diff options
Diffstat (limited to 'drivers/mtd/nand_legacy/nand_legacy.c')
| -rw-r--r-- | drivers/mtd/nand_legacy/nand_legacy.c | 1612 | 
1 files changed, 1612 insertions, 0 deletions
| diff --git a/drivers/mtd/nand_legacy/nand_legacy.c b/drivers/mtd/nand_legacy/nand_legacy.c new file mode 100644 index 000000000..49d2ebb67 --- /dev/null +++ b/drivers/mtd/nand_legacy/nand_legacy.c @@ -0,0 +1,1612 @@ +/* + * (C) 2006 Denx + * Driver for NAND support, Rick Bronson + * borrowed heavily from: + * (c) 1999 Machine Vision Holdings, Inc. + * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> + * + * Added 16-bit nand support + * (C) 2004 Texas Instruments + */ + +#include <common.h> +#include <command.h> +#include <malloc.h> +#include <asm/io.h> +#include <watchdog.h> + +#if defined(CONFIG_CMD_NAND) && defined(CFG_NAND_LEGACY) + +#include <linux/mtd/nand_legacy.h> +#include <linux/mtd/nand_ids.h> +#include <jffs2/jffs2.h> + +#ifdef CONFIG_OMAP1510 +void archflashwp(void *archdata, int wp); +#endif + +#define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1))) + +#undef	PSYCHO_DEBUG +#undef	NAND_DEBUG + +/* ****************** WARNING ********************* + * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will + * erase (or at least attempt to erase) blocks that are marked + * bad. This can be very handy if you are _sure_ that the block + * is OK, say because you marked a good block bad to test bad + * block handling and you are done testing, or if you have + * accidentally marked blocks bad. + * + * Erasing factory marked bad blocks is a _bad_ idea. If the + * erase succeeds there is no reliable way to find them again, + * and attempting to program or erase bad blocks can affect + * the data in _other_ (good) blocks. + */ +#define	 ALLOW_ERASE_BAD_DEBUG 0 + +#define CONFIG_MTD_NAND_ECC  /* enable ECC */ +#define CONFIG_MTD_NAND_ECC_JFFS2 + +/* bits for nand_legacy_rw() `cmd'; or together as needed */ +#define NANDRW_READ	0x01 +#define NANDRW_WRITE	0x00 +#define NANDRW_JFFS2	0x02 +#define NANDRW_JFFS2_SKIP	0x04 + + +/* + * Exported variables etc. + */ + +/* Definition of the out of band configuration structure */ +struct nand_oob_config { +	/* position of ECC bytes inside oob */ +	int ecc_pos[6]; +	/* position of  bad blk flag inside oob -1 = inactive */ +	int badblock_pos; +	/* position of ECC valid flag inside oob -1 = inactive */ +	int eccvalid_pos; +} oob_config = { {0}, 0, 0}; + +struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}}; + +int curr_device = -1; /* Current NAND Device */ + + +/* + * Exported functionss + */ +int nand_legacy_erase(struct nand_chip* nand, size_t ofs, +		     size_t len, int clean); +int nand_legacy_rw(struct nand_chip* nand, int cmd, +		  size_t start, size_t len, +		  size_t * retlen, u_char * buf); +void nand_print(struct nand_chip *nand); +void nand_print_bad(struct nand_chip *nand); +int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, +		 size_t * retlen, u_char * buf); +int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, +		 size_t * retlen, const u_char * buf); + +/* + * Internals + */ +static int NanD_WaitReady(struct nand_chip *nand, int ale_wait); +static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, +		 size_t * retlen, u_char *buf, u_char *ecc_code); +static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, +			   size_t * retlen, const u_char * buf, +			   u_char * ecc_code); +#ifdef CONFIG_MTD_NAND_ECC +static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc); +static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code); +#endif + + +/* + * + * Function definitions + * + */ + +/* returns 0 if block containing pos is OK: + *		valid erase block and + *		not marked bad, or no bad mark position is specified + * returns 1 if marked bad or otherwise invalid + */ +static int check_block (struct nand_chip *nand, unsigned long pos) +{ +	size_t retlen; +	uint8_t oob_data; +	uint16_t oob_data16[6]; +	int page0 = pos & (-nand->erasesize); +	int page1 = page0 + nand->oobblock; +	int badpos = oob_config.badblock_pos; + +	if (pos >= nand->totlen) +		return 1; + +	if (badpos < 0) +		return 0;	/* no way to check, assume OK */ + +	if (nand->bus16) { +		if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16) +		    || (oob_data16[2] & 0xff00) != 0xff00) +			return 1; +		if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16) +		    || (oob_data16[2] & 0xff00) != 0xff00) +			return 1; +	} else { +		/* Note - bad block marker can be on first or second page */ +		if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data) +		    || oob_data != 0xff +		    || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data) +		    || oob_data != 0xff) +			return 1; +	} + +	return 0; +} + +/* print bad blocks in NAND flash */ +void nand_print_bad(struct nand_chip* nand) +{ +	unsigned long pos; + +	for (pos = 0; pos < nand->totlen; pos += nand->erasesize) { +		if (check_block(nand, pos)) +			printf(" 0x%8.8lx\n", pos); +	} +	puts("\n"); +} + +/* cmd: 0: NANDRW_WRITE			write, fail on bad block + *	1: NANDRW_READ			read, fail on bad block + *	2: NANDRW_WRITE | NANDRW_JFFS2	write, skip bad blocks + *	3: NANDRW_READ | NANDRW_JFFS2	read, data all 0xff for bad blocks + *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks + */ +int nand_legacy_rw (struct nand_chip* nand, int cmd, +		   size_t start, size_t len, +		   size_t * retlen, u_char * buf) +{ +	int ret = 0, n, total = 0; +	char eccbuf[6]; +	/* eblk (once set) is the