diff options
Diffstat (limited to 'arch/arm/cpu/armv7/omap4/emif.c')
| -rw-r--r-- | arch/arm/cpu/armv7/omap4/emif.c | 1310 | 
1 files changed, 1310 insertions, 0 deletions
| diff --git a/arch/arm/cpu/armv7/omap4/emif.c b/arch/arm/cpu/armv7/omap4/emif.c new file mode 100644 index 000000000..487ec4211 --- /dev/null +++ b/arch/arm/cpu/armv7/omap4/emif.c @@ -0,0 +1,1310 @@ +/* + * EMIF programming + * + * (C) Copyright 2010 + * Texas Instruments, <www.ti.com> + * + * Aneesh V <aneesh@ti.com> + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of + * the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + */ + +#include <common.h> +#include <asm/arch/emif.h> +#include <asm/arch/clocks.h> +#include <asm/arch/sys_proto.h> +#include <asm/omap_common.h> +#include <asm/utils.h> + +static inline u32 emif_num(u32 base) +{ +	if (base == OMAP44XX_EMIF1) +		return 1; +	else if (base == OMAP44XX_EMIF2) +		return 2; +	else +		return 0; +} + +static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr) +{ +	u32 mr; +	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; + +	mr_addr |= cs << OMAP44XX_REG_CS_SHIFT; +	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg); +	if (omap_revision() == OMAP4430_ES2_0) +		mr = readl(&emif->emif_lpddr2_mode_reg_data_es2); +	else +		mr = readl(&emif->emif_lpddr2_mode_reg_data); +	debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base), +	      cs, mr_addr, mr); +	return mr; +} + +static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val) +{ +	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; + +	mr_addr |= cs << OMAP44XX_REG_CS_SHIFT; +	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg); +	writel(mr_val, &emif->emif_lpddr2_mode_reg_data); +} + +void emif_reset_phy(u32 base) +{ +	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; +	u32 iodft; + +	iodft = readl(&emif->emif_iodft_tlgc); +	iodft |= OMAP44XX_REG_RESET_PHY_MASK; +	writel(iodft, &emif->emif_iodft_tlgc); +} + +static void do_lpddr2_init(u32 base, u32 cs) +{ +	u32 mr_addr; + +	/* Wait till device auto initialization is complete */ +	while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK) +		; +	set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT); +	/* +	 * tZQINIT = 1 us +	 * Enough loops assuming a maximum of 2GHz +	 */ +	sdelay(2000); +	set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3); +	set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY); +	/* +	 * Enable refresh along with writing MR2 +	 * Encoding of RL in MR2 is (RL - 2) +	 */ +	mr_addr = LPDDR2_MR2 | OMAP44XX_REG_REFRESH_EN_MASK; +	set_mr(base, cs, mr_addr, RL_FINAL - 2); +} + +static void lpddr2_init(u32 base, const struct emif_regs *regs) +{ +	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; + +	/* Not NVM */ +	clrbits_le32(&emif->emif_lpddr2_nvm_config, OMAP44XX_REG_CS1NVMEN_MASK); + +	/* +	 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM +	 * when EMIF_SDRAM_CONFIG register is written +	 */ +	setbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK); + +	/* +	 * Set the SDRAM_CONFIG and PHY_CTRL for the +	 * un-locked frequency & default RL +	 */ +	writel(regs->sdram_config_init, &emif->emif_sdram_config); +	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1); + +	do_lpddr2_init(base, CS0); +	if (regs->sdram_config & OMAP44XX_REG_EBANK_MASK) +		do_lpddr2_init(base, CS1); + +	writel(regs->sdram_config, &emif->emif_sdram_config); +	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1); + +	/* Enable refresh now */ +	clrbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK); + +} + +static void emif_update_timings(u32 base, const struct emif_regs *regs) +{ +	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; + +	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw); +	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw); +	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw); +	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw); +	if (omap_revision() == OMAP4430_ES1_0) { +		/* ES1 bug EMIF should be in force idle during freq_update */ +		writel(0, &emif->emif_pwr_mgmt_ctrl); +	} else { +		writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl); +		writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw); +	} +	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw); +	writel(regs->zq_config, &emif->emif_zq_config); +	writel(regs->temp_alert_config, &emif->emif_temp_alert_config); +	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw); + +	if (omap_revision() >= OMAP4460_ES1_0) { +		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0, +			&emif->emif_l3_config); +	} else { +		writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0, +			&emif->emif_l3_config); +	