diff options
Diffstat (limited to 'arch/ppc/cpu/mpc8xxx/ddr/ddr2_dimm_params.c')
| -rw-r--r-- | arch/ppc/cpu/mpc8xxx/ddr/ddr2_dimm_params.c | 339 | 
1 files changed, 339 insertions, 0 deletions
| diff --git a/arch/ppc/cpu/mpc8xxx/ddr/ddr2_dimm_params.c b/arch/ppc/cpu/mpc8xxx/ddr/ddr2_dimm_params.c new file mode 100644 index 000000000..d9d0fa70e --- /dev/null +++ b/arch/ppc/cpu/mpc8xxx/ddr/ddr2_dimm_params.c @@ -0,0 +1,339 @@ +/* + * Copyright 2008 Freescale Semiconductor, Inc. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * Version 2 as published by the Free Software Foundation. + */ + +#include <common.h> +#include <asm/fsl_ddr_sdram.h> + +#include "ddr.h" +/* + * Calculate the Density of each Physical Rank. + * Returned size is in bytes. + * + * Study these table from Byte 31 of JEDEC SPD Spec. + * + *		DDR I	DDR II + *	Bit	Size	Size + *	---	-----	------ + *	7 high	512MB	512MB + *	6	256MB	256MB + *	5	128MB	128MB + *	4	 64MB	 16GB + *	3	 32MB	  8GB + *	2	 16MB	  4GB + *	1	  2GB	  2GB + *	0 low	  1GB	  1GB + * + * Reorder Table to be linear by stripping the bottom + * 2 or 5 bits off and shifting them up to the top. + * + */ +static unsigned long long +compute_ranksize(unsigned int mem_type, unsigned char row_dens) +{ +	unsigned long long bsize; + +	/* Bottom 5 bits up to the top. */ +	bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)); +	bsize <<= 27ULL; +	debug("DDR: DDR II rank density = 0x%08x\n", bsize); + +	return bsize; +} + +/* + * Convert a two-nibble BCD value into a cycle time. + * While the spec calls for nano-seconds, picos are returned. + * + * This implements the tables for bytes 9, 23 and 25 for both + * DDR I and II.  No allowance for distinguishing the invalid + * fields absent for DDR I yet present in DDR II is made. + * (That is, cycle times of .25, .33, .66 and .75 ns are + * allowed for both DDR II and I.) + */ +static unsigned int +convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val) +{ +	/* Table look up the lower nibble, allow DDR I & II. */ +	unsigned int tenths_ps[16] = { +		0, +		100, +		200, +		300, +		400, +		500, +		600, +		700, +		800, +		900, +		250,	/* This and the next 3 entries valid ... */ +		330,	/* ...  only for tCK calculations. */ +		660, +		750, +		0,	/* undefined */ +		0	/* undefined */ +	}; + +	unsigned int whole_ns = (spd_val & 0xF0) >> 4; +	unsigned int tenth_ns = spd_val & 0x0F; +	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns]; + +	return ps; +} + +static unsigned int +convert_bcd_hundredths_to_cycle_time_ps(unsigned int spd_val) +{ +	unsigned int tenth_ns = (spd_val & 0xF0) >> 4; +	unsigned int hundredth_ns = spd_val & 0x0F; +	unsigned int ps = tenth_ns * 100 + hundredth_ns * 10; + +	return ps; +} + +static unsigned int byte40_table_ps[8] = { +	0, +	250, +	330, +	500, +	660, +	750, +	0,	/* supposed to be RFC, but not sure what that means */ +	0	/* Undefined */ +}; + +static unsigned int +compute_trfc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trfc) +{ +	unsigned int trfc_ps; + +	trfc_ps = (((trctrfc_ext & 0x1) * 256) + trfc) * 1000 +		+ byte40_table_ps[(trctrfc_ext >> 1) & 0x7]; + +	return trfc_ps; +} + +static unsigned int +compute_trc_ps_from_spd(unsigned char trctrfc_ext, unsigned char trc) +{ +	unsigned int trc_ps; + +	trc_ps = trc * 1000 + byte40_table_ps[(trctrfc_ext >> 4) & 0x7]; + +	return trc_ps; +} + +/* + * Determine Refresh Rate.  