diff options
| -rw-r--r-- | Makefile | 2 | ||||
| -rw-r--r-- | README | 1 | ||||
| -rw-r--r-- | common/Makefile | 2 | ||||
| -rw-r--r-- | common/cmd_doc.c | 1644 | ||||
| -rw-r--r-- | common/cmd_jffs2.c | 15 | ||||
| -rw-r--r-- | common/cmd_mtdparts.c | 10 | ||||
| -rw-r--r-- | common/cmd_nand.c | 412 | ||||
| -rw-r--r-- | common/docecc.c | 513 | ||||
| -rw-r--r-- | common/env_nand.c | 4 | ||||
| -rw-r--r-- | doc/README.nand | 3 | ||||
| -rw-r--r-- | doc/feature-removal-schedule.txt | 8 | ||||
| -rw-r--r-- | drivers/mtd/nand/Makefile | 2 | ||||
| -rw-r--r-- | drivers/mtd/nand/diskonchip.c | 3 | ||||
| -rw-r--r-- | drivers/mtd/nand_legacy/Makefile | 48 | ||||
| -rw-r--r-- | drivers/mtd/nand_legacy/nand_legacy.c | 1610 | ||||
| -rw-r--r-- | fs/jffs2/jffs2_1pass.c | 20 | ||||
| -rw-r--r-- | fs/jffs2/jffs2_nand_1pass.c | 4 | ||||
| -rw-r--r-- | include/linux/mtd/nand_ids.h | 60 | ||||
| -rw-r--r-- | include/linux/mtd/nand_legacy.h | 196 | ||||
| -rw-r--r-- | include/nand.h | 2 | ||||
| -rw-r--r-- | lib_generic/crc32.c | 4 | 
21 files changed, 2 insertions, 4561 deletions
| @@ -246,7 +246,6 @@ LIBS += drivers/misc/libmisc.a  LIBS += drivers/mmc/libmmc.a  LIBS += drivers/mtd/libmtd.a  LIBS += drivers/mtd/nand/libnand.a -LIBS += drivers/mtd/nand_legacy/libnand_legacy.a  LIBS += drivers/mtd/onenand/libonenand.a  LIBS += drivers/mtd/ubi/libubi.a  LIBS += drivers/mtd/spi/libspi_flash.a @@ -428,7 +427,6 @@ TAG_SUBDIRS += drivers/misc  TAG_SUBDIRS += drivers/mmc  TAG_SUBDIRS += drivers/mtd  TAG_SUBDIRS += drivers/mtd/nand -TAG_SUBDIRS += drivers/mtd/nand_legacy  TAG_SUBDIRS += drivers/mtd/onenand  TAG_SUBDIRS += drivers/mtd/spi  TAG_SUBDIRS += drivers/net @@ -603,7 +603,6 @@ The following options need to be configured:  		CONFIG_CMD_DATE		* support for RTC, date/time...  		CONFIG_CMD_DHCP		* DHCP support  		CONFIG_CMD_DIAG		* Diagnostics -		CONFIG_CMD_DOC		* Disk-On-Chip Support  		CONFIG_CMD_DS4510	* ds4510 I2C gpio commands  		CONFIG_CMD_DS4510_INFO	* ds4510 I2C info command  		CONFIG_CMD_DS4510_MEM	* ds4510 I2C eeprom/sram commansd diff --git a/common/Makefile b/common/Makefile index c8a997b0a..dd6636b43 100644 --- a/common/Makefile +++ b/common/Makefile @@ -83,7 +83,6 @@ ifdef CONFIG_POST  COBJS-$(CONFIG_CMD_DIAG) += cmd_diag.o  endif  COBJS-$(CONFIG_CMD_DISPLAY) += cmd_display.o -COBJS-$(CONFIG_CMD_DOC) += cmd_doc.o  COBJS-$(CONFIG_CMD_DTT) += cmd_dtt.o  COBJS-$(CONFIG_ENV_IS_IN_EEPROM) += cmd_eeprom.o  COBJS-$(CONFIG_CMD_EEPROM) += cmd_eeprom.o @@ -150,7 +149,6 @@ COBJS-$(CONFIG_VFD) += cmd_vfd.o  # others  COBJS-$(CONFIG_DDR_SPD) += ddr_spd.o -COBJS-$(CONFIG_CMD_DOC) += docecc.o  COBJS-$(CONFIG_HWCONFIG) += hwconfig.o  COBJS-$(CONFIG_CONSOLE_MUX) += iomux.o  COBJS-y += flash.o diff --git a/common/cmd_doc.c b/common/cmd_doc.c deleted file mode 100644 index 5cc90f064..000000000 --- a/common/cmd_doc.c +++ /dev/null @@ -1,1644 +0,0 @@ -/* - * Driver for Disk-On-Chip 2000 and Millennium - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> - * - * $Id: doc2000.c,v 1.46 2001/10/02 15:05:13 dwmw2 Exp $ - */ - -#include <common.h> -#include <config.h> -#include <command.h> -#include <malloc.h> -#include <asm/io.h> -#include <linux/mtd/nftl.h> -#include <linux/mtd/doc2000.h> - -#error This code is broken and will be removed outright in the next release. -#error If you need diskonchip support, please update the Linux driver in -#error drivers/mtd/nand/diskonchip.c to work with u-boot. - -/* - * ! BROKEN ! - * - * TODO: must be implemented and tested by someone with HW - */ -#if 0 -#ifdef CONFIG_SYS_DOC_SUPPORT_2000 -#define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) -#else -#define DoC_is_2000(doc) (0) -#endif - -#ifdef CONFIG_SYS_DOC_SUPPORT_MILLENNIUM -#define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) -#else -#define DoC_is_Millennium(doc) (0) -#endif - -/* CONFIG_SYS_DOC_PASSIVE_PROBE: -   In order to ensure that the BIOS checksum is correct at boot time, and -   hence that the onboard BIOS extension gets executed, the DiskOnChip -   goes into reset mode when it is read sequentially: all registers -   return 0xff until the chip is woken up again by writing to the -   DOCControl register. - -   Unfortunately, this means that the probe for the DiskOnChip is unsafe, -   because one of the first things it does is write to where it thinks -   the DOCControl register should be - which may well be shared memory -   for another device. I've had machines which lock up when this is -   attempted. Hence the possibility to do a passive probe, which will fail -   to detect a chip in reset mode, but is at least guaranteed not to lock -   the machine. - -   If you have this problem, uncomment the following line: -#define CONFIG_SYS_DOC_PASSIVE_PROBE -*/ - -#undef	DOC_DEBUG -#undef	ECC_DEBUG -#undef	PSYCHO_DEBUG -#undef	NFTL_DEBUG - -static struct DiskOnChip doc_dev_desc[CONFIG_SYS_MAX_DOC_DEVICE]; - -/* Current DOC Device	*/ -static int curr_device = -1; - -/* Supported NAND flash devices */ -static struct nand_flash_dev nand_flash_ids[] = { -	{"Toshiba TC5816BDC",     NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000, 0}, -	{"Toshiba TC5832DC",      NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000, 0}, -	{"Toshiba TH58V128DC",    NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000, 0}, -	{"Toshiba TC58256FT/DC",  NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000, 0}, -	{"Toshiba TH58512FT",     NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000, 0}, -	{"Toshiba TC58V32DC",     NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000, 0}, -	{"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000, 0}, -	{"Toshiba TC58V16BDC",    NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000, 0}, -	{"Toshiba TH58100FT",     NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000, 0}, -	{"Samsung KM29N16000",    NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0}, -	{"Samsung unknown 4Mb",   NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0}, -	{"Samsung KM29U128T",     NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000, 0}, -	{"Samsung KM29U256T",     NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000, 0}, -	{"Samsung unknown 64Mb",  NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0}, -	{"Samsung KM29W32000",    NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000, 0}, -	{"Samsung unknown 4Mb",   NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000, 0}, -	{"Samsung KM29U64000",    NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000, 0}, -	{"Samsung KM29W16000",    NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0}, -	{"Samsung K9F5616Q0C",    NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1}, -	{"Samsung K9K1216Q0C",    NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1}, -	{"Samsung K9F1G08U0M",    NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0}, -	{NULL,} -}; - -/* ------------------------------------------------------------------------- */ - -int do_doc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) -{ -    int rcode = 0; - -    switch (argc) { -    case 0: -    case 1: -	cmd_usage(cmdtp); -	return 1; -    case 2: -	if (strcmp(argv[1],"info") == 0) { -		int i; - -		putc ('\n'); - -		for (i=0; i<CONFIG_SYS_MAX_DOC_DEVICE; ++i) { -			if(doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) -				continue; /* list only known devices */ -			printf ("Device %d: ", i); -			doc_print(&doc_dev_desc[i]); -		} -		return 0; - -	} else if (strcmp(argv[1],"device") == 0) { -		if ((curr_device < 0) || (curr_device >= CONFIG_SYS_MAX_DOC_DEVICE)) { -			puts ("\nno devices available\n"); -			return 1; -		} -		printf ("\nDevice %d: ", curr_device); -		doc_print(&doc_dev_desc[curr_device]); -		return 0; -	} -	cmd_usage(cmdtp); -	return 1; -    case 3: -	if (strcmp(argv[1],"device") == 0) { -		int dev = (int)simple_strtoul(argv[2], NULL, 10); - -		printf ("\nDevice %d: ", dev); -		if (dev >= CONFIG_SYS_MAX_DOC_DEVICE) { -			puts ("unknown device\n"); -			return 1; -		} -		doc_print(&doc_dev_desc[dev]); -		/*doc_print (dev);*/ - -		if (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN) { -			return 1; -		} - -		curr_device = dev; - -		puts ("... is now current device\n"); - -		return 0; -	} - -	cmd_usage(cmdtp); -	return 1; -    default: -	/* at least 4 args */ - -	if (strcmp(argv[1],"read") == 0 || strcmp(argv[1],"write") == 0) { -		ulong addr = simple_strtoul(argv[2], NULL, 16); -		ulong off  = simple_strtoul(argv[3], NULL, 16); -		ulong size = simple_strtoul(argv[4], NULL, 16); -		int cmd    = (strcmp(argv[1],"read") == 0); -		int ret, total; - -		printf ("\nDOC %s: device %d offset %ld, size %ld ... ", -			cmd ? "read" : "write", curr_device, off, size); - -		ret = doc_rw(doc_dev_desc + curr_device, cmd, off, size, -			     (size_t *)&total, (u_char*)addr); - -		printf ("%d bytes %s: %s\n", total, cmd ? "read" : "write", -			ret ? "ERROR" : "OK"); - -		return ret; -	} else if (strcmp(argv[1],"erase") == 0) { -		ulong off = simple_strtoul(argv[2], NULL, 16); -		ulong size = simple_strtoul(argv[3], NULL, 16); -		int ret; - -		printf ("\nDOC erase: device %d offset %ld, size %ld ... ", -			curr_device, off, size); - -		ret = doc_erase (doc_dev_desc + curr_device, off, size); - -		printf("%s\n", ret ? "ERROR" : "OK"); - -		return ret; -	} else { -		cmd_usage(cmdtp); -		rcode = 1; -	} - -	return rcode; -    } -} -U_BOOT_CMD( -	doc,	5,	1,	do_doc, -	"Disk-On-Chip sub-system", -	"info  - show available DOC devices\n" -	"doc device [dev] - show or set current device\n" -	"doc read  addr off size\n" -	"doc write addr off size - read/write `size'" -	" bytes starting at offset `off'\n" -	"    to/from memory address `addr'\n" -	"doc erase off size - erase `size' bytes of DOC from offset `off'" -); - -int do_docboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) -{ -	char *boot_device = NULL; -	char *ep; -	int dev; -	ulong cnt; -	ulong addr; -	ulong offset = 0; -	image_header_t *hdr; -	int rcode = 0; -#if defined(CONFIG_FIT) -	const void *fit_hdr = NULL; -#endif - -	show_boot_progress (34); -	switch (argc) { -	case 1: -		addr = CONFIG_SYS_LOAD_ADDR; -		boot_device = getenv ("bootdevice"); -		break; -	case 2: -		addr = simple_strtoul(argv[1], NULL, 16); -		boot_device = getenv ("bootdevice"); -		break; -	case 3: -		addr = simple_strtoul(argv[1], NULL, 16); -		boot_device = argv[2]; -		break; -	case 4: -		addr = simple_strtoul(argv[1], NULL, 16); -		boot_device = argv[2]; -		offset = simple_strtoul(argv[3], NULL, 16); -		break; -	default: -		cmd_usage(cmdtp); -		show_boot_progress (-35); -		return 1; -	} - -	show_boot_progress (35); -	if (!boot_device) { -		puts ("\n** No boot device **\n"); -		show_boot_progress (-36); -		return 1; -	} -	show_boot_progress (36); - -	dev = simple_strtoul(boot_device, &ep, 16); - -	if ((dev >= CONFIG_SYS_MAX_DOC_DEVICE) || -	    (doc_dev_desc[dev].ChipID == DOC_ChipID_UNKNOWN)) { -		printf ("\n** Device %d not available\n", dev); -		show_boot_progress (-37); -		return 1; -	} -	show_boot_progress (37); - -	printf ("\nLoading from device %d: %s at 0x%lX (offset 0x%lX)\n", -		dev, doc_dev_desc[dev].name, doc_dev_desc[dev].physadr, -		offset); - -	if (doc_rw (doc_dev_desc + dev, 1, offset, -		    SECTORSIZE, NULL, (u_char *)addr)) { -		printf ("** Read error on %d\n", dev); -		show_boot_progress (-38); -		return 1; -	} -	show_boot_progress (38); - -	switch (genimg_get_format ((void *)addr)) { -	case IMAGE_FORMAT_LEGACY: -		hdr = (image_header_t *)addr; - -		image_print_contents (hdr); - -		cnt = image_get_image_size (hdr); -		break; -#if defined(CONFIG_FIT) -	case IMAGE_FORMAT_FIT: -		fit_hdr = (const void *)addr; -		puts ("Fit image detected...\n"); - -		cnt = fit_get_size (fit_hdr); -		break; -#endif -	default: -		show_boot_progress (-39); -		puts ("** Unknown image type\n"); -		return 1; -	} -	show_boot_progress (39); - -	cnt -= SECTORSIZE; -	if (doc_rw (doc_dev_desc + dev, 1, offset + SECTORSIZE, cnt, -		    NULL, (u_char *)(addr+SECTORSIZE))) { -		printf ("** Read error on %d\n", dev); -		show_boot_progress (-40); -		return 1; -	} -	show_boot_progress (40); - -#if defined(CONFIG_FIT) -	/* This cannot be done earlier, we need complete FIT image in RAM first */ -	if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) { -		if (!fit_check_format (fit_hdr)) { -			show_boot_progress (-130); -			puts ("** Bad FIT image format\n"); -			return 1; -		} -		show_boot_progress (131); -		fit_print_contents (fit_hdr); -	} -#endif - -	/* Loading ok, update default load address */ - -	load_addr = addr; - -	/* Check if we should attempt an auto-start */ -	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { -		char *local_args[2]; -		extern int do_bootm (cmd_tbl_t *, int, int, char *[]); - -		local_args[0] = argv[0]; -		local_args[1] = NULL; - -		printf ("Automatic boot of image at addr 0x%08lX ...\n", addr); - -		do_bootm (cmdtp, 0, 1, local_args); -		rcode = 1; -	} -	return rcode; -} - -U_BOOT_CMD( -	docboot,	4,	1,	do_docboot, -	"boot from DOC device", -	"loadAddr dev" -); - -int doc_rw (struct DiskOnChip* this, int cmd, -	    loff_t from, size_t len, -	    size_t * retlen, u_char * buf) -{ -	int noecc, ret = 0, n, total = 0; -	char eccbuf[6]; - -	while(len) { -		/* The ECC will not be calculated correctly if -		   less than 512 is written or read */ -		noecc = (from != (from | 0x1ff) + 1) ||	(len < 0x200); - -		if (cmd) -			ret = doc_read_ecc(this, from, len, -					   (size_t *)&n, (u_char*)buf, -					   noecc ? (uchar *)NULL : (uchar *)eccbuf); -		else -			ret = doc_write_ecc(this, from, len, -					    (size_t *)&n, (u_char*)buf, -					    noecc ? (uchar *)NULL : (uchar *)eccbuf); - -		if (ret) -			break; - -		from  += n; -		buf   += n; -		total += n; -		len   -= n; -	} - -	if (retlen) -		*retlen = total; - -	return ret; -} - -void doc_print(struct DiskOnChip *this) { -	printf("%s at 0x%lX,\n" -	       "\t  %d chip%s %s, size %d MB, \n" -	       "\t  total size %ld MB, sector size %ld kB\n", -	       this->name, this->physadr, this->numchips, -	       this->numchips>1 ? "s" : "", this->chips_name, -	       1 << (this->chipshift - 20), -	       this->totlen >> 20, this->erasesize >> 10); - -	if (this->nftl_found) { -		struct NFTLrecord *nftl = &this->nftl; -		unsigned long bin_size, flash_size; - -		bin_size = nftl->nb_boot_blocks * this->erasesize; -		flash_size = (nftl->nb_blocks - nftl->nb_boot_blocks) * this->erasesize; - -		printf("\t  NFTL boot record:\n" -		       "\t    Binary partition: size %ld%s\n" -		       "\t    Flash disk partition: size %ld%s, offset 0x%lx\n", -		       bin_size > (1 << 20) ? bin_size >> 20 : bin_size >> 10, -		       bin_size > (1 << 20) ? "MB" : "kB", -		       flash_size > (1 << 20) ? flash_size >> 20 : flash_size >> 10, -		       flash_size > (1 << 20) ? "MB" : "kB", bin_size); -	} else { -		puts ("\t  No NFTL boot record found.\n"); -	} -} - -/* ------------------------------------------------------------------------- */ - -/* This function is needed to avoid calls of the __ashrdi3 function. */ -static int shr(int val, int shift) { -	return val >> shift; -} - -/* Perform the required delay cycles by reading from the appropriate register */ -static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) -{ -	volatile char dummy; -	int i; - -	for (i = 0; i < cycles; i++) { -		if (DoC_is_Millennium(doc)) -			dummy = ReadDOC(doc->virtadr, NOP); -		else -			dummy = ReadDOC(doc->virtadr, DOCStatus); -	} - -} - -/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ -static int _DoC_WaitReady(struct DiskOnChip *doc) -{ -	unsigned long docptr = doc->virtadr; -	unsigned long start = get_timer(0); - -#ifdef PSYCHO_DEBUG -	puts ("_DoC_WaitReady called for out-of-line wait\n"); -#endif - -	/* Out-of-line routine to wait for chip response */ -	while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { -#ifdef CONFIG_SYS_DOC_SHORT_TIMEOUT -		/* it seems that after a certain time the DoC deasserts -		 * the CDSN_CTRL_FR_B although it is not ready... -		 * using a short timout solve this (timer increments every ms) */ -		if (get_timer(start) > 10) { -			return DOC_ETIMEOUT; -		} -#else -		if (get_timer(start) > 10 * 1000) { -			puts ("_DoC_WaitReady timed out.\n"); -			return DOC_ETIMEOUT; -		} -#endif -		udelay(1); -	} - -	return 0; -} - -static int DoC_WaitReady(struct DiskOnChip *doc) -{ -	unsigned long docptr = doc->virtadr; -	/* This is inline, to optimise the common case, where it's ready instantly */ -	int ret = 0; - -	/* 4 read form NOP register should be issued in prior to the read from CDSNControl -	   see Software Requirement 11.4 item 2. */ -	DoC_Delay(doc, 4); - -	if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) -		/* Call the out-of-line routine to wait */ -		ret = _DoC_WaitReady(doc); - -	/* issue 2 read from NOP register after reading from CDSNControl register -	   see Software Requirement 11.4 item 2. */ -	DoC_Delay(doc, 2); - -	return ret; -} - -/* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to -   bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is -   required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static inline int DoC_Command(struct DiskOnChip *doc, unsigned char command, -			      unsigned char xtraflags) -{ -	unsigned long docptr = doc->virtadr; - -	if (DoC_is_2000(doc)) -		xtraflags |= CDSN_CTRL_FLASH_IO; - -	/* Assert the CLE (Command Latch Enable) line to the flash chip */ -	WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); -	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ - -	if (DoC_is_Millennium(doc)) -		WriteDOC(command, docptr, CDSNSlowIO); - -	/* Send the command */ -	WriteDOC_(command, docptr, doc->ioreg); - -	/* Lower the CLE line */ -	WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); -	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ - -	/* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ -	return DoC_WaitReady(doc); -} - -/* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to -   bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is -   required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ - -static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, -		       unsigned char xtraflags1, unsigned char xtraflags2) -{ -	unsigned long docptr; -	int i; - -	docptr = doc->virtadr; - -	if (DoC_is_2000(doc)) -		xtraflags1 |= CDSN_CTRL_FLASH_IO; - -	/* Assert the ALE (Address Latch Enable) line to the flash chip */ -	WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); - -	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ - -	/* Send the address */ -	/* Devices with 256-byte page are addressed as: -	   Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) -	   * there is no device on the market with page256 -	   and more than 24 bits. -	   Devices with 512-byte page are addressed as: -	   Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) -	   * 25-31 is sent only if the chip support it. -	   * bit 8 changes the read command to be sent -	   (NAND_CMD_READ0 or NAND_CMD_READ1). -	 */ - -	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { -		if (DoC_is_Millennium(doc)) -			WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); -		WriteDOC_(ofs & 0xff, docptr, doc->ioreg); -	} - -	if (doc->page256) { -		ofs = ofs >> 8; -	} else { -		ofs = ofs >> 9; -	} - -	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { -		for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { -			if (DoC_is_Millennium(doc)) -				WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); -			WriteDOC_(ofs & 0xff, docptr, doc->ioreg); -		} -	} - -	DoC_Delay(doc, 2);	/* Needed for some slow flash chips. mf. */ - -	/* FIXME: The SlowIO's for millennium could be replaced by -	   a single WritePipeTerm here. mf. */ - -	/* Lower the ALE line */ -	WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, -		 CDSNControl); - -	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ - -	/* Wait for the chip to respond - Software requirement 11.4.1 */ -	return DoC_WaitReady(doc); -} - -/* Read a buffer from DoC, taking care of Millennium oddities */ -static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) -{ -	volatile int dummy; -	int modulus = 0xffff; -	unsigned long docptr; -	int i; - -	docptr = doc->virtadr; - -	if (len <= 0) -		return; - -	if (DoC_is_Millennium(doc)) { -		/* Read the data via the internal pipeline through CDSN IO register, -		   see Pipelined Read Operations 11.3 */ -		dummy = ReadDOC(docptr, ReadPipeInit); - -		/* Millennium should use the LastDataRead register - Pipeline Reads */ -		len--; - -		/* This is needed for correctly ECC calculation */ -		modulus = 0xff; -	} - -	for (i = 0; i < len; i++) -		buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); - -	if (DoC_is_Millennium(doc)) { -		buf[i] = ReadDOC(docptr, LastDataRead); -	} -} - -/* Write a buffer to DoC, taking care of Millennium oddities */ -static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) -{ -	unsigned long docptr; -	int i; - -	docptr = doc->virtadr; - -	if (len <= 0) -		return; - -	for (i = 0; i < len; i++) -		WriteDOC_(buf[i], docptr, doc->ioreg + i); - -	if (DoC_is_Millennium(doc)) { -		WriteDOC(0x00, docptr, WritePipeTerm); -	} -} - - -/* DoC_SelectChip: Select a given flash chip within the current floor */ - -static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) -{ -	unsigned long docptr = doc->virtadr; - -	/* Software requirement 11.4.4 before writing DeviceSelect */ -	/* Deassert the CE line to eliminate glitches on the FCE# outputs */ -	WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); -	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ - -	/* Select the individual flash chip requested */ -	WriteDOC(chip, docptr, CDSNDeviceSelect); -	DoC_Delay(doc, 4); - -	/* Reassert the CE line */ -	WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, -		 CDSNControl); -	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */ - -	/* Wait for it to be ready */ -	return DoC_WaitReady(doc); -} - -/* DoC_SelectFloor: Select a given floor (bank of flash chips) */ - -static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) -{ -	unsigned long docptr = doc->virtadr; - -	/* Select the floor (bank) of chips required */ -	WriteDOC(floor, docptr, FloorSelect); - -	/* Wait for the chip to be ready */ -	return DoC_WaitReady(doc); -} - -/* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ - -static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) -{ -	int mfr, id, i; -	volatile char dummy; - -	/* Page in the required floor/chip */ -	DoC_SelectFloor(doc, floor); -	DoC_SelectChip(doc, chip); - -	/* Reset the chip */ -	if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { -#ifdef DOC_DEBUG -		printf("DoC_Command (reset) for %d,%d returned true\n", -		       floor, chip); -#endif -		return 0; -	} - - -	/* Read the NAND chip ID: 1. Send ReadID command */ -	if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { -#ifdef DOC_DEBUG -		printf("DoC_Command (ReadID) for %d,%d returned true\n", -		       floor, chip); -#endif -		return 0; -	} - -	/* Read the NAND chip ID: 2. Send address byte zero */ -	DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); - -	/* Read the manufacturer and device id codes from the device */ - -	/* CDSN Slow IO register see Software Requirement 11.4 item 5. */ -	dummy = ReadDOC(doc->virtadr, CDSNSlowIO); -	DoC_Delay(doc, 2); -	mfr = ReadDOC_(doc->virtadr, doc->ioreg); - -	/* CDSN Slow IO register see Software Requirement 11.4 item 5. */ -	dummy = ReadDOC(doc->virtadr, CDSNSlowIO); -	DoC_Delay(doc, 2); -	id = ReadDOC_(doc->virtadr, doc->ioreg); - -	/* No response - return failure */ -	if (mfr == 0xff || mfr == 0) -		return 0; - -	/* Check it's the same as the first chip we identified. -	 * M-Systems say that any given DiskOnChip device should only -	 * contain _one_ type of flash part, although that's not a -	 * hardware restriction. */ -	if (doc->mfr) { -		if (doc->mfr == mfr && doc->id == id) -			return 1;	/* This is another the same the first */ -		else -			printf("Flash chip at floor %d, chip %d is different:\n", -			       floor, chip); -	} - -	/* Print and store the manufacturer and ID codes. */ -	for (i = 0; nand_flash_ids[i].name != NULL; i++) { -		if (mfr == nand_flash_ids[i].manufacture_id && -		    id == nand_flash_ids[i].model_id) { -#ifdef DOC_DEBUG -			printf("Flash chip found: Manufacturer ID: %2.2X, " -			       "Chip ID: %2.2X (%s)\n", mfr, id, -			       nand_flash_ids[i].name); -#endif -			if (!doc->mfr) { -				doc->mfr = mfr; -				doc->id = id; -				doc->chipshift = -				    nand_flash_ids[i].chipshift; -				doc->page256 = nand_flash_ids[i].page256; -				doc->pageadrlen = -				    nand_flash_ids[i].pageadrlen; -				doc->erasesize = -				    nand_flash_ids[i].erasesize; -				doc->chips_name = -				    nand_flash_ids[i].name; -				return 1; -			} -			return 0; -		} -	} - - -#ifdef DOC_DEBUG -	/* We haven't fully identified the chip. Print as much as we know. */ -	printf("Unknown flash chip found: %2.2X %2.2X\n", -	       id, mfr); -#endif - -	return 0; -} - -/* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ - -static void DoC_ScanChips(struct DiskOnChip *this) -{ -	int floor, chip; -	int numchips[MAX_FLOORS]; -	int maxchips = MAX_CHIPS; -	int ret = 1; - -	this->numchips = 0; -	this->mfr = 0; -	this->id = 0; - -	if (DoC_is_Millennium(this)) -		maxchips = MAX_CHIPS_MIL; - -	/* For each floor, find the number of valid chips it contains */ -	for (floor = 0; floor < MAX_FLOORS; floor++) { -		ret = 1; -		numchips[floor] = 0; -		for (chip = 0; chip < maxchips && ret != 0; chip++) { - -			ret = DoC_IdentChip(this, floor, chip); -			if (ret) { -				numchips[floor]++; -				this->numchips++; -			} -		} -	} - -	/* If there are none at all that we recognise, bail */ -	if (!this->numchips) { -		puts ("No flash chips recognised.\n"); -		return; -	} - -	/* Allocate an array to hold the information for each chip */ -	this->chips = malloc(sizeof(struct Nand) * this->numchips); -	if (!this->chips) { -		puts ("No memory for allocating chip info structures\n"); -		return; -	} - -	ret = 0; - -	/* Fill out the chip array with {floor, chipno} for each -	 * detected chip in the device. */ -	for (floor = 0; floor < MAX_FLOORS; floor++) { -		for (chip = 0; chip < numchips[floor]; chip++) { -			this->chips[ret].floor = floor; -			this->chips[ret].chip = chip; -			this->chips[ret].curadr = 0; -			this->chips[ret].curmode = 0x50; -			ret++; -		} -	} - -	/* Calculate and print the total size of the device */ -	this->totlen = this->numchips * (1 << this->chipshift); - -#ifdef DOC_DEBUG -	printf("%d flash chips found. Total DiskOnChip size: %ld MB\n", -	       this->numchips, this->totlen >> 20); -#endif -} - -/* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the - *	various device information of the NFTL partition and Bad Unit Table. Update - *	the ReplUnitTable[] table accroding to the Bad Unit Table. ReplUnitTable[] - *	is used for management of Erase Unit in other routines in nftl.c and nftlmount.c - */ -static int find_boot_record(struct NFTLrecord *nftl) -{ -	struct nftl_uci1 h1; -	struct nftl_oob oob; -	unsigned int block, boot_record_count = 0; -	int retlen; -	u8 buf[SECTORSIZE]; -	struct NFTLMediaHeader *mh = &nftl->MediaHdr; -	unsigned int i; - -	nftl->MediaUnit = BLOCK_NIL; -	nftl->SpareMediaUnit = BLOCK_NIL; - -	/* search for a valid boot record */ -	for (block = 0; block < nftl->nb_blocks; block++) { -		int ret; - -		/* Check for ANAND header first. Then can whinge if it's found but later -		   checks fail */ -		if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize, SECTORSIZE, -					(size_t *)&retlen, buf, NULL))) { -			static int warncount = 5; - -			if (warncount) { -				printf("Block read at 0x%x failed\n", block * nftl->EraseSize); -				if (!--warncount) -					puts ("Further failures for this block will not be printed\n"); -			} -			continue; -		} - -		if (retlen < 6 || memcmp(buf, "ANAND", 6)) { -			/* ANAND\0 not found. Continue */ -#ifdef PSYCHO_DEBUG -			printf("ANAND header not found at 0x%x\n", block * nftl->EraseSize); -#endif -			continue; -		} - -#ifdef NFTL_DEBUG -		printf("ANAND header found at 0x%x\n", block * nftl->EraseSize); -#endif - -		/* To be safer with BIOS, also use erase mark as discriminant */ -		if ((ret = doc_read_oob(nftl->mtd, block * nftl->EraseSize + SECTORSIZE + 8, -				8, (size_t *)&retlen, (uchar *)&h1) < 0)) { -#ifdef NFTL_DEBUG -			printf("ANAND header found at 0x%x, but OOB data read failed\n", -			       block * nftl->EraseSize); -#endif -			continue; -		} - -		/* OK, we like it. */ - -		if (boot_record_count) { -			/* We've already processed one. So we just check if -			   this one is the same as the first one we found */ -			if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) { -#ifdef NFTL_DEBUG -				printf("NFTL Media Headers at 0x%x and 0x%x disagree.\n", -				       nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize); -#endif -				/* if (debug) Print both side by side */ -				return -1; -			} -			if (boot_record_count == 1) -				nftl->SpareMediaUnit = block; - -			boot_record_count++; -			continue; -		} - -		/* This is the first we've seen. Copy the media header structure into place */ -		memcpy(mh, buf, sizeof(struct NFTLMediaHeader)); - -		/* Do some sanity checks on it */ -		if (mh->UnitSizeFactor == 0) { -#ifdef NFTL_DEBUG -			puts ("UnitSizeFactor 0x00 detected.\n" -			      "This violates the spec but we think we know what it means...\n"); -#endif -		} else if (mh->UnitSizeFactor != 0xff) { -			printf ("Sorry, we don't support UnitSizeFactor " -			      "of != 1 yet.\n"); -			return -1; -		} - -		nftl->nb_boot_blocks = le16_to_cpu(mh->FirstPhysicalEUN); -		if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) { -			printf ("NFTL Media Header sanity check failed:\n" -				"nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n", -				nftl->nb_boot_blocks, nftl->nb_blocks); -			return -1; -		} - -		nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize; -		if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) { -			printf ("NFTL Media Header sanity check failed:\n" -				"numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n", -				nftl->numvunits, -				nftl->nb_blocks, -				nftl->nb_boot_blocks); -			return -1; -		} - -		nftl->nr_sects  = nftl->numvunits * (nftl->EraseSize / SECTORSIZE); - -		/* If we're not using the last sectors in the device for some reason, -		   reduce nb_blocks accordingly so we forget they're there */ -		nftl->nb_blocks = le16_to_cpu(mh->NumEraseUnits) + le16_to_cpu(mh->FirstPhysicalEUN); - -		/* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */ -		for (i = 0; i < nftl->nb_blocks; i++) { -			if ((i & (SECTORSIZE - 1)) == 0) { -				/* read one sector for every SECTORSIZE of blocks */ -				if ((ret = doc_read_ecc(nftl->mtd, block * nftl->EraseSize + -						       i + SECTORSIZE, SECTORSIZE, -						       (size_t *)&retlen, buf, (uchar *)&oob)) < 0) { -					puts ("Read of bad sector table failed\n"); -					return -1; -				} -			} -			/* mark the Bad Erase Unit as RESERVED in ReplUnitTable */ -			if (buf[i & (SECTORSIZE - 1)] != 0xff) -				nftl->ReplUnitTable[i] = BLOCK_RESERVED; -		} - -		nftl->MediaUnit = block; -		boot_record_count++; - -	} /* foreach (block) */ - -	return boot_record_count?0:-1; -} - -/* This routine is made available to other mtd code via - * inter_module_register.  It must only be accessed through - * inter_module_get which will bump the use count of this module.  The - * addresses passed back in mtd are valid as long as the use count of - * this module is non-zero, i.e. between inter_module_get and - * inter_module_put.  Keith Owens <kaos@ocs.com.au> 29 Oct 2000. - */ -static void DoC2k_init(struct DiskOnChip* this) -{ -	struct NFTLrecord *nftl; - -	switch (this->ChipID) { -	case DOC_ChipID_Doc2k: -		this->name = "DiskOnChip 2000"; -		this->ioreg = DoC_2k_CDSN_IO; -		break; -	case DOC_ChipID_DocMil: -		this->name = "DiskOnChip Millennium"; -		this->ioreg = DoC_Mil_CDSN_IO; -		break; -	} - -#ifdef DOC_DEBUG -	printf("%s found at address 0x%lX\n", this->name, -	       this->physadr); -#endif - -	this->totlen = 0; -	this->numchips = 0; - -	this->curfloor = -1; -	this->curchip = -1; - -	/* Ident all the chips present. */ -	DoC_ScanChips(this); -	if ((!this->numchips) || (!this->chips)) -		return; - -	nftl = &this->nftl; - -	/* Get physical parameters */ -	nftl->EraseSize = