543_TIPG_IPGR1 8 +#define E1000_TIPG_IPGR1_SHIFT  10 + +#define DEFAULT_82542_TIPG_IPGR2 10 +#define DEFAULT_82543_TIPG_IPGR2 6 +#define E1000_TIPG_IPGR2_SHIFT  20 + +#define E1000_TXDMAC_DPP 0x00000001 + +/* Adaptive IFS defines */ +#define TX_THRESHOLD_START     8 +#define TX_THRESHOLD_INCREMENT 10 +#define TX_THRESHOLD_DECREMENT 1 +#define TX_THRESHOLD_STOP      190 +#define TX_THRESHOLD_DISABLE   0 +#define TX_THRESHOLD_TIMER_MS  10000 +#define MIN_NUM_XMITS          1000 +#define IFS_MAX                80 +#define IFS_STEP               10 +#define IFS_MIN                40 +#define IFS_RATIO              4 + +/* PBA constants */ +#define E1000_PBA_16K 0x0010	/* 16KB, default TX allocation */ +#define E1000_PBA_24K 0x0018 +#define E1000_PBA_40K 0x0028 +#define E1000_PBA_48K 0x0030	/* 48KB, default RX allocation */ + +/* Flow Control Constants */ +#define FLOW_CONTROL_ADDRESS_LOW  0x00C28001 +#define FLOW_CONTROL_ADDRESS_HIGH 0x00000100 +#define FLOW_CONTROL_TYPE         0x8808 + +/* The historical defaults for the flow control values are given below. */ +#define FC_DEFAULT_HI_THRESH        (0x8000)	/* 32KB */ +#define FC_DEFAULT_LO_THRESH        (0x4000)	/* 16KB */ +#define FC_DEFAULT_TX_TIMER         (0x100)	/* ~130 us */ + +/* Flow Control High-Watermark: 43464 bytes */ +#define E1000_FC_HIGH_THRESH 0xA9C8 +/* Flow Control Low-Watermark: 43456 bytes */ +#define E1000_FC_LOW_THRESH 0xA9C0 +/* Flow Control Pause Time: 858 usec */ +#define E1000_FC_PAUSE_TIME 0x0680 + +/* PCIX Config space */ +#define PCIX_COMMAND_REGISTER    0xE6 +#define PCIX_STATUS_REGISTER_LO  0xE8 +#define PCIX_STATUS_REGISTER_HI  0xEA + +#define PCIX_COMMAND_MMRBC_MASK      0x000C +#define PCIX_COMMAND_MMRBC_SHIFT     0x2 +#define PCIX_STATUS_HI_MMRBC_MASK    0x0060 +#define PCIX_STATUS_HI_MMRBC_SHIFT   0x5 +#define PCIX_STATUS_HI_MMRBC_4K      0x3 +#define PCIX_STATUS_HI_MMRBC_2K      0x2 + +/* The number of bits that we need to shift right to move the "pause" + * bits from the EEPROM (bits 13:12) to the "pause" (bits 8:7) field + * in the TXCW register  + */ +#define PAUSE_SHIFT 5 + +/* The number of bits that we need to shift left to move the "SWDPIO" + * bits from the EEPROM (bits 8:5) to the "SWDPIO" (bits 25:22) field + * in the CTRL register  + */ +#define SWDPIO_SHIFT 17 + +/* The number of bits that we need to shift left to move the "SWDPIO_EXT" + * bits from the EEPROM word F (bits 7:4) to the bits 11:8 of The + * Extended CTRL register. + * in the CTRL register  + */ +#define SWDPIO__EXT_SHIFT 4 + +/* The number of bits that we need to shift left to move the "ILOS" + * bit from the EEPROM (bit 4) to the "ILOS" (bit 7) field + * in the CTRL register  + */ +#define ILOS_SHIFT  3 + +#define RECEIVE_BUFFER_ALIGN_SIZE  (256) + +/* The number of milliseconds we wait for auto-negotiation to complete */ +#define LINK_UP_TIMEOUT             500 + +#define E1000_TX_BUFFER_SIZE ((uint32_t)1514) + +/* The carrier extension symbol, as received by the NIC. */ +#define CARRIER_EXTENSION   0x0F + +/* TBI_ACCEPT macro definition: + * + * This macro requires: + *      adapter = a pointer to struct e1000_hw  + *      status = the 8 bit status field of the RX descriptor with EOP set + *      error = the 8 bit error field of the RX descriptor with EOP set + *      length = the sum of all the length fields of the RX descriptors that + *               make up the current frame + *      last_byte = the last byte of the frame DMAed by the hardware + *      max_frame_length = the maximum frame length we want to accept. + *      min_frame_length = the minimum frame length we want to accept. + * + * This macro is a conditional that should be used in the interrupt  + * handler's Rx processing routine when RxErrors have been detected. + * + * Typical use: + *  ... + *  if (TBI_ACCEPT) { + *      accept_frame = TRUE; + *      e1000_tbi_adjust_stats(adapter, MacAddress); + *      frame_length--; + *  } else { + *      accept_frame = FALSE; + *  } + *  ... + */ + +#define TBI_ACCEPT(adapter, status, errors, length, last_byte) \ +    ((adapter)->tbi_compatibility_on && \ +     (((errors) & E1000_RXD_ERR_FRAME_ERR_MASK) == E1000_RXD_ERR_CE) && \ +     ((last_byte) == CARRIER_EXTENSION) && \ +     (((status) & E1000_RXD_STAT_VP) ? \ +          (((length) > ((adapter)->min_frame_size - VLAN_TAG_SIZE)) && \ +           ((length) <= ((adapter)->max_frame_size + 1))) : \ +          (((length) > (adapter)->min_frame_size) && \ +           ((length) <= ((adapter)->max_frame_size + VLAN_TAG_SIZE + 1))))) + +/* Structures, enums, and macros for the PHY */ + +/* Bit definitions for the Management Data IO (MDIO) and Management Data + * Clock (MDC) pins in the Device Control Register. + */ +#define E1000_CTRL_PHY_RESET_DIR  E1000_CTRL_SWDPIO0 +#define E1000_CTRL_PHY_RESET      E1000_CTRL_SWDPIN0 +#define E1000_CTRL_MDIO_DIR       E1000_CTRL_SWDPIO2 +#define E1000_CTRL_MDIO           E1000_CTRL_SWDPIN2 +#define E1000_CTRL_MDC_DIR        E1000_CTRL_SWDPIO3 +#define E1000_CTRL_MDC            E1000_CTRL_SWDPIN3 +#define E1000_CTRL_PHY_RESET_DIR4 E1000_CTRL_EXT_SDP4_DIR +#define E1000_CTRL_PHY_RESET4     E1000_CTRL_EXT_SDP4_DATA + +/* PHY 1000 MII Register/Bit Definitions */ +/* PHY Registers defined by IEEE */ +#define PHY_CTRL         0x00	/* Control Register */ +#define PHY_STATUS       0x01	/* Status Regiser */ +#define PHY_ID1          0x02	/* Phy Id Reg (word 1) */ +#define PHY_ID2          0x03	/* Phy Id Reg (word 2) */ +#define PHY_AUTONEG_ADV  0x04	/* Autoneg Advertisement */ +#define PHY_LP_ABILITY   0x05	/* Link Partner Ability (Base Page) */ +#define PHY_AUTONEG_EXP  0x06	/* Autoneg Expansion Reg */ +#define PHY_NEXT_PAGE_TX 0x07	/* Next Page TX */ +#define PHY_LP_NEXT_PAGE 0x08	/* Link Partner Next Page */ +#define PHY_1000T_CTRL   0x09	/* 1000Base-T Control Reg */ +#define PHY_1000T_STATUS 0x0A	/* 1000Base-T Status Reg */ +#define PHY_EXT_STATUS   0x0F	/* Extended Status Reg */ + +/* M88E1000 Specific Registers */ +#define M88E1000_PHY_SPEC_CTRL     0x10	/* PHY Specific Control Register */ +#define M88E1000_PHY_SPEC_STATUS   0x11	/* PHY Specific Status Register */ +#define M88E1000_INT_ENABLE        0x12	/* Interrupt Enable Register */ +#define M88E1000_INT_STATUS        0x13	/* Interrupt Status Register */ +#define M88E1000_EXT_PHY_SPEC_CTRL 