} +} + +#ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS +#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg)) + +static u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM; +static u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN; +static u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE; + +/* + * Organization and refresh requirements for LPDDR2 devices of different + * types and densities. Derived from JESD209-2 section 2.4 + */ +const struct lpddr2_addressing addressing_table[] = { +	/* Banks tREFIx10     rowx32,rowx16      colx32,colx16	density */ +	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */ +	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */ +	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */ +	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */ +	{BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */ +	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */ +	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */ +	{BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */ +	{BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */ +	{BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */ +}; + +static const u32 lpddr2_density_2_size_in_mbytes[] = { +	8,			/* 64Mb */ +	16,			/* 128Mb */ +	32,			/* 256Mb */ +	64,			/* 512Mb */ +	128,			/* 1Gb   */ +	256,			/* 2Gb   */ +	512,			/* 4Gb   */ +	1024,			/* 8Gb   */ +	2048,			/* 16Gb  */ +	4096			/* 32Gb  */ +}; + +/* + * Calculate the period of DDR clock from frequency value and set the + * denominator and numerator in global variables for easy access later + */ +static void set_ddr_clk_period(u32 freq) +{ +	/* +	 * period = 1/freq +	 * period_in_ns = 10^9/freq +	 */ +	*T_num = 1000000000; +	*T_den = freq; +	cancel_out(T_num, T_den, 200); + +} + +/* + * Convert time in nano seconds to number of cycles of DDR clock + */ +static inline u32 ns_2_cycles(u32 ns) +{ +	return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num); +} + +/* + * ns_2_cycles with the difference that the time passed is 2 times the actual + * value(to avoid fractions). The cycles returned is for the original value of + * the timing parameter + */ +static inline u32 ns_x2_2_cycles(u32 ns) +{ +	return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2); +} + +/* + * Find addressing table index based on the device's type(S2 or S4) and + * density + */ +s8 addressing_table_index(u8 type, u8 density, u8 width) +{ +	u8 index; +	if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8)) +		return -1; + +	/* +	 * Look at the way ADDR_TABLE_INDEX* values have been defined +	 * in emif.h compared to LPDDR2_DENSITY_* values +	 * The table is layed out in the increasing order of density +	 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed +	 * at the end +	 */ +	if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb)) +		index = ADDR_TABLE_INDEX1GS2; +	else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb)) +		index = ADDR_TABLE_INDEX2GS2; +	else +		index = density; + +	debug("emif: addressing table index %d\n", index); + +	return index; +} + +/* + * Find the the right timing table from the array of timing + * tables of the device using DDR clock frequency + */ +static const struct lpddr2_ac_timings *get_timings_table(const struct +			lpddr2_ac_timings const *const *device_timings, +			u32 freq) +{ +	u32 i, temp, freq_nearest; +	const struct lpddr2_ac_timings *timings = 0; + +	emif_assert(freq <= MAX_LPDDR2_FREQ); +	emif_assert(device_timings); + +	/* +	 * Start with the maximum allowed frequency - that is always safe +	 */ +	freq_nearest = MAX_LPDDR2_FREQ; +	/* +	 * Find the timings table that has the max frequency value: +	 *   i.  Above or equal to the DDR frequency - safe +	 *   ii. The lowest that satisfies condition (i) - optimal +	 */ +	for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) { +		temp = device_timings[i]->max_freq; +		if ((temp >= freq) && (temp <= freq_nearest)) { +			freq_nearest = temp; +			timings = device_timings[i]; +		} +	} +	debug("emif: timings table: %d\n", freq_nearest); +	return timings; +} + +/* + * Finds the value of emif_sdram_config_reg + * All parameters are programmed based on the device on CS0. + * If there is a device on CS1, it will be same as that on CS0 or + * it will be NVM. We don't support NVM yet. + * If cs1_device pointer is NULL it is assumed that there is no device + * on CS1 + */ +static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device, +				const struct lpddr2_device_details *cs1_device, +				const struct lpddr2_addressing *addressing, +				u8 RL) +{ +	u32 config_reg = 0; + +	config_reg |=  (cs0_device->type + 4) << OMAP44XX_REG_SDRAM_TYPE_SHIFT; +	config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING << +			OMAP44XX_REG_IBANK_POS_SHIFT; + +	config_reg |= cs0_device->io_width << OMAP44XX_REG_NARROW_MODE_SHIFT; + +	config_reg |= RL << OMAP44XX_REG_CL_SHIFT; + +	config_reg |= addressing->row_sz[cs0_device->io_width] << +			OMAP44XX_REG_ROWSIZE_SHIFT; + +	config_reg |= addressing->num_banks << OMAP44XX_REG_IBANK_SHIFT; + +	config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) << +			OMAP44XX_REG_EBANK_SHIFT; + +	config_reg |= addressing->col_sz[cs0_device->io_width] << +			OMAP44XX_REG_PAGESIZE_SHIFT; + +	return config_reg; +} + +static u32 get_sdram_ref_ctrl(u32 freq, +			      const struct lpddr2_addressing *addressing) +{ +	u32 ref_ctrl = 0, val = 0, freq_khz; +	freq_khz = freq / 1000; +	/* +	 * refresh rate to be set is 'tREFI * freq in MHz +	 * division by 10000 to account for khz and x10 in t_REFI_us_x10 +	 */ +	val = addressing->t_REFI_us_x10 * freq_khz / 10000; +	ref_ctrl |= val << OMAP44XX_REG_REFRESH_RATE_SHIFT; + +	return ref_ctrl; +} + +static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings, +			       const struct lpddr2_min_tck *min_tck, +			       const struct lpddr2_addressing *addressing) +{ +	u32 tim1 = 0, val = 0; +	val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1; +	tim1 |= val << OMAP44XX_REG_T_WTR_SHIFT; + +	if (addressing->num_banks == BANKS8) +		val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) / +							(4 * (*T_num)) - 1; +	else +		val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1; + +	tim1 |= val << OMAP44XX_REG_T_RRD_SHIFT; + +	val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1; +	tim1 |= val << OMAP44XX_REG_T_RC_SHIFT; + +	val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1; +	tim1 |= val << OMAP44XX_REG_T_RAS_SHIFT; + +	val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1; +	tim1 |= val << OMAP44XX_REG_T_WR_SHIFT; + +	val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1; +	tim1 |= val << OMAP44XX_REG_T_RCD_SHIFT; + +	val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1; +	tim1 |= val << OMAP44XX_REG_T_RP_SHIFT; + +	return tim1; +} + +static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings, +			       const struct lpddr2_min_tck *min_tck) +{ +	u32 tim2 = 0, val = 0; +	val = max(min_tck->tCKE, timings->tCKE) - 1; +	tim2 |= val << OMAP44XX_REG_T_CKE_SHIFT; + +	val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1; +	tim2 |= val << OMAP44XX_REG_T_RTP_SHIFT; + +	/* +	 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the +	 * same value +	 */ +	val = ns_2_cycles(timings->tXSR) - 1; +	tim2 |= val << OMAP44XX_REG_T_XSRD_SHIFT; +	tim2 |= val << OMAP44XX_REG_T_XSNR_SHIFT; + +	val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1; +	tim2 |= val << OMAP44XX_REG_T_XP_SHIFT; + +	return tim2; +} + +static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings, +			       const struct lpddr2_min_tck *min_tck, +			       const struct lpddr2_addressing *addressing) +{ +	u32 tim3 = 0, val = 0; +	val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF); +	tim3 |= val << OMAP44XX_REG_T_RAS_MAX_SHIFT; + +	val = ns_2_cycles(timings->tRFCab) - 1; +	tim3 |= val << OMAP44XX_REG_T_RFC_SHIFT; + +	val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1; +	tim3 |= val << OMAP44XX_REG_T_TDQSCKMAX_SHIFT; + +	val = ns_2_cycles(timings->tZQCS) - 1; +	tim3 |= val << OMAP44XX_REG_ZQ_ZQCS_SHIFT; + +	val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1; +	tim3 |= val << OMAP44XX_REG_T_CKESR_SHIFT; + +	return tim3; +} + +static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device, +			     const struct lpddr2_addressing *addressing, +			     u8 volt_ramp) +{ +	u32 zq = 0, val = 0; +	if (volt_ramp) +		val = +		    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 / +		    addressing->t_REFI_us_x10; +	else +		val = +		    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 / +		    addressing->t_REFI_us_x10; +	zq |= val << OMAP44XX_REG_ZQ_REFINTERVAL_SHIFT; + +	zq |= (REG_ZQ_ZQCL_MULT - 1) << OMAP44XX_REG_ZQ_ZQCL_MULT_SHIFT; + +	zq |= (REG_ZQ_ZQINIT_MULT - 1) << OMAP44XX_REG_ZQ_ZQINIT_MULT_SHIFT; + +	zq |= REG_ZQ_SFEXITEN_ENABLE << OMAP44XX_REG_ZQ_SFEXITEN_SHIFT; + +	/* +	 * Assuming that two chipselects have a single calibration resistor +	 * If there are indeed two calibration resistors, then this flag should +	 * be enabled to take advantage of dual calibration feature. +	 * This data should ideally come from board files. But considering +	 * that none of the boards today have calibration resistors per CS, +	 * it would be an unnecessary overhead. +	 */ +	zq |= REG_ZQ_DUALCALEN_DISABLE << OMAP44XX_REG_ZQ_DUALCALEN_SHIFT; + +	zq |= REG_ZQ_CS0EN_ENABLE << OMAP44XX_REG_ZQ_CS0EN_SHIFT; + +	zq |= (cs1_device ? 