start of the erase block containing the +	 * data being processed. +	 */ +	unsigned long eblk = ~0;	/* force mismatch on first pass */ +	unsigned long erasesize = nand->erasesize; + +	while (len) { +		if ((start & (-erasesize)) != eblk) { +			/* have crossed into new erase block, deal with +			 * it if it is sure marked bad. +			 */ +			eblk = start & (-erasesize); /* start of block */ +			if (check_block(nand, eblk)) { +				if (cmd == (NANDRW_READ | NANDRW_JFFS2)) { +					while (len > 0 && +					       start - eblk < erasesize) { +						*(buf++) = 0xff; +						++start; +						++total; +						--len; +					} +					continue; +				} else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) { +					start += erasesize; +					continue; +				} else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) { +					/* skip bad block */ +					start += erasesize; +					continue; +				} else { +					ret = 1; +					break; +				} +			} +		} +		/* The ECC will not be calculated correctly if +		   less than 512 is written or read */ +		/* Is request at least 512 bytes AND it starts on a proper boundry */ +		if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200)) +			printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n"); + +		if (cmd & NANDRW_READ) { +			ret = nand_read_ecc(nand, start, +					   min(len, eblk + erasesize - start), +					   (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); +		} else { +			ret = nand_write_ecc(nand, start, +					    min(len, eblk + erasesize - start), +					    (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); +		} + +		if (ret) +			break; + +		start  += n; +		buf   += n; +		total += n; +		len   -= n; +	} +	if (retlen) +		*retlen = total; + +	return ret; +} + +void nand_print(struct nand_chip *nand) +{ +	if (nand->numchips > 1) { +		printf("%s at 0x%lx,\n" +		       "\t  %d chips %s, size %d MB, \n" +		       "\t  total size %ld MB, sector size %ld kB\n", +		       nand->name, nand->IO_ADDR, nand->numchips, +		       nand->chips_name, 1 << (nand->chipshift - 20), +		       nand->totlen >> 20, nand->erasesize >> 10); +	} +	else { +		printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR); +		print_size(nand->totlen, ", "); +		print_size(nand->erasesize, " sector)\n"); +	} +} + +/* ------------------------------------------------------------------------- */ + +static int NanD_WaitReady(struct nand_chip *nand, int ale_wait) +{ +	/* This is inline, to optimise the common case, where it's ready instantly */ +	int ret = 0; + +#ifdef NAND_NO_RB	/* in config file, shorter delays currently wrap accesses */ +	if(ale_wait) +		NAND_WAIT_READY(nand);	/* do the worst case 25us wait */ +	else +		udelay(10); +#else	/* has functional r/b signal */ +	NAND_WAIT_READY(nand); +#endif +	return ret; +} + +/* NanD_Command: Send a flash command to the flash chip */ + +static inline int NanD_Command(struct nand_chip *nand, unsigned char command) +{ +	unsigned long nandptr = nand->IO_ADDR; + +	/* Assert the CLE (Command Latch Enable) line to the flash chip */ +	NAND_CTL_SETCLE(nandptr); + +	/* Send the command */ +	WRITE_NAND_COMMAND(command, nandptr); + +	/* Lower the CLE line */ +	NAND_CTL_CLRCLE(nandptr); + +#ifdef NAND_NO_RB +	if(command == NAND_CMD_RESET){ +		u_char ret_val; +		NanD_Command(nand, NAND_CMD_STATUS); +		do { +			ret_val = READ_NAND(nandptr);/* wait till ready */ +		} while((ret_val & 0x40) != 0x40); +	} +#endif +	return NanD_WaitReady(nand, 0); +} + +/* NanD_Address: Set the current address for the flash chip */ + +static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs) +{ +	unsigned long nandptr; +	int i; + +	nandptr = nand->IO_ADDR; + +	/* Assert the ALE (Address Latch Enable) line to the flash chip */ +	NAND_CTL_SETALE(nandptr); + +	/* Send the address */ +	/* Devices with 256-byte page are addressed as: +	 * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) +	 * there is no device on the market with page256 +	 * and more than 24 bits. +	 * Devices with 512-byte page are addressed as: +	 * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) +	 * 25-31 is sent only if the chip support it. +	 * bit 8 changes the read command to be sent +	 * (NAND_CMD_READ0 or NAND_CMD_READ1). +	 */ + +	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) +		WRITE_NAND_ADDRESS(ofs, nandptr); + +	ofs = ofs >> nand->page_shift; + +	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { +		for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) { +			WRITE_NAND_ADDRESS(ofs, nandptr); +		} +	} + +	/* Lower the ALE line */ +	NAND_CTL_CLRALE(nandptr); + +	/* Wait for the chip to respond */ +	return NanD_WaitReady(nand, 1); +} + +/* NanD_SelectChip: Select a given flash chip within the current floor */ + +static inline int NanD_SelectChip(struct nand_chip *nand, int chip) +{ +	/* Wait for it to be ready */ +	return NanD_WaitReady(nand, 0); +} + +/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */ + +static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip) +{ +	int mfr, id, i; + +	NAND_ENABLE_CE(nand);  /* set pin low */ +	/* Reset the chip */ +	if (NanD_Command(nand, NAND_CMD_RESET)) { +#ifdef NAND_DEBUG +		printf("NanD_Command (reset) for %d,%d returned true\n", +		       floor, chip); +#endif +		NAND_DISABLE_CE(nand);  /* set pin high */ +		return 0; +	} + +	/* Read the NAND chip ID: 1. Send ReadID command */ +	if (NanD_Command(nand, NAND_CMD_READID)) { +#ifdef NAND_DEBUG +		printf("NanD_Command (ReadID) for %d,%d returned true\n", +		       