0x14	/* Extended PHY Specific Control */ +#define M88E1000_RX_ERR_CNTR       0x15	/* Receive Error Counter */ + +#define MAX_PHY_REG_ADDRESS 0x1F	/* 5 bit address bus (0-0x1F) */ + +/* PHY Control Register */ +#define MII_CR_SPEED_SELECT_MSB 0x0040	/* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_COLL_TEST_ENABLE 0x0080	/* Collision test enable */ +#define MII_CR_FULL_DUPLEX      0x0100	/* FDX =1, half duplex =0 */ +#define MII_CR_RESTART_AUTO_NEG 0x0200	/* Restart auto negotiation */ +#define MII_CR_ISOLATE          0x0400	/* Isolate PHY from MII */ +#define MII_CR_POWER_DOWN       0x0800	/* Power down */ +#define MII_CR_AUTO_NEG_EN      0x1000	/* Auto Neg Enable */ +#define MII_CR_SPEED_SELECT_LSB 0x2000	/* bits 6,13: 10=1000, 01=100, 00=10 */ +#define MII_CR_LOOPBACK         0x4000	/* 0 = normal, 1 = loopback */ +#define MII_CR_RESET            0x8000	/* 0 = normal, 1 = PHY reset */ + +/* PHY Status Register */ +#define MII_SR_EXTENDED_CAPS     0x0001	/* Extended register capabilities */ +#define MII_SR_JABBER_DETECT     0x0002	/* Jabber Detected */ +#define MII_SR_LINK_STATUS       0x0004	/* Link Status 1 = link */ +#define MII_SR_AUTONEG_CAPS      0x0008	/* Auto Neg Capable */ +#define MII_SR_REMOTE_FAULT      0x0010	/* Remote Fault Detect */ +#define MII_SR_AUTONEG_COMPLETE  0x0020	/* Auto Neg Complete */ +#define MII_SR_PREAMBLE_SUPPRESS 0x0040	/* Preamble may be suppressed */ +#define MII_SR_EXTENDED_STATUS   0x0100	/* Ext. status info in Reg 0x0F */ +#define MII_SR_100T2_HD_CAPS     0x0200	/* 100T2 Half Duplex Capable */ +#define MII_SR_100T2_FD_CAPS     0x0400	/* 100T2 Full Duplex Capable */ +#define MII_SR_10T_HD_CAPS       0x0800	/* 10T   Half Duplex Capable */ +#define MII_SR_10T_FD_CAPS       0x1000	/* 10T   Full Duplex Capable */ +#define MII_SR_100X_HD_CAPS      0x2000	/* 100X  Half Duplex Capable */ +#define MII_SR_100X_FD_CAPS      0x4000	/* 100X  Full Duplex Capable */ +#define MII_SR_100T4_CAPS        0x8000	/* 100T4 Capable */ + +/* Autoneg Advertisement Register */ +#define NWAY_AR_SELECTOR_FIELD 0x0001	/* indicates IEEE 802.3 CSMA/CD */ +#define NWAY_AR_10T_HD_CAPS    0x0020	/* 10T   Half Duplex Capable */ +#define NWAY_AR_10T_FD_CAPS    0x0040	/* 10T   Full Duplex Capable */ +#define NWAY_AR_100TX_HD_CAPS  0x0080	/* 100TX Half Duplex Capable */ +#define NWAY_AR_100TX_FD_CAPS  0x0100	/* 100TX Full Duplex Capable */ +#define NWAY_AR_100T4_CAPS     0x0200	/* 100T4 Capable */ +#define NWAY_AR_PAUSE          0x0400	/* Pause operation desired */ +#define NWAY_AR_ASM_DIR        0x0800	/* Asymmetric Pause Direction bit */ +#define NWAY_AR_REMOTE_FAULT   0x2000	/* Remote Fault detected */ +#define NWAY_AR_NEXT_PAGE      0x8000	/* Next Page ability supported */ + +/* Link Partner Ability Register (Base Page) */ +#define NWAY_LPAR_SELECTOR_FIELD 0x0000	/* LP protocol selector field */ +#define NWAY_LPAR_10T_HD_CAPS    0x0020	/* LP is 10T   Half Duplex Capable */ +#define NWAY_LPAR_10T_FD_CAPS    0x0040	/* LP is 10T   Full Duplex Capable */ +#define NWAY_LPAR_100TX_HD_CAPS  0x0080	/* LP is 100TX Half Duplex Capable */ +#define NWAY_LPAR_100TX_FD_CAPS  0x0100	/* LP is 100TX Full Duplex Capable */ +#define NWAY_LPAR_100T4_CAPS     0x0200	/* LP is 100T4 Capable */ +#define NWAY_LPAR_PAUSE          0x0400	/* LP Pause operation desired */ +#define NWAY_LPAR_ASM_DIR        0x0800	/* LP Asymmetric Pause Direction bit */ +#define NWAY_LPAR_REMOTE_FAULT   0x2000	/* LP has detected Remote Fault */ +#define NWAY_LPAR_ACKNOWLEDGE    0x4000	/* LP has rx'd link code word */ +#define NWAY_LPAR_NEXT_PAGE      0x8000	/* Next Page ability supported */ + +/* Autoneg Expansion Register */ +#define NWAY_ER_LP_NWAY_CAPS      0x0001	/* LP has Auto Neg Capability */ +#define NWAY_ER_PAGE_RXD          0x0002	/* LP is 10T   Half Duplex Capable */ +#define NWAY_ER_NEXT_PAGE_CAPS    0x0004	/* LP is 10T   Full Duplex Capable */ +#define NWAY_ER_LP_NEXT_PAGE_CAPS 0x0008	/* LP is 100TX Half Duplex Capable */ +#define NWAY_ER_PAR_DETECT_FAULT  0x0100	/* LP is 100TX Full Duplex Capable */ + +/* Next Page TX Register */ +#define NPTX_MSG_CODE_FIELD 0x0001	/* NP msg code or unformatted data */ +#define NPTX_TOGGLE         0x0800	/* Toggles between exchanges +					 * of different NP +					 */ +#define NPTX_ACKNOWLDGE2    0x1000	/* 1 = will comply with msg +					 * 0 = cannot comply with msg +					 */ +#define NPTX_MSG_PAGE       0x2000	/* formatted(1)/unformatted(0) pg */ +#define NPTX_NEXT_PAGE      0x8000	/* 1 = addition NP will follow  +					 * 0 = sending last NP +					 */ + +/* Link Partner Next Page Register */ +#define LP_RNPR_MSG_CODE_FIELD 0x0001	/* NP msg code or unformatted data */ +#define LP_RNPR_TOGGLE         0x0800	/* Toggles between exchanges +					 * of different NP +					 */ +#define LP_RNPR_ACKNOWLDGE2    0x1000	/* 1 = will comply with msg  +					 * 0 = cannot comply with msg +					 */ +#define LP_RNPR_MSG_PAGE       0x2000	/* formatted(1)/unformatted(0) pg */ +#define LP_RNPR_ACKNOWLDGE     0x4000	/* 1 = ACK / 0 = NO ACK */ +#define LP_RNPR_NEXT_PAGE      0x8000	/* 1 = addition NP will follow +					 * 0 = sending last NP  +					 */ + +/* 1000BASE-T Control Register */ +#define CR_1000T_ASYM_PAUSE      0x0080	/* Advertise asymmetric pause bit */ +#define CR_1000T_HD_CAPS         0x0100	/* Advertise 1000T HD capability */ +#define CR_1000T_FD_CAPS         0x0200	/* Advertise 1000T FD capability  */ +#define CR_1000T_REPEATER_DTE    0x0400	/* 1=Repeater/switch device port */ +					/* 0=DTE device */ +#define CR_1000T_MS_VALUE        0x0800	/* 1=Configure PHY as Master */ +					/* 0=Configure PHY as Slave */ +#define CR_1000T_MS_ENABLE       0x1000	/* 1=Master/Slave manual config value */ +					/* 0=Automatic Master/Slave config */ +#define CR_1000T_TEST_MODE_NORMAL 0x0000	/* Normal Operation */ +#define CR_1000T_TEST_MODE_1     0x2000	/* Transmit Waveform test */ +#define CR_1000T_TEST_MODE_2     0x4000	/* Master Transmit Jitter test */ +#define CR_1000T_TEST_MODE_3     0x6000	/* Slave Transmit Jitter test */ +#define CR_1000T_TEST_MODE_4     0x8000	/* Transmitter Distortion test */ + +/* 1000BASE-T Status Register */ +#define SR_1000T_IDLE_ERROR_CNT   0x00FF	/* Num idle errors since last read */ +#define SR_1000T_ASYM_PAUSE_DIR   0x0100	/* LP asymmetric pause direction bit */ +#define SR_1000T_LP_HD_CAPS       0x0400	/* LP is 1000T HD capable */ +#define SR_1000T_LP_FD_CAPS       0x0800	/* LP is 1000T FD capable */ +#define SR_1000T_REMOTE_RX_STATUS 0x1000	/* Remote receiver OK */ +#define SR_1000T_LOCAL_RX_STATUS  0x2000	/* Local receiver OK */ +#define SR_1000T_MS_CONFIG_RES    0x4000	/* 1=Local TX is Master, 0=Slave */ +#define SR_1000T_MS_CONFIG_FAULT  0x8000	/* Master/Slave config fault */ +#define SR_1000T_REMOTE_RX_STATUS_SHIFT 12 +#define SR_1000T_LOCAL_RX_STATUS_SHIFT  13 + +/* Extended Status Register */ +#define IEEE_ESR_1000T_HD_CAPS 0x1000	/* 1000T HD capable */ +#define IEEE_ESR_1000T_FD_CAPS 0x2000	/* 1000T FD capable */ +#define IEEE_ESR_1000X_HD_CAPS 0x4000	/* 1000X HD capable */ +#define IEEE_ESR_1000X_FD_CAPS 0x8000	/* 1000X FD capable */ + +#define PHY_TX_POLARITY_MASK   0x0100	/* register 10h bit 8 (polarity bit) */ +#define PHY_TX_NORMAL_POLARITY 0	/* register 10h bit 8 (normal polarity) */ + +#define AUTO_POLARITY_DISABLE  0x0010	/* register 11h bit 4 */ +				      /* (0=enable, 1=disable) */ + +/* M88E1000 PHY Specific Control Register */ +#define M88E1000_PSCR_JABBER_DISABLE    0x0001	/* 1=Jabber Function disabled */ +#define M88E1000_PSCR_POLARITY_REVERSAL 0x0002	/* 1=Polarity Reversal enabled */ +#define M88E1000_PSCR_SQE_TEST          0x0004	/* 1=SQE Test enabled */ +#define M88E1000_PSCR_CLK125_DISABLE    0x0010	/* 1=CLK125 low,  +						 * 0=CLK125 toggling +						 */ +#define M88E1000_PSCR_MDI_MANUAL_MODE  0x0000	/* MDI Crossover Mode bits 6:5 */ +					       /* Manual MDI configuration */ +#define M88E1000_PSCR_MDIX_MANUAL_MODE 0x0020	/* Manual MDIX configuration */ +#define M88E1000_PSCR_AUTO_X_1000T     0x0040	/* 1000BASE-T: Auto crossover, +						 *  100BASE-TX/10BASE-T:  +						 *  MDI Mode +						 */ +#define M88E1000_PSCR_AUTO_X_MODE      0x0060	/* Auto crossover enabled  +						 * all speeds.  +						 */ +#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE 0x0080 +					/* 1=Enable Extended 10BASE-T distance +					 * (Lower 10BASE-T RX Threshold) +					 * 0=Normal 10BASE-T RX Threshold */ +#define M88E1000_PSCR_MII_5BIT_ENABLE      0x0100 +					/* 1=5-Bit interface in 100BASE-TX +					 * 0=MII interface in 100BASE-TX */ +#define M88E1000_PSCR_SCRAMBLER_DISABLE    0x0200	/* 1=Scrambler disable */ +#define M88E1000_PSCR_FORCE_LINK_GOOD      0x0400	/* 1=Force link good */ +#define M88E1000_PSCR_ASSERT_CRS_ON_TX     0x0800	/* 1=Assert CRS on Transmit */ + +#define M88E1000_PSCR_POLARITY_REVERSAL_SHIFT    1 +#define M88E1000_PSCR_AUTO_X_MODE_SHIFT          5 +#define M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT 7 + +/* M88E1000 PHY Specific Status Register */ +#define M88E1000_PSSR_JABBER             0x0001	/* 1=Jabber */ +#define M88E1000_PSSR_REV_POLARITY       0x0002	/* 1=Polarity reversed */ +#define M88E1000_PSSR_MDIX               0x0040	/* 1=MDIX; 0=MDI */ +#define M88E1000_PSSR_CABLE_LENGTH       0x0380	/* 0=<50M;1=50-80M;2=80-110M; +						   * 3=110-140M;4=>140M */ +#define M88E1000_PSSR_LINK               0x0400	/* 1=Link up, 0=Link down */ +#define M88E1000_PSSR_SPD_DPLX_RESOLVED  0x0800	/* 1=Speed & Duplex