1 : 0) << OMAP44XX_REG_ZQ_CS1EN_SHIFT; + +	return zq; +} + +static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device, +				 const struct lpddr2_addressing *addressing, +				 u8 is_derated) +{ +	u32 alert = 0, interval; +	interval = +	    TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10; +	if (is_derated) +		interval *= 4; +	alert |= interval << OMAP44XX_REG_TA_REFINTERVAL_SHIFT; + +	alert |= TEMP_ALERT_CONFIG_DEVCT_1 << OMAP44XX_REG_TA_DEVCNT_SHIFT; + +	alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << OMAP44XX_REG_TA_DEVWDT_SHIFT; + +	alert |= 1 << OMAP44XX_REG_TA_SFEXITEN_SHIFT; + +	alert |= 1 << OMAP44XX_REG_TA_CS0EN_SHIFT; + +	alert |= (cs1_device ? 1 : 0) << OMAP44XX_REG_TA_CS1EN_SHIFT; + +	return alert; +} + +static u32 get_read_idle_ctrl_reg(u8 volt_ramp) +{ +	u32 idle = 0, val = 0; +	if (volt_ramp) +		val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1; +	else +		/*Maximum value in normal conditions - suggested by hw team */ +		val = 0x1FF; +	idle |= val << OMAP44XX_REG_READ_IDLE_INTERVAL_SHIFT; + +	idle |= EMIF_REG_READ_IDLE_LEN_VAL << OMAP44XX_REG_READ_IDLE_LEN_SHIFT; + +	return idle; +} + +static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL) +{ +	u32 phy = 0, val = 0; + +	phy |= (RL + 2) << OMAP44XX_REG_READ_LATENCY_SHIFT; + +	if (freq <= 100000000) +		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS; +	else if (freq <= 200000000) +		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ; +	else +		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ; +	phy |= val << OMAP44XX_REG_DLL_SLAVE_DLY_CTRL_SHIFT; + +	/* Other fields are constant magic values. Hardcode them together */ +	phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL << +		OMAP44XX_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT; + +	return phy; +} + +static u32 get_emif_mem_size(struct emif_device_details *devices) +{ +	u32 size_mbytes = 0, temp; + +	if (!devices) +		return 0; + +	if (devices->cs0_device_details) { +		temp = devices->cs0_device_details->density; +		size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; +	} + +	if (devices->cs1_device_details) { +		temp = devices->cs1_device_details->density; +		size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; +	} +	/* convert to bytes */ +	return size_mbytes << 20; +} + +/* Gets the encoding corresponding to a given DMM section size */ +u32 get_dmm_section_size_map(u32 section_size) +{ +	/* +	 * Section size mapping: +	 * 0x0: 16-MiB section +	 * 0x1: 32-MiB section +	 * 0x2: 64-MiB section +	 * 0x3: 128-MiB section +	 * 0x4: 256-MiB section +	 * 0x5: 512-MiB section +	 * 0x6: 1-GiB section +	 * 0x7: 2-GiB section +	 */ +	section_size >>= 24; /* divide by 16 MB */ +	return log_2_n_round_down(section_size); +} + +static void emif_calculate_regs( +		const struct emif_device_details *emif_dev_details, +		u32 freq, struct emif_regs *regs) +{ +	u32 temp, sys_freq; +	const struct lpddr2_addressing *addressing; +	const struct lpddr2_ac_timings *timings; +	const struct lpddr2_min_tck *min_tck; +	const struct lpddr2_device_details *cs0_dev_details = +					emif_dev_details->cs0_device_details; +	const struct lpddr2_device_details *cs1_dev_details = +					emif_dev_details->cs1_device_details; +	const struct lpddr2_device_timings *cs0_dev_timings = +					emif_dev_details->cs0_device_timings; + +	emif_assert(emif_dev_details); +	emif_assert(regs); +	/* +	 * You can not have a device on CS1 without one on CS0 +	 * So configuring EMIF without a device on CS0 doesn't +	 * make sense +	 */ +	emif_assert(cs0_dev_details); +	emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM); +	/* +	 * If there is a device on CS1 it should be same type as CS0 +	 * (or NVM. But NVM is not supported in this driver yet) +	 */ +	emif_assert((cs1_dev_details == NULL) || +		    (cs1_dev_details->type == LPDDR2_TYPE_NVM) || +		    (cs0_dev_details->type == cs1_dev_details->type)); +	emif_assert(freq <= MAX_LPDDR2_FREQ); + +	set_ddr_clk_period(freq); + +	/* +	 * The device on CS0 is used for all timing calculations +	 * There is only one set of registers for timings per EMIF. So, if the +	 * second CS(CS1) has a device, it should have the same timings as the +	 * device on CS0 +	 */ +	timings = get_timings_table(cs0_dev_timings->ac_timings, freq); +	emif_assert(timings); +	min_tck = cs0_dev_timings->min_tck; + +	temp = addressing_table_index(cs0_dev_details->type, +				      cs0_dev_details->density, +				      cs0_dev_details->io_width); + +	emif_assert((temp >= 0)); +	addressing = &(addressing_table[temp]); +	emif_assert(addressing); + +	sys_freq = get_sys_clk_freq(); + +	regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details, +							cs1_dev_details, +							addressing, RL_BOOT); + +	regs->sdram_config = get_sdram_config_reg(cs0_dev_details, +						cs1_dev_details, +						addressing, RL_FINAL); + +	regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing); + +	regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing); + +	regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck); + +	regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing); + +	regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE); + +	regs->temp_alert_config = +	    get_temp_alert_config(cs1_dev_details, addressing, 0); + +	regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing, +					    LPDDR2_VOLTAGE_STABLE); + +	regs->emif_ddr_phy_ctlr_1_init = +			get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT); + +	regs->emif_ddr_phy_ctlr_1 = +			get_ddr_phy_ctrl_1(freq, RL_FINAL); + +	regs->freq = freq; + +	print_timing_reg(regs->sdram_config_init); +	print_timing_reg(regs->sdram_config); +	print_timing_reg(regs->ref_ctrl); +	print_timing_reg(regs->sdram_tim1); +	print_timing_reg(regs->sdram_tim2); +	print_timing_reg(regs->sdram_tim3); +	print_timing_reg(regs->read_idle_ctrl); +	print_timing_reg(regs->temp_alert_config); +	print_timing_reg(regs->zq_config); +	print_timing_reg(regs->emif_ddr_phy_ctlr_1); +	print_timing_reg(regs->emif_ddr_phy_ctlr_1_init); +} +#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ + +#ifdef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS +/* Base AC Timing values specified by JESD209-2 for 400MHz operation */ +static const struct lpddr2_ac_timings timings_jedec_400_mhz = { +	.max_freq = 400000000, +	.RL = 6, +	.tRPab = 21, +	.tRCD = 18, +	.tWR = 15, +	.tRASmin = 42, +	.tRRD = 10, +	.tWTRx2 = 15, +	.tXSR = 140, +	.tXPx2 = 15, +	.tRFCab = 130, +	.tRTPx2 = 15, +	.tCKE = 3, +	.tCKESR = 15, +	.tZQCS = 90, +	.tZQCL = 360, +	.tZQINIT = 1000, +	.tDQSCKMAXx2 = 11, +	.tRASmax = 70, +	.tFAW = 50 +}; + +/* Base AC Timing values specified by JESD209-2 for 333 MHz operation */ +static const struct lpddr2_ac_timings timings_jedec_333_mhz = { +	.max_freq = 333000000, +	.RL = 5, +	.tRPab = 21, +	.tRCD = 18, +	.tWR = 15, +	.tRASmin = 42, +	.tRRD = 10, +	.tWTRx2 = 15, +	.tXSR = 140, +	.tXPx2 = 15, +	.tRFCab = 130, +	.tRTPx2 = 15, +	.tCKE = 3, +	.tCKESR = 15, +	.tZQCS = 90, +	.tZQCL = 360, +	.tZQINIT = 1000, +	.tDQSCKMAXx2 = 11, +	.tRASmax = 70, +	.tFAW = 50 +}; + +/* Base AC Timing values specified by JESD209-2 for 200 MHz operation */ +static const struct lpddr2_ac_timings timings_jedec_200_mhz = { +	.max_freq = 200000000, +	.RL = 3, +	.tRPab = 21, +	.tRCD = 18, +	.tWR = 15, +	.tRASmin = 42, +	.tRRD = 10, +	.tWTRx2 = 20, +	.tXSR = 140, +	.tXPx2 = 15, +	.tRFCab = 130, +	.tRTPx2 = 15, +	.tCKE = 3, +	.tCKESR = 15, +	.tZQCS = 90, +	.tZQCL = 360, +	.tZQINIT = 1000, +	.tDQSCKMAXx2 = 11, +	.tRASmax = 70, +	.tFAW = 50 +}; + +/* + * Min tCK values specified by JESD209-2 + * Min tCK specifies the minimum duration of some AC timing parameters in terms + * of the number of cycles. If the calculated number of cycles based on the + * absolute time value is less than the min tCK value, min tCK value should + * be used instead. This typically happens at low frequencies. + */ +static const struct lpddr2_min_tck min_tck_jedec = { +	.tRL = 3, +	.tRP_AB = 3, +	.tRCD = 3, +	.tWR = 3, +	.tRAS_MIN = 3, +	.tRRD = 2, +	.tWTR = 2, +	.tXP = 2, +	.tRTP = 2, +	.tCKE = 3, +	.tCKESR = 3, +	.tFAW = 8 +}; + +static const struct lpddr2_ac_timings const* +			jedec_ac_timings[MAX_NUM_SPEEDBINS] = { +	&timings_jedec_200_mhz, +	&timings_jedec_333_mhz, +	&timings_jedec_400_mhz +}; + +static const struct lpddr2_device_timings jedec_default_timings = { +	.ac_timings = jedec_ac_timings, +	.min_tck = &min_tck_jedec +}; + +void emif_get_device_timings(u32 emif_nr, +		const struct lpddr2_device_timings **cs0_device_timings, +		const struct lpddr2_device_timings **cs1_device_timings) +{ +	/* Assume Identical devices on EMIF1 & EMIF2 */ +	*cs0_device_timings = &jedec_default_timings; +	*cs1_device_timings = &jedec_default_timings; +} +#endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */ + +#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION +const char *get_lpddr2_type(u8 type_id) +{ +	switch (type_id) { +	case LPDDR2_TYPE_S4: +		return "LPDDR2-S4"; +	case LPDDR2_TYPE_S2: +		return "LPDDR2-S2"; +	default: +		return NULL; +	} +} + +const char *get_lpddr2_io_width(u8 width_id) +{ +	switch (width_id) { +	case LPDDR2_IO_WIDTH_8: +		return "x8"; +	case LPDDR2_IO_WIDTH_16: +		return "x16"; +	case LPDDR2_IO_WIDTH_32: +		return "x32"; +	default: +		return NULL; +	} +} + +const char *get_lpddr2_manufacturer(u32 manufacturer) +{ +	