floor, chip); +#endif +		NAND_DISABLE_CE(nand);  /* set pin high */ +		return 0; +	} + +	/* Read the NAND chip ID: 2. Send address byte zero */ +	NanD_Address(nand, ADDR_COLUMN, 0); + +	/* Read the manufacturer and device id codes from the device */ + +	mfr = READ_NAND(nand->IO_ADDR); + +	id = READ_NAND(nand->IO_ADDR); + +	NAND_DISABLE_CE(nand);  /* set pin high */ + +#ifdef NAND_DEBUG +	printf("NanD_Command (ReadID) got %x %x\n", mfr, id); +#endif +	if (mfr == 0xff || mfr == 0) { +		/* No response - return failure */ +		return 0; +	} + +	/* Check it's the same as the first chip we identified. +	 * M-Systems say that any given nand_chip device should only +	 * contain _one_ type of flash part, although that's not a +	 * hardware restriction. */ +	if (nand->mfr) { +		if (nand->mfr == mfr && nand->id == id) { +			return 1;	/* This is another the same the first */ +		} else { +			printf("Flash chip at floor %d, chip %d is different:\n", +			       floor, chip); +		} +	} + +	/* Print and store the manufacturer and ID codes. */ +	for (i = 0; nand_flash_ids[i].name != NULL; i++) { +		if (mfr == nand_flash_ids[i].manufacture_id && +		    id == nand_flash_ids[i].model_id) { +#ifdef NAND_DEBUG +			printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, " +			       "Chip ID: 0x%2.2X (%s)\n", mfr, id, +			       nand_flash_ids[i].name); +#endif +			if (!nand->mfr) { +				nand->mfr = mfr; +				nand->id = id; +				nand->chipshift = +				    nand_flash_ids[i].chipshift; +				nand->page256 = nand_flash_ids[i].page256; +				nand->eccsize = 256; +				if (nand->page256) { +					nand->oobblock = 256; +					nand->oobsize = 8; +					nand->page_shift = 8; +				} else { +					nand->oobblock = 512; +					nand->oobsize = 16; +					nand->page_shift = 9; +				} +				nand->pageadrlen = nand_flash_ids[i].pageadrlen; +				nand->erasesize  = nand_flash_ids[i].erasesize; +				nand->chips_name = nand_flash_ids[i].name; +				nand->bus16	 = nand_flash_ids[i].bus16; + 				return 1; +			} +			return 0; +		} +	} + + +#ifdef NAND_DEBUG +	/* We haven't fully identified the chip. Print as much as we know. */ +	printf("Unknown flash chip found: %2.2X %2.2X\n", +	       id, mfr); +#endif + +	return 0; +} + +/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */ + +static void NanD_ScanChips(struct nand_chip *nand) +{ +	int floor, chip; +	int numchips[NAND_MAX_FLOORS]; +	int maxchips = NAND_MAX_CHIPS; +	int ret = 1; + +	nand->numchips = 0; +	nand->mfr = 0; +	nand->id = 0; + + +	/* For each floor, find the number of valid chips it contains */ +	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { +		ret = 1; +		numchips[floor] = 0; +		for (chip = 0; chip < maxchips && ret != 0; chip++) { + +			ret = NanD_IdentChip(nand, floor, chip); +			if (ret) { +				numchips[floor]++; +				nand->numchips++; +			} +		} +	} + +	/* If there are none at all that we recognise, bail */ +	if (!nand->numchips) { +#ifdef NAND_DEBUG +		puts ("No NAND flash chips recognised.\n"); +#endif +		return; +	} + +	/* Allocate an array to hold the information for each chip */ +	nand->chips = malloc(sizeof(struct Nand) * nand->numchips); +	if (!nand->chips) { +		puts ("No memory for allocating chip info structures\n"); +		return; +	} + +	ret = 0; + +	/* Fill out the chip array with {floor, chipno} for each +	 * detected chip in the device. */ +	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { +		for (chip = 0; chip < numchips[floor]; chip++) { +			nand->chips[ret].floor = floor; +			nand->chips[ret].chip = chip; +			nand->chips[ret].curadr = 0; +			nand->chips[ret].curmode = 0x50; +			ret++; +		} +	} + +	/* Calculate and print the total size of the device */ +	nand->totlen = nand->numchips * (1 << nand->chipshift); + +#ifdef NAND_DEBUG +	printf("%d flash chips found. Total nand_chip size: %ld MB\n", +	       nand->numchips, nand->totlen >> 20); +#endif +} + +/* we need to be fast here, 1 us per read translates to 1 second per meg */ +static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr) +{ +	unsigned long nandptr = nand->IO_ADDR; + +	NanD_Command (nand, NAND_CMD_READ0); + +	if (nand->bus16) { +		u16 val; + +		while (cntr >= 16) { +			val = READ_NAND (nandptr); +			*data_buf++ = val & 0xff; +			*data_buf++ = val >> 8; +			val = READ_NAND (nandptr); +			*data_buf++ = val & 0xff; +			*data_buf++ = val >> 8; +			val = READ_NAND (nandptr); +			*data_buf++ = val & 0xff; +			*data_buf++ = val >> 8; +			val = READ_NAND (nandptr); +			*data_buf++ = val & 0xff; +			*data_buf++ = val >> 8; +			val = READ_NAND (nandptr); +			*data_buf++ = val & 0xff; +			*data_buf++ = val >> 8; +			val = READ_NAND (nandptr); +			*data_buf++ = val & 0xff; +			*data_buf++ = val >> 8; +			val = READ_NAND (nandptr); +			*data_buf++ = val & 0xff; +			*data_buf++ = val >> 8; +			val = READ_NAND (nandptr); +			*data_buf++ = val & 0xff; +			*data_buf++ = val >> 8; +			cntr -= 16; +		} + +		while (cntr > 0) { +			val = READ_NAND (nandptr); +			*data_buf++ = val & 0xff; +			*data_buf++ = val >> 8; +			cntr -= 2; +		} +	} else { +		while (cntr >= 16) { +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			*data_buf++ = READ_NAND (nandptr); +			cntr -= 16; +		} + +		while (cntr > 0) { +			*data_buf++ = READ_NAND (nandptr); +			cntr--; +		} +	} +} + +/* + * NAND read with ECC + */ +static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, +		 size_t * retlen, u_char *buf, u_char *ecc_code) +{ +	int col, page; +	int ecc_status = 0; +#ifdef CONFIG_MTD_NAND_ECC +	int j; +	int ecc_failed = 0; +	u_char *data_poi; +	u_char ecc_calc[6]; +#endif + +	/* Do not allow reads past end of device */ +	if ((start + len) > nand->totlen) { +		printf ("%s: Attempt read beyond end of device %x %x %x\n", +			__FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen); +		*retlen = 0; +		return -1; +	} + +	/* First we calculate the starting page */ +	/*page = shr(start, nand->page_shift);*/ +	page = start >> nand->page_shift; + +	/* Get raw starting column */ +	col = start & (nand->oobblock - 1); + +	/* Initialize return value */ +	*retlen = 0; + +	/* Select the NAND device */ +	NAND_ENABLE_CE(nand);  /* set pin low */ + +	/* Loop until all data read */ +	while (*retlen < len) { + +#ifdef CONFIG_MTD_NAND_ECC +		/* Do we have this page in cache ? */ +		if (nand->cache_page == page) +			goto readdata; +		/* Send the read command */ +		NanD_Command(nand, NAND_CMD_READ0); +		if (nand->bus16) { + 			NanD_Address(nand, ADDR_COLUMN_PAGE, +				     (page << nand->page_shift) + (col >> 1)); +		} else { + 			NanD_Address(nand, ADDR_COLUMN_PAGE, +				     (page << nand->page_shift) + col); +		} + +		/* Read in a page + oob data */ +		NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize); + +		/* copy data into cache, for read out of cache and if ecc fails */ +		if (nand->data_cache) { +			memcpy (nand->data_cache, nand->data_buf, +				nand->oobblock + nand->oobsize); +		} + +		/* Pick the ECC bytes out of the oob data */ +		for (j = 0; j < 6; j++) { +			ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])]; +		} + +		/* Calculate the ECC and verify it */ +		/* If block was not written with ECC, skip ECC */ +		if (oob_config.eccvalid_pos != -1 && +		    (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) { + +			nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]); +			switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) { +			case -1: +				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); +				ecc_failed++; +				break; +			case 1: +			case 2:	/* transfer ECC corrected data to cache */ +				if (nand->data_cache) +					memcpy (nand->data_cache, nand->data_buf, 256); +				break; +			} +		} + +		if (oob_config.eccvalid_pos != -1 && +		    nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) { + +			nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]); +			switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) { +			case -1: +				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); +				ecc_failed++; +				break; +			case 1: +			case 2:	/* transfer ECC corrected data to cache */ +				if (nand->data_cache) +					memcpy (&nand->data_cache[256], &nand->data_buf[256], 256); +				break; +			} +		} +readdata: +		/* Read the data from ECC data buffer into return buffer */ +		data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf; +		data_poi += col; +		if ((*retlen + (nand->oobblock - col)) >= len) { +			memcpy (buf + *retlen, data_poi, len - *retlen); +			*retlen = len; +		} else { +			memcpy (buf + *retlen, data_poi,  nand->oobblock - col); +			*retlen += nand->oobblock - col; +		} +		/* Set cache page address, invalidate, if ecc_failed */ +		nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1; + +		ecc_status += ecc_failed; +		ecc_failed = 0; + +#else +		/* Send the read command */ +		NanD_Command(nand, NAND_CMD_READ0); +		if (nand->bus16) { +			NanD_Address(nand, ADDR_COLUMN_PAGE, +				     (page << nand->page_shift) + (col >> 1)); +		} else { +			NanD_Address(nand, ADDR_COLUMN_PAGE, +				     (page << nand->page_shift) + col); +		} + +		/* Read the data directly into the return buffer */ +		if ((*retlen + (nand->oobblock - col)) >= len) { +			NanD_ReadBuf(nand, buf + *retlen, len - *retlen); +			*retlen = len; +			/* We're done */ +			continue; +		} else { +			NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col); +			*retlen += nand->oobblock - col; +			} +#endif +		/* For subsequent reads align to page boundary. */ +		col = 0; +		/* Increment page address */ +		page++; +	} + +	/* De-select the NAND device */ +	NAND_DISABLE_CE(nand);  /* set pin high */ + +	/* +	 * Return success, if no ECC failures, else -EIO +	 * fs driver will take care of that, because +	 * retlen == desired len and result == -EIO +	 */ +	return ecc_status ? -1 : 0; +} + +/* + *	Nand_page_program function is used for write and writev ! + */ +static int nand_write_page (struct nand_chip *nand, +			    int page, int col, int last, u_char * ecc_code) +{ + +	int i; +	unsigned long nandptr = nand->IO_ADDR; + +#ifdef CONFIG_MTD_NAND_ECC +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE +	int ecc_bytes = (nand->oobblock == 512) ? 6 : 3; +#endif +#endif +	/* pad oob area */ +	for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++) +		nand->data_buf[i] = 0xff; + +#ifdef CONFIG_MTD_NAND_ECC +	/* Zero out the ECC array */ +	for (i = 0; i < 6; i++) +		ecc_code[i] = 0x00; + +	/* Read back previous written data, if col > 0 */ +	if (col) { +		NanD_Command (nand, NAND_CMD_READ0); +		if (nand->bus16) { +			NanD_Address (nand, ADDR_COLUMN_PAGE, +				      (page << nand->page_shift) + (col >> 1)); +		} else { +			NanD_Address (nand, ADDR_COLUMN_PAGE, +				      (page << nand->page_shift) + col); +		} + +		if (nand->bus16) { +			u16 val; + +			for (i = 0; i < col; i += 2) { +				val = READ_NAND (nandptr); +				nand->data_buf[i] = val & 0xff; +				nand->data_buf[i + 1] = val >> 8; +			} +		} else { +			for (i = 0; i < col; i++) +				nand->data_buf[i] = READ_NAND (nandptr); +		} +	