resolved */ +#define M88E1000_PSSR_PAGE_RCVD          0x1000	/* 1=Page received */ +#define M88E1000_PSSR_DPLX               0x2000	/* 1=Duplex 0=Half Duplex */ +#define M88E1000_PSSR_SPEED              0xC000	/* Speed, bits 14:15 */ +#define M88E1000_PSSR_10MBS              0x0000	/* 00=10Mbs */ +#define M88E1000_PSSR_100MBS             0x4000	/* 01=100Mbs */ +#define M88E1000_PSSR_1000MBS            0x8000	/* 10=1000Mbs */ + +#define M88E1000_PSSR_REV_POLARITY_SHIFT 1 +#define M88E1000_PSSR_MDIX_SHIFT         6 +#define M88E1000_PSSR_CABLE_LENGTH_SHIFT 7 + +/* M88E1000 Extended PHY Specific Control Register */ +#define M88E1000_EPSCR_FIBER_LOOPBACK 0x4000	/* 1=Fiber loopback */ +#define M88E1000_EPSCR_DOWN_NO_IDLE   0x8000	/* 1=Lost lock detect enabled. +						 * Will assert lost lock and bring +						 * link down if idle not seen +						 * within 1ms in 1000BASE-T  +						 */ +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the master */ +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK 0x0C00 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_1X   0x0000 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_2X   0x0400 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_3X   0x0800 +#define M88E1000_EPSCR_MASTER_DOWNSHIFT_4X   0x0C00 +/* Number of times we will attempt to autonegotiate before downshifting if we + * are the slave */ +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK  0x0300 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_DIS   0x0000 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X    0x0100 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_2X    0x0200 +#define M88E1000_EPSCR_SLAVE_DOWNSHIFT_3X    0x0300 +#define M88E1000_EPSCR_TX_CLK_2_5     0x0060	/* 2.5 MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_25      0x0070	/* 25  MHz TX_CLK */ +#define M88E1000_EPSCR_TX_CLK_0       0x0000	/* NO  TX_CLK */ + +/* Bit definitions for valid PHY IDs. */ +#define M88E1000_E_PHY_ID  0x01410C50 +#define M88E1000_I_PHY_ID  0x01410C30 +#define M88E1011_I_PHY_ID  0x01410C20 +#define M88E1000_12_PHY_ID M88E1000_E_PHY_ID +#define M88E1000_14_PHY_ID M88E1000_E_PHY_ID + +/* Miscellaneous PHY bit definitions. */ +#define PHY_PREAMBLE        0xFFFFFFFF +#define PHY_SOF             0x01 +#define PHY_OP_READ         0x02 +#define PHY_OP_WRITE        0x01 +#define PHY_TURNAROUND      0x02 +#define PHY_PREAMBLE_SIZE   32 +#define MII_CR_SPEED_1000   0x0040 +#define MII_CR_SPEED_100    0x2000 +#define MII_CR_SPEED_10     0x0000 +#define E1000_PHY_ADDRESS   0x01 +#define PHY_AUTO_NEG_TIME   45	/* 4.5 Seconds */ +#define PHY_FORCE_TIME      20	/* 2.0 Seconds */ +#define PHY_REVISION_MASK   0xFFFFFFF0 +#define DEVICE_SPEED_MASK   0x00000300	/* Device Ctrl Reg Speed Mask */ +#define REG4_SPEED_MASK     0x01E0 +#define REG9_SPEED_MASK     0x0300 +#define ADVERTISE_10_HALF   0x0001 +#define ADVERTISE_10_FULL   0x0002 +#define ADVERTISE_100_HALF  0x0004 +#define ADVERTISE_100_FULL  0x0008 +#define ADVERTISE_1000_HALF 0x0010 +#define ADVERTISE_1000_FULL 0x0020 +#define AUTONEG_ADVERTISE_SPEED_DEFAULT 0x002F	/* Everything but 1000-Half */ + +#endif				/* _E1000_HW_H_ */ |