Ignore self refresh bit on DDR I. + * Table from SPD Spec, Byte 12, converted to picoseconds and + * filled in with "default" normal values. + */ +static unsigned int +determine_refresh_rate_ps(const unsigned int spd_refresh) +{ +	unsigned int refresh_time_ps[8] = { +		15625000,	/* 0 Normal    1.00x */ +		3900000,	/* 1 Reduced    .25x */ +		7800000,	/* 2 Extended   .50x */ +		31300000,	/* 3 Extended  2.00x */ +		62500000,	/* 4 Extended  4.00x */ +		125000000,	/* 5 Extended  8.00x */ +		15625000,	/* 6 Normal    1.00x  filler */ +		15625000,	/* 7 Normal    1.00x  filler */ +	}; + +	return refresh_time_ps[spd_refresh & 0x7]; +} + +/* + * The purpose of this function is to compute a suitable + * CAS latency given the DRAM clock period.  The SPD only + * defines at most 3 CAS latencies.  Typically the slower in + * frequency the DIMM runs at, the shorter its CAS latency can. + * be.  If the DIMM is operating at a sufficiently low frequency, + * it may be able to run at a CAS latency shorter than the + * shortest SPD-defined CAS latency. + * + * If a CAS latency is not found, 0 is returned. + * + * Do this by finding in the standard speed bin table the longest + * tCKmin that doesn't exceed the value of mclk_ps (tCK). + * + * An assumption made is that the SDRAM device allows the + * CL to be programmed for a value that is lower than those + * advertised by the SPD.  This is not always the case, + * as those modes not defined in the SPD are optional. + * + * CAS latency de-rating based upon values JEDEC Standard No. 79-2C + * Table 40, "DDR2 SDRAM stanadard speed bins and tCK, tRCD, tRP, tRAS, + * and tRC for corresponding bin" + * + * ordinal 2, ddr2_speed_bins[1] contains tCK for CL=3 + * Not certain if any good value exists for CL=2 + */ +				 /* CL2   CL3   CL4   CL5   CL6 */ +unsigned short ddr2_speed_bins[] = {   0, 5000, 3750, 3000, 2500 }; + +unsigned int +compute_derated_DDR2_CAS_latency(unsigned int mclk_ps) +{ +	const unsigned int num_speed_bins = ARRAY_SIZE(ddr2_speed_bins); +	unsigned int lowest_tCKmin_found = 0; +	unsigned int lowest_tCKmin_CL = 0; +	unsigned int i; + +	debug("mclk_ps = %u\n", mclk_ps); + +	for (i = 0; i < num_speed_bins; i++) { +		unsigned int x = ddr2_speed_bins[i]; +		debug("i=%u, x = %u, lowest_tCKmin_found = %u\n", +		      i, x, lowest_tCKmin_found); +		if (x && x <= mclk_ps && x >= lowest_tCKmin_found ) { +			lowest_tCKmin_found = x; +			lowest_tCKmin_CL = i + 2; +		} +	} + +	debug("lowest_tCKmin_CL = %u\n", lowest_tCKmin_CL); + +	return lowest_tCKmin_CL; +} + +/* + * ddr_compute_dimm_parameters for DDR2 SPD + * + * Compute DIMM parameters based upon the SPD information in spd. + * Writes the results to the dimm_params_t structure pointed by pdimm. + * + * FIXME: use #define for the retvals + */ +unsigned int +ddr_compute_dimm_parameters(const ddr2_spd_eeprom_t *spd, +			     dimm_params_t *pdimm, +			     unsigned int dimm_number) +{ +	unsigned int retval; + +	if (spd->mem_type) { +		if (spd->mem_type != SPD_MEMTYPE_DDR2) { +			printf("DIMM %u: is not a DDR2 SPD.