} + +	/* Calculate and write the ECC if we have enough data */ +	if ((col < nand->eccsize) && (last >= nand->eccsize)) { +		nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0])); +		for (i = 0; i < 3; i++) { +			nand->data_buf[(nand->oobblock + +					oob_config.ecc_pos[i])] = ecc_code[i]; +		} +		if (oob_config.eccvalid_pos != -1) { +			nand->data_buf[nand->oobblock + +				       oob_config.eccvalid_pos] = 0xf0; +		} +	} + +	/* Calculate and write the second ECC if we have enough data */ +	if ((nand->oobblock == 512) && (last == nand->oobblock)) { +		nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3])); +		for (i = 3; i < 6; i++) { +			nand->data_buf[(nand->oobblock + +					oob_config.ecc_pos[i])] = ecc_code[i]; +		} +		if (oob_config.eccvalid_pos != -1) { +			nand->data_buf[nand->oobblock + +				       oob_config.eccvalid_pos] &= 0x0f; +		} +	} +#endif +	/* Prepad for partial page programming !!! */ +	for (i = 0; i < col; i++) +		nand->data_buf[i] = 0xff; + +	/* Postpad for partial page programming !!! oob is already padded */ +	for (i = last; i < nand->oobblock; i++) +		nand->data_buf[i] = 0xff; + +	/* Send command to begin auto page programming */ +	NanD_Command (nand, NAND_CMD_READ0); +	NanD_Command (nand, NAND_CMD_SEQIN); +	if (nand->bus16) { +		NanD_Address (nand, ADDR_COLUMN_PAGE, +			      (page << nand->page_shift) + (col >> 1)); +	} else { +		NanD_Address (nand, ADDR_COLUMN_PAGE, +			      (page << nand->page_shift) + col); +	} + +	/* Write out complete page of data */ +	if (nand->bus16) { +		for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) { +			WRITE_NAND (nand->data_buf[i] + +				    (nand->data_buf[i + 1] << 8), +				    nand->IO_ADDR); +		} +	} else { +		for (i = 0; i < (nand->oobblock + nand->oobsize); i++) +			WRITE_NAND (nand->data_buf[i], nand->IO_ADDR); +	} + +	/* Send command to actually program the data */ +	NanD_Command (nand, NAND_CMD_PAGEPROG); +	NanD_Command (nand, NAND_CMD_STATUS); +#ifdef NAND_NO_RB +	{ +		u_char ret_val; + +		do { +			ret_val = READ_NAND (nandptr);	/* wait till ready */ +		} while ((ret_val & 0x40) != 0x40); +	} +#endif +	/* See if device thinks it succeeded */ +	if (READ_NAND (nand->IO_ADDR) & 0x01) { +		printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__, +			page); +		return -1; +	} +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE +	/* +	 * The NAND device assumes that it is always writing to +	 * a cleanly erased page. Hence, it performs its internal +	 * write verification only on bits that transitioned from +	 * 1 to 0. The device does NOT verify the whole page on a +	 * byte by byte basis. It is possible that the page was +	 * not completely erased or the page is becoming unusable +	 * due to wear. The read with ECC would catch the error +	 * later when the ECC page check fails, but we would rather +	 * catch it early in the page write stage. Better to write +	 * no data than invalid data. +	 */ + +	/* Send command to read back the page */ +	if (col < nand->eccsize) +		NanD_Command (nand, NAND_CMD_READ0); +	else +		NanD_Command (nand, NAND_CMD_READ1); +	if (nand->bus16) { +		NanD_Address (nand, ADDR_COLUMN_PAGE, +			      (page << nand->page_shift) + (col >> 1)); +	} else { +		NanD_Address (nand, ADDR_COLUMN_PAGE, +			      (page << nand->page_shift) + col); +	} + +	/* Loop through and verify the data */ +	if (nand->bus16) { +		for (i = col; i < last; i = +2) { +			if ((nand->data_buf[i] + +			     (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) { +				printf ("%s: Failed write verify, page 0x%08x ", +					__FUNCTION__, page); +				return -1; +			} +		} +	} else { +		for (i = col; i < last; i++) { +			if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) { +				printf ("%s: Failed write verify, page 0x%08x ", +					__FUNCTION__, page); +				return -1; +			} +		} +	} + +#ifdef CONFIG_MTD_NAND_ECC +	/* +	 * We also want to check that the ECC bytes wrote +	 * correctly for the same reasons stated above. +	 */ +	NanD_Command (nand, NAND_CMD_READOOB); +	if (nand->bus16) { +		NanD_Address (nand, ADDR_COLUMN_PAGE, +			      (page << nand->page_shift) + (col >> 1)); +	} else { +		NanD_Address (nand, ADDR_COLUMN_PAGE, +			      (page << nand->page_shift) + col); +	} +	if (nand->bus16) { +		for (i = 0; i < nand->oobsize; i += 2) { +			u16 val; + +			val = READ_NAND (nand->IO_ADDR); +			nand->data_buf[i] = val & 0xff; +			nand->data_buf[i + 1] = val >> 8; +		} +	} else { +		for (i = 0; i < nand->oobsize; i++) { +			nand->data_buf[i] = READ_NAND (nand->IO_ADDR); +		} +	} +	for (i = 0; i < ecc_bytes; i++) { +		if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) { +			printf ("%s: Failed ECC write " +				"verify, page 0x%08x, " +				"%6i bytes were succesful\n", +				__FUNCTION__, page, i); +			return -1; +		} +	} +#endif	/* CONFIG_MTD_NAND_ECC */ +#endif	/* CONFIG_MTD_NAND_VERIFY_WRITE */ +	return 0; +} + +static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, +			   size_t * retlen, const u_char * buf, u_char * ecc_code) +{ +	int i, page, col, cnt, ret = 0; + +	/* Do not allow write past end of device */ +	if ((to + len) > nand->totlen) { +		printf ("%s: Attempt to write past end of page\n", __FUNCTION__); +		return -1; +	} + +	/* Shift to get page */ +	page = ((int) to) >> nand->page_shift; + +	/* Get the starting column */ +	col = to & (nand->oobblock - 1); + +	/* Initialize return length value */ +	*retlen = 0; + +	/* Select the NAND device */ +#ifdef CONFIG_OMAP1510 +	archflashwp(0,0); +#endif +#ifdef CFG_NAND_WP +	NAND_WP_OFF(); +#endif + +    	NAND_ENABLE_CE(nand);  /* set pin low */ + +	/* Check the WP bit */ +	NanD_Command(nand, NAND_CMD_STATUS); +	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { +		printf ("%s: Device is write protected!!!\n", __FUNCTION__); +		ret = -1; +		goto out; +	} + +	/* Loop until all data is written */ +	while (*retlen < len) { +		/* Invalidate cache, if we write to this page */ +		if (nand->cache_page == page) +			nand->cache_page = -1; + +		/* Write data into buffer */ +		if ((col + len) >= nand->oobblock) { +			for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) { +				nand->data_buf[i] = buf[(*retlen + cnt)]; +			} +		} else { +			for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) { +				nand->data_buf[i] = buf[(*retlen + cnt)]; +			} +		} +		/* We use the same function for write and writev !) */ +		ret = nand_write_page (nand, page, col, i, ecc_code); +		if (ret) +			goto out; + +		/* Next data start at page boundary */ +		col = 0; + +		/* Update written bytes count */ +		*retlen += cnt; + +		/* Increment page address */ +		page++; +	} + +	/* Return happy */ +	*retlen = len; + +out: +	/* De-select the NAND device */ +	NAND_DISABLE_CE(nand);  /* set pin high */ +#ifdef CONFIG_OMAP1510 +    	archflashwp(0,1); +#endif +#ifdef CFG_NAND_WP +	NAND_WP_ON(); +#endif + +	return ret; +} + +/* read from the 16 bytes of oob data that correspond to a 512 byte + * page or 2 256-byte pages. + */ +int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, +			 size_t * retlen, u_char * buf) +{ +	int len256 = 0; +	struct Nand *mychip; +	int ret = 0; + +	mychip = &nand->chips[ofs >> nand->chipshift]; + +	/* update address for 2M x 8bit devices. OOB starts on the second */ +	/* page to maintain compatibility with nand_read_ecc. */ +	if (nand->page256) { +		if (!(ofs & 0x8)) +			ofs += 0x100; +		else +			ofs -= 0x8; +	} + +	NAND_ENABLE_CE(nand);  /* set pin low */ +	NanD_Command(nand, NAND_CMD_READOOB); +	if (nand->bus16) { + 		NanD_Address(nand, ADDR_COLUMN_PAGE, +			     ((ofs >> nand->page_shift) << nand->page_shift) + + 				((ofs & (nand->oobblock - 1)) >> 1)); +	} else { +		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); +	} + +	/* treat crossing 8-byte OOB data for 2M x 8bit devices */ +	/* Note: datasheet says it should automaticaly wrap to the */ +	/*       next OOB block, but it didn't work here. mf.      */ +	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { +		len256 = (ofs | 0x7) + 1 - ofs; +		NanD_ReadBuf(nand, buf, len256); + +		NanD_Command(nand, NAND_CMD_READOOB); +		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); +	} + +	NanD_ReadBuf(nand, &buf[len256], len - len256); + +	*retlen = len; +	/* Reading the full OOB data drops us off of the end of the page, +	 * causing the flash device to go into busy mode, so we need +	 * to wait until ready 11.4.1 and Toshiba TC58256FT nands */ + +	ret = NanD_WaitReady(nand, 1); +	NAND_DISABLE_CE(nand);  /* set pin high */ + +	return ret; + +} + +/* write to the 16 bytes of oob data that correspond to a 512 byte + * page or 2 256-byte pages. + */ +int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, +		  size_t * retlen, const u_char * buf) +{ +	int len256 = 0; +	int i; +	unsigned long nandptr = nand->IO_ADDR; + +#ifdef PSYCHO_DEBUG +	printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", +	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3], +	       buf[8], buf[9], buf[14],buf[15]); +#endif + +	NAND_ENABLE_CE(nand);  /* set pin low to enable chip */ + +	/* Reset the chip */ +	NanD_Command(nand, NAND_CMD_RESET); + +	/* issue the Read2 command to set the pointer to the Spare Data Area. */ +	NanD_Command(nand, NAND_CMD_READOOB); +	if (nand->bus16) { + 		NanD_Address(nand, ADDR_COLUMN_PAGE, +			     ((ofs >> nand->page_shift) << nand->page_shift) + + 				((ofs & (nand->oobblock - 1)) >> 1)); +	} else { + 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); +	} + +	/* update address for 2M x 8bit devices. OOB starts on the second */ +	/* page to maintain compatibility with nand_read_ecc. */ +	if (nand->page256) { +		if (!(ofs & 0x8)) +			ofs += 0x100; +		else +			ofs -= 0x8; +	} + +	/* issue the Serial Data In command to initial the Page Program process */ +	NanD_Command(nand, NAND_CMD_SEQIN); +	if (nand->bus16) { + 		NanD_Address(nand, ADDR_COLUMN_PAGE, +			     ((ofs >> nand->page_shift) << nand->page_shift) + + 				((ofs & (nand->oobblock - 1)) >> 1)); +	} else { + 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); +	} + +	/* treat crossing 8-byte OOB data for 2M x 8bit devices */ +	/* Note: datasheet says it should automaticaly wrap to the */ +	/*       next OOB block, but it didn't work here. mf.      */ +	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { +		len256 = (ofs | 0x7) + 1 - ofs; +		for (i = 0; i < len256; i++) +			WRITE_NAND(buf[i], nandptr); + +		NanD_Command(nand, NAND_CMD_PAGEPROG); +		NanD_Command(nand, NAND_CMD_STATUS); +#ifdef NAND_NO_RB +   		{ u_char ret_val; +			do { +				ret_val = READ_NAND(nandptr); /* wait till ready */ +			} while ((ret_val & 0x40) != 0x40); +		} +#endif +		if (READ_NAND(nandptr) & 1) { +			puts ("Error programming oob data\n"); +			/* There was an error */ +			NAND_DISABLE_CE(nand);  /* set pin high */ +			*retlen = 0; +			return -1; +		} +		NanD_Command(nand, NAND_CMD_SEQIN); +		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); +	} + +	if (nand->bus16) { +		for (i = len256; i < len; i += 2) { +			WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr); +		} +	} else { +		for (i = len256; i < len; i++) +			WRITE_NAND(buf[i], nandptr); +	} + +	NanD_Command(nand, NAND_CMD_PAGEPROG); +	NanD_Command(nand, NAND_CMD_STATUS); +#ifdef NAND_NO_RB +	{	u_char ret_val; +		do { +			ret_val = READ_NAND(nandptr); /* wait till ready */ +		} while ((ret_val & 0x40) != 0x40); +	} +#endif +	if (READ_NAND(nandptr) & 1) { +		puts ("Error programming oob data\n"); +		/* There was an error */ +		NAND_DISABLE_CE(nand);  /* set pin high */ +		*retlen = 0; +		return -1; +	} + +	NAND_DISABLE_CE(nand);  /* set pin high */ +	*retlen = len; +	return 0; + +} + +int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean) +{ +	/* This is defined as a structure so it will work on any system +	 * using native endian jffs2 (the default). +	 */ +	static struct jffs2_unknown_node clean_marker = { +		JFFS2_MAGIC_BITMASK, +		JFFS2_NODETYPE_CLEANMARKER, +		8		/* 8 bytes in this node */ +	}; +	unsigned long nandptr; +	struct Nand *mychip; +	int ret = 0; + +	if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) { +		printf ("Offset and size must be sector aligned, erasesize = %d\n", +			(int) nand->erasesize); +		return -1; +	} + +	nandptr = nand->IO_ADDR; + +	/* Select the NAND device */ +#ifdef CONFIG_OMAP1510 +	archflashwp(0,0); +#endif +#ifdef CFG_NAND_WP +	NAND_WP_OFF(); +#endif +    NAND_ENABLE_CE(nand);  /* set pin low */ + +	/* Check the WP bit */ +	NanD_Command(nand, NAND_CMD_STATUS); +	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { +		printf ("nand_write_ecc: Device is write protected!!!\n"); +		ret = -1; +		goto out; +	} + +	/* Check the WP bit */ +	NanD_Command(nand, NAND_CMD_STATUS); +	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { +		printf ("%s: Device is write protected!!!\n", __FUNCTION__); +		ret = -1; +		goto out; +	} + +	/* FIXME: Do nand in the background. Use timers or schedule_task() */ +	while(len) { +		/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/ +		mychip = &nand->chips[ofs >> nand->chipshift]; + +		/* always check for bad block first, genuine bad blocks +		 * should _never_  be erased. +		 */ +		if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) { +			/* Select the NAND device */ +			NAND_ENABLE_CE(nand);  /* set pin low */ + +			NanD_Command(nand, NAND_CMD_ERASE1); +			NanD_Address(nand, ADDR_PAGE, ofs); +			NanD_Command(nand, NAND_CMD_ERASE2); + +			NanD_Command(nand, NAND_CMD_STATUS); + +#ifdef NAND_NO_RB +			{	u_char ret_val; +				do { +					ret_val = READ_NAND(nandptr); /* wait till ready */ +				} while ((ret_val & 0x40) != 0x40); +			} +#endif +			if (READ_NAND(nandptr) & 1) { +				printf ("%s: Error erasing at 0x%lx\n", +					__FUNCTION__, (long)ofs); +				/* There was an error */ +				ret = -1; +				goto out; +			} +			if (clean) { +				int n;	/* return value not used */ +				int p, l; + +				/* clean marker position and size depend +				 * on the page size, since 256 byte pages +				 * only have 8 bytes of oob data +				 */ +				if (nand->page256) { +					p = NAND_JFFS2_OOB8_FSDAPOS; +					l = NAND_JFFS2_OOB8_FSDALEN; +				} else { +					p = NAND_JFFS2_OOB16_FSDAPOS; +					l = NAND_JFFS2_OOB16_FSDALEN; +				} + +				ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n, +						     (u_char *)&clean_marker); +				/* quit here if write failed */ +				if (ret) +					goto out; +			} +		} +		ofs += nand->erasesize; +		len -= nand->erasesize; +	} + +out: +	/* De-select the NAND device */ +	NAND_DISABLE_CE(nand);  /* set pin high */ +#ifdef CONFIG_OMAP1510 +    	archflashwp(0,1); +#endif +#ifdef CFG_NAND_WP +	NAND_WP_ON(); +#endif + +	return ret; +} + + +static inline int nandcheck(unsigned long potential, unsigned long physadr) +{ +	return 0; +} + +unsigned long nand_probe(unsigned long physadr) +{ +	struct nand_chip *nand = NULL; +	int i = 0, ChipID = 1; + +#ifdef CONFIG_MTD_NAND_ECC_JFFS2 +	oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0; +	oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1; +	oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2; +	oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3; +	oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4; +	oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5; +	oob_config.eccvalid_pos = 4; +#else +	oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0; +	oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1; +	oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2; +	oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3; +	oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4; +	oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5; +	oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS; +#endif +	oob_config.badblock_pos = 5; + +	for (i=0; i<CFG_MAX_NAND_DEVICE; i++) { +		if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) { +			nand = &nand_dev_desc[i]; +			break; +		} +	} +	if (!nand) +		return (0); + +	memset((char *)nand, 0, sizeof(struct nand_chip)); + +	nand->IO_ADDR = physadr; +	nand->cache_page = -1;  /* init the cache page */ +	NanD_ScanChips(nand); + +	if (nand->totlen == 0) { +		/* no chips found, clean up and quit */ +		memset((char *)nand, 0, sizeof(struct nand_chip)); +		nand->ChipID = NAND_ChipID_UNKNOWN; +		return (0); +	} + +	nand->ChipID = ChipID; +	if (curr_device == -1) +		curr_device = i; + +	nand->data_buf = malloc (nand->oobblock + nand->oobsize); +	if (!nand->data_buf) { +		puts ("Cannot allocate memory for data structures.