switch (manufacturer) { +	case LPDDR2_MANUFACTURER_SAMSUNG: +		return "Samsung"; +	case LPDDR2_MANUFACTURER_QIMONDA: +		return "Qimonda"; +	case LPDDR2_MANUFACTURER_ELPIDA: +		return "Elpida"; +	case LPDDR2_MANUFACTURER_ETRON: +		return "Etron"; +	case LPDDR2_MANUFACTURER_NANYA: +		return "Nanya"; +	case LPDDR2_MANUFACTURER_HYNIX: +		return "Hynix"; +	case LPDDR2_MANUFACTURER_MOSEL: +		return "Mosel"; +	case LPDDR2_MANUFACTURER_WINBOND: +		return "Winbond"; +	case LPDDR2_MANUFACTURER_ESMT: +		return "ESMT"; +	case LPDDR2_MANUFACTURER_SPANSION: +		return "Spansion"; +	case LPDDR2_MANUFACTURER_SST: +		return "SST"; +	case LPDDR2_MANUFACTURER_ZMOS: +		return "ZMOS"; +	case LPDDR2_MANUFACTURER_INTEL: +		return "Intel"; +	case LPDDR2_MANUFACTURER_NUMONYX: +		return "Numonyx"; +	case LPDDR2_MANUFACTURER_MICRON: +		return "Micron"; +	default: +		return NULL; +	} +} + +static void display_sdram_details(u32 emif_nr, u32 cs, +				  struct lpddr2_device_details *device) +{ +	const char *mfg_str; +	const char *type_str; +	char density_str[10]; +	u32 density; + +	debug("EMIF%d CS%d\t", emif_nr, cs); + +	if (!device) { +		debug("None\n"); +		return; +	} + +	mfg_str = get_lpddr2_manufacturer(device->manufacturer); +	type_str = get_lpddr2_type(device->type); + +	density = lpddr2_density_2_size_in_mbytes[device->density]; +	if ((density / 1024 * 1024) == density) { +		density /= 1024; +		sprintf(density_str, "%d GB", density); +	} else +		sprintf(density_str, "%d MB", density); +	if (mfg_str && type_str) +		debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str); +} + +static u8 is_lpddr2_sdram_present(u32 base, u32 cs, +				  struct lpddr2_device_details *lpddr2_device) +{ +	u32 mr = 0, temp; + +	mr = get_mr(base, cs, LPDDR2_MR0); +	if (mr > 0xFF) { +		/* Mode register value bigger than 8 bit */ +		return 0; +	} + +	temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT; +	if (temp) { +		/* Not SDRAM */ +		return 0; +	} +	temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT; + +	if (temp) { +		/* DNV supported - But DNV is only supported for NVM */ +		return 0; +	} + +	mr = get_mr(base, cs, LPDDR2_MR4); +	if (mr > 0xFF) { +		/* Mode register value bigger than 8 bit */ +		return 0; +	} + +	mr = get_mr(base, cs, LPDDR2_MR5); +	if (mr >= 0xFF) { +		/* Mode register value bigger than 8 bit */ +		return 0; +	} + +	if (!get_lpddr2_manufacturer(mr)) { +		/* Manufacturer not identified */ +		return 0; +	} +	lpddr2_device->manufacturer = mr; + +	mr = get_mr(base, cs, LPDDR2_MR6); +	if (mr >= 0xFF) { +		/* Mode register value bigger than 8 bit */ +		return 0; +	} + +	mr = get_mr(base, cs, LPDDR2_MR7); +	if (mr >= 0xFF) { +		/* Mode register value bigger than 8 bit */ +		return 0; +	} + +	mr = get_mr(base, cs, LPDDR2_MR8); +	if (mr >= 0xFF) { +		/* Mode register value bigger than 8 bit */ +		return 0; +	} + +	temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT; +	if (!get_lpddr2_type(temp)) { +		/* Not SDRAM */ +		return 0; +	} +	lpddr2_device->type = temp; + +	temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT; +	if (temp > LPDDR2_DENSITY_32Gb) { +		/* Density not supported */ +		return 0; +	} +	lpddr2_device->density = temp; + +	temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT; +	if (!get_lpddr2_io_width(temp)) { +		/* IO width unsupported value */ +		return 0; +	} +	lpddr2_device->io_width = temp; + +	/* +	 * If all the above tests pass we should +	 * have a device on this chip-select +	 */ +	return 1; +} + +static struct lpddr2_device_details *get_lpddr2_details(u32 base, u8 cs, +			struct lpddr2_device_details *lpddr2_dev_details) +{ +	u32 phy; +	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; + +	if (!lpddr2_dev_details) +		return NULL; + +	/* Do the minimum init for mode register accesses */ +	if (!running_from_sdram()) { +		phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT); +		writel(phy, &emif->emif_ddr_phy_ctrl_1); +	} + +	if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details))) +		return NULL; + +	display_sdram_details(emif_num(base), cs, lpddr2_dev_details); + +	return lpddr2_dev_details; +} + +void emif_get_device_details(u32 emif_nr, +		struct lpddr2_device_details *cs0_device_details, +		struct lpddr2_device_details *cs1_device_details) +{ +	u32 base = (emif_nr == 1) ? OMAP44XX_EMIF1 : OMAP44XX_EMIF2; + +	if (running_from_sdram()) { +		/* +		 * We can not do automatic discovery running from SDRAM +		 * Most likely we came here by mistake. Indicate error +		 * by returning NULL +		 */ +		cs0_device_details = NULL; +		cs1_device_details = NULL; +	} else { +		/* +		 * Automatically find the device details: +		 * +		 * Reset the PHY after each call to get_lpddr2_details(). +		 * If there is nothing connected to a given chip select +		 * (typically CS1) mode register reads will mess up with +		 * the PHY state and subsequent initialization won't work. +		 * PHY reset brings back PHY to a good state. +		 */ +		cs0_device_details = +		    get_lpddr2_details(base, CS0, cs0_device_details); +		emif_reset_phy(base); + +		cs1_device_details = +		    get_lpddr2_details(base, CS1, cs1_device_details); +		emif_reset_phy(base); +	} +} +#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */ + +static void do_sdram_init(u32 base) +{ +	const struct emif_regs *regs; +	u32 in_sdram, emif_nr; + +	debug(">>do_sdram_init() %x\n", base); + +	in_sdram = running_from_sdram(); +	emif_nr = (base == OMAP44XX_EMIF1) ? 1 : 2; + +#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS +	emif_get_reg_dump(emif_nr, ®s); +	if (!regs) { +		debug("EMIF: reg dump not provided\n"); +		return; +	} +#else +	/* +	 * The user has not provided the register values. We need to +	 * calculate it based on the timings and the DDR frequency +	 */ +	struct emif_device_details dev_details; +	struct emif_regs calculated_regs; + +	/* +	 * Get device details: +	 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set +	 * - Obtained from user otherwise +	 */ +	struct lpddr2_device_details cs0_dev_details, cs1_dev_details; +	emif_get_device_details(emif_nr, &cs0_dev_details, +				&cs1_dev_details); +	dev_details.cs0_device_details = &cs0_dev_details; +	dev_details.cs1_device_details = &cs1_dev_details; + +	/* Return if no devices on this EMIF */ +	if (!dev_details.cs0_device_details && +	    !dev_details.cs1_device_details) { +		emif_sizes[emif_nr - 1] = 0; +		return; +	} + +	if (!in_sdram) +		emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details); + +	/* +	 * Get device timings: +	 * - Default timings specified by JESD209-2 if +	 *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set +	 * - Obtained from user otherwise +	 */ +	emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings, +				&dev_details.cs1_device_timings); + +	/* Calculate the register values */ +	emif_calculate_regs(&dev_details, omap4_ddr_clk(), &calculated_regs); +	regs = &calculated_regs; +#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ + +	/* +	 * Initializing the LPDDR2 device can not happen from SDRAM. +	 * Changing the timing registers in EMIF can happen(going from one +	 * OPP to another) +	 */ +	if (!in_sdram) +		lpddr2_init(base, regs); + +	/* Write to the shadow registers */ +	emif_update_timings(base, regs); + +	debug("<<do_sdram_init() %x\n", base); +} + +void sdram_init_pads(void) +{ +	u32 lpddr2io; +	struct control_lpddr2io_regs *lpddr2io_regs = +		(struct control_lpddr2io_regs *)LPDDR2_IO_REGS_BASE; +	u32 omap4_rev = omap_revision(); + +	if (omap4_rev == OMAP4430_ES1_0) +		lpddr2io = CONTROL_LPDDR2IO_SLEW_125PS_DRV8_PULL_DOWN; +	else if (omap4_rev == OMAP4430_ES2_0) +		lpddr2io = CONTROL_LPDDR2IO_SLEW_325PS_DRV8_GATE_KEEPER; +	else +		return;		/* Post ES2.1 reset values will work */ + +	writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_0); +	writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_1); +	writel(lpddr2io, &lpddr2io_regs->control_lpddr2io1_2); +	writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_0); +	writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_1); +	writel(lpddr2io, &lpddr2io_regs->control_lpddr2io2_2); + +	writel(CONTROL_EFUSE_2_NMOS_PMOS_PTV_CODE_1, CONTROL_EFUSE_2); +} + +static void emif_post_init_config(u32 base) +{ +	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; +	u32 omap4_rev = omap_revision(); + +	/* reset phy on ES2.0 */ +	if (omap4_rev == OMAP4430_ES2_0) +		emif_reset_phy(base); + +	/* Put EMIF back in smart idle on ES1.0 */ +	if (omap4_rev == OMAP4430_ES1_0) +		writel(0x80000000, &emif->emif_pwr_mgmt_ctrl); +} + +static void dmm_init(u32 base) +{ +	const struct dmm_lisa_map_regs *lisa_map_regs; + +#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS +	emif_get_dmm_regs(&lisa_map_regs); +#else +	u32 emif1_size, emif2_size, mapped_size, section_map = 0; +	u32 section_cnt, sys_addr; +	struct dmm_lisa_map_regs lis_map_regs_calculated = {0}; + +	mapped_size = 0; +	section_cnt = 3; +	sys_addr = CONFIG_SYS_SDRAM_BASE; +	emif1_size = emif_sizes[0]; +	emif2_size = emif_sizes[1]; +	debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size); + +	if (!emif1_size && !emif2_size) +		return; + +	/* symmetric interleaved section */ +	if (emif1_size && emif2_size) { +		mapped_size = min(emif1_size, emif2_size); +		section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL; +		section_map |= 0 << OMAP44XX_SDRC_ADDR_SHIFT; +		/* only MSB */ +		section_map |= (sys_addr >> 24) << +				OMAP44XX_SYS_ADDR_SHIFT; +		section_map |= get_dmm_section_size_map(mapped_size * 2) +				<< OMAP44XX_SYS_SIZE_SHIFT; +		lis_map_regs_calculated.dmm_lisa_map_3 = section_map; +		emif1_size -= mapped_size; +		emif2_size -= mapped_size; +		sys_addr += (mapped_size * 2); +		section_cnt--; +	} + +	/* +	 * Single EMIF section(we can have a maximum of 1 single EMIF +	 * section- either EMIF1 or EMIF2 or none, but not both) +	 */ +	if (emif1_size) { +		section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL; +		section_map |= get_dmm_section_size_map(emif1_size) +				<< OMAP44XX_SYS_SIZE_SHIFT; +		/* only MSB */ +		section_map |= (mapped_size >> 24) << +				OMAP44XX_SDRC_ADDR_SHIFT; +		/* only MSB */ +		section_map |= (sys_addr >> 24) << OMAP44XX_SYS_ADDR_SHIFT; +		section_cnt--; +	} +	if (emif2_size) { +		section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL; +		section_map |= get_dmm_section_size_map(emif2_size) << +				OMAP44XX_SYS_SIZE_SHIFT; +		/* only MSB */ +		section_map |= mapped_size >> 24 << OMAP44XX_SDRC_ADDR_SHIFT; +		/* only MSB */ +		section_map |= sys_addr >> 24 << OMAP44XX_SYS_ADDR_SHIFT; +		section_cnt--; +	} + +	if (section_cnt == 2) { +		/* Only 1 section - either symmetric or single EMIF */ +		lis_map_regs_calculated.dmm_lisa_map_3 = section_map; +		lis_map_regs_calculated.dmm_lisa_map_2 = 0; +		lis_map_regs_calculated.dmm_lisa_map_1 = 0; +	} else { +		/* 2 sections - 1 symmetric, 1 single EMIF */ +		lis_map_regs_calculated.dmm_lisa_map_2 = section_map; +		lis_map_regs_calculated.dmm_lisa_map_1 = 0; +	} + +	/* TRAP for invalid TILER mappings in section 0 */ +	lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP; + +	lisa_map_regs = &lis_map_regs_calculated; +#endif +	struct dmm_lisa_map_regs *hw_lisa_map_regs = +	    (struct dmm_lisa_map_regs *)base; + +	writel(0, &hw_lisa_map_regs->dmm_lisa_map_3); +	writel(0, &hw_lisa_map_regs->dmm_lisa_map_2); +	writel(0, &hw_lisa_map_regs->dmm_lisa_map_1); +	writel(0, &hw_lisa_map_regs->dmm_lisa_map_0); + +	writel(lisa_map_regs->dmm_lisa_map_3, +		&hw_lisa_map_regs->dmm_lisa_map_3); +	writel(lisa_map_regs->dmm_lisa_map_2, +		&hw_lisa_map_regs->dmm_lisa_map_2); +	writel(lisa_map_regs->dmm_lisa_map_1, +		&hw_lisa_map_regs->dmm_lisa_map_1); +	writel(lisa_map_regs->dmm_lisa_map_0, +		&hw_lisa_map_regs->dmm_lisa_map_0); + +	if (omap_revision() >= OMAP4460_ES1_0) { +		hw_lisa_map_regs = +		    (struct dmm_lisa_map_regs *)OMAP44XX_MA_LISA_MAP_BASE; + +		writel(lisa_map_regs->dmm_lisa_map_3, +			&hw_lisa_map_regs->dmm_lisa_map_3); +		writel(lisa_map_regs->dmm_lisa_map_2, +			&hw_lisa_map_regs->dmm_lisa_map_2); +		writel(lisa_map_regs->dmm_lisa_map_1, +			&hw_lisa_map_regs->dmm_lisa_map_1); +		writel(lisa_map_regs->dmm_lisa_map_0, +			&hw_lisa_map_regs->dmm_lisa_map_0); +	} +} + +/* + * SDRAM initialization: + * SDRAM initialization has two parts: + * 1. Configuring the SDRAM device + * 2. Update the AC timings related parameters in the EMIF module + * (1) should be done only once and should not be done while we are + * running from SDRAM. + * (2) can and should be done more than once if OPP changes. + * Particularly, this may be needed when we boot without SPL and + * and using Configuration Header(CH). ROM code supports only at 50% OPP + * at boot (low power boot). So u-boot has to switch to OPP100 and update + * the frequency. So, + * Doing (1) and (2) makes sense - first time initialization + * Doing (2) and not (1) makes sense - OPP change (when using CH) + * Doing (1) and not (2) doen't make sense + * See do_sdram_init() for the details + */ +void sdram_init(void) +{ +	u32 in_sdram, size_prog, size_detect; + +	debug(">>sdram_init()\n"); + +	if (omap4_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL) +		return; + +	in_sdram = running_from_sdram(); +	debug("in_sdram = %d\n", in_sdram); + +	if (!in_sdram) { +		sdram_init_pads(); +		bypass_dpll(&prcm->cm_clkmode_dpll_core); +	} + +	do_sdram_init(OMAP44XX_EMIF1); +	do_sdram_init(OMAP44XX_EMIF2); + +	if (!in_sdram) { +		dmm_init(OMAP44XX_DMM_LISA_MAP_BASE); +		emif_post_init_config(OMAP44XX_EMIF1); +		emif_post_init_config(OMAP44XX_EMIF2); + +	} + +	/* for the shadow registers to take effect */ +	freq_update_core(); + +	/* Do some testing after the init */ +	if (!in_sdram) { +		size_prog = omap4_sdram_size(); +		size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, +						size_prog); +		/* Compare with the size programmed */ +		if (size_detect != size_prog) { +			printf("SDRAM: identified size not same as expected" +				" size identified: %x expected: %x\n", +				size_detect, +				size_prog); +		} else +			debug("get_ram_size() successful"); +	} + +	debug("<<sdram_init()\n"); +} |