\n", dimm_number); +			return 1; +		} +	} else { +		memset(pdimm, 0, sizeof(dimm_params_t)); +		return 1; +	} + +	retval = ddr2_spd_check(spd); +	if (retval) { +		printf("DIMM %u: failed checksum\n", dimm_number); +		return 2; +	} + +	/* +	 * The part name in ASCII in the SPD EEPROM is not null terminated. +	 * Guarantee null termination here by presetting all bytes to 0 +	 * and copying the part name in ASCII from the SPD onto it +	 */ +	memset(pdimm->mpart, 0, sizeof(pdimm->mpart)); +	memcpy(pdimm->mpart, spd->mpart, sizeof(pdimm->mpart) - 1); + +	/* DIMM organization parameters */ +	pdimm->n_ranks = (spd->mod_ranks & 0x7) + 1; +	pdimm->rank_density = compute_ranksize(spd->mem_type, spd->rank_dens); +	pdimm->capacity = pdimm->n_ranks * pdimm->rank_density; +	pdimm->data_width = spd->dataw; +	pdimm->primary_sdram_width = spd->primw; +	pdimm->ec_sdram_width = spd->ecw; + +	/* FIXME: what about registered SO-DIMM? */ +	switch (spd->dimm_type) { +	case 0x01:	/* RDIMM */ +	case 0x10:	/* Mini-RDIMM */ +		pdimm->registered_dimm = 1; /* register buffered */ +		break; + +	case 0x02:	/* UDIMM */ +	case 0x04:	/* SO-DIMM */ +	case 0x08:	/* Micro-DIMM */ +	case 0x20:	/* Mini-UDIMM */ +		pdimm->registered_dimm = 0;	/* unbuffered */ +		break; + +	default: +		printf("unknown dimm_type 0x%02X\n", spd->dimm_type); +		return 1; +		break; +	} + +	/* SDRAM device parameters */ +	pdimm->n_row_addr = spd->nrow_addr; +	pdimm->n_col_addr = spd->ncol_addr; +	pdimm->n_banks_per_sdram_device = spd->nbanks; +	pdimm->edc_config = spd->config; +	pdimm->burst_lengths_bitmask = spd->burstl; +	pdimm->row_density = spd->rank_dens; + +	/* +	 * Calculate the Maximum Data Rate based on the Minimum Cycle time. +	 * The SPD clk_cycle field (tCKmin) is measured in tenths of +	 * nanoseconds and represented as BCD. +	 */ +	pdimm->tCKmin_X_ps +		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle); +	pdimm->tCKmin_X_minus_1_ps +		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle2); +	pdimm->tCKmin_X_minus_2_ps +		= convert_bcd_tenths_to_cycle_time_ps(spd->clk_cycle3); + +	pdimm->tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd->tckmax); + +	/* +	 * Compute CAS latencies defined by SPD +	 * The SPD caslat_X should have at least 1 and at most 3 bits set. +	 * +	 * If cas_lat after masking is 0, the __ilog2 function returns +	 * 255 into the variable.   This behavior is abused once. +	 */ +	pdimm->caslat_X  = __ilog2(spd->cas_lat); +	pdimm->caslat_X_minus_1 = __ilog2(spd->cas_lat +					  & ~(1 << pdimm->caslat_X)); +	pdimm->caslat_X_minus_2 = __ilog2(spd->cas_lat +					  & ~(1 << pdimm->caslat_X) +					  & ~(1 << pdimm->caslat_X_minus_1)); + +	/* Compute CAS latencies below that defined by SPD */ +	pdimm->caslat_lowest_derated +		= compute_derated_DDR2_CAS_latency(get_memory_clk_period_ps()); + +	/* Compute timing parameters */ +	pdimm->tRCD_ps = spd->trcd * 250; +	pdimm->tRP_ps = spd->trp * 250; +	pdimm->tRAS_ps = spd->tras * 1000; + +	pdimm->tWR_ps = spd->twr * 250; +	pdimm->tWTR_ps = spd->twtr * 250; +	pdimm->tRFC_ps = compute_trfc_ps_from_spd(spd->trctrfc_ext, spd->trfc); + +	pdimm->tRRD_ps = spd->trrd * 250; +	pdimm->tRC_ps = compute_trc_ps_from_spd(spd->trctrfc_ext, spd->trc); + +	pdimm->refresh_rate_ps = determine_refresh_rate_ps(spd->refresh); + +	pdimm->tIS_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_setup); +	pdimm->tIH_ps = convert_bcd_hundredths_to_cycle_time_ps(spd->ca_hold); +	pdimm->tDS_ps +		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_setup); +	pdimm->tDH_ps +		= convert_bcd_hundredths_to_cycle_time_ps(spd->data_hold); + +	pdimm->tRTP_ps = spd->trtp * 250; +	pdimm->tDQSQ_max_ps = spd->tdqsq * 10; +	pdimm->tQHS_ps = spd->tqhs * 10; + +	return 0; +} |