\n"); +		return (0); +	} + +	return (nand->totlen); +} + +#ifdef CONFIG_MTD_NAND_ECC +/* + * Pre-calculated 256-way 1 byte column parity + */ +static const u_char nand_ecc_precalc_table[] = { +	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, +	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, +	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, +	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, +	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, +	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, +	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, +	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, +	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, +	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, +	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, +	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, +	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, +	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, +	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, +	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, +	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, +	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, +	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, +	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, +	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, +	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, +	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, +	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, +	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, +	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, +	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, +	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, +	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, +	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, +	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, +	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 +}; + + +/* + * Creates non-inverted ECC code from line parity + */ +static void nand_trans_result(u_char reg2, u_char reg3, +	u_char *ecc_code) +{ +	u_char a, b, i, tmp1, tmp2; + +	/* Initialize variables */ +	a = b = 0x80; +	tmp1 = tmp2 = 0; + +	/* Calculate first ECC byte */ +	for (i = 0; i < 4; i++) { +		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */ +			tmp1 |= b; +		b >>= 1; +		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */ +			tmp1 |= b; +		b >>= 1; +		a >>= 1; +	} + +	/* Calculate second ECC byte */ +	b = 0x80; +	for (i = 0; i < 4; i++) { +		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */ +			tmp2 |= b; +		b >>= 1; +		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */ +			tmp2 |= b; +		b >>= 1; +		a >>= 1; +	} + +	/* Store two of the ECC bytes */ +	ecc_code[0] = tmp1; +	ecc_code[1] = tmp2; +} + +/* + * Calculate 3 byte ECC code for 256 byte block + */ +static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) +{ +	u_char idx, reg1, reg3; +	int j; + +	/* Initialize variables */ +	reg1 = reg3 = 0; +	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; + +	/* Build up column parity */ +	for(j = 0; j < 256; j++) { + +		/* Get CP0 - CP5 from table */ +		idx = nand_ecc_precalc_table[dat[j]]; +		reg1 ^= idx; + +		/* All bit XOR = 1 ? */ +		if (idx & 0x40) { +			reg3 ^= (u_char) j; +		} +	} + +	/* Create non-inverted ECC code from line parity */ +	nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code); + +	/* Calculate final ECC code */ +	ecc_code[0] = ~ecc_code[0]; +	ecc_code[1] = ~ecc_code[1]; +	ecc_code[2] = ((~reg1) << 2) | 0x03; +} + +/* + * Detect and correct a 1 bit error for 256 byte block + */ +static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) +{ +	u_char a, b, c, d1, d2, d3, add, bit, i; + +	/* Do error detection */ +	d1 = calc_ecc[0] ^ read_ecc[0]; +	d2 = calc_ecc[1] ^ read_ecc[1]; +	d3 = calc_ecc[2] ^ read_ecc[2]; + +	if ((d1 | d2 | d3) == 0) { +		/* No errors */ +		return 0; +	} else { +		a = (d1 ^ (d1 >> 1)) & 0x55; +		b = (d2 ^ (d2 >> 1)) & 0x55; +		c = (d3 ^ (d3 >> 1)) & 0x54; + +		/* Found and will correct single bit error in the data */ +		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { +			c = 0x80; +			add = 0; +			a = 0x80; +			for (i=0; i<4; i++) { +				if (d1 & c) +					add |= a; +				c >>= 2; +				a >>= 1; +			} +			c = 0x80; +			for (i=0; i<4; i++) { +				if (d2 & c) +					add |= a; +				c >>= 2; +				a >>= 1; +			} +			bit = 0; +			b = 0x04; +			c = 0x80; +			for (i=0; i<3; i++) { +				if (d3 & c) +					bit |= b; +				c >>= 2; +				b >>= 1; +			} +			b = 0x01; +			a = dat[add]; +			a ^= (b << bit); +			dat[add] = a; +			return 1; +		} +		else { +			i = 0; +			while (d1) { +				if (d1 & 0x01) +					++i; +				d1 >>= 1; +			} +			while (d2) { +				if (d2 & 0x01) +					++i; +				d2 >>= 1; +			} +			while (d3) { +				if (d3 & 0x01) +					++i; +				d3 >>= 1; +			} +			if (i == 1) { +				/* ECC Code Error Correction */ +				read_ecc[0] = calc_ecc[0]; +				read_ecc[1] = calc_ecc[1]; +				read_ecc[2] = calc_ecc[2]; +				return 2; +			} +			else { +				/* Uncorrectable Error */ +				return -1; +			} +		} +	} + +	/* Should never happen */ +	return -1; +} + +#endif + +#ifdef CONFIG_JFFS2_NAND +int read_jffs2_nand(size_t start, size_t len, +		size_t * retlen, u_char * buf, int nanddev) +{ +	return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2, +			start, len, retlen, buf); +} +#endif /* CONFIG_JFFS2_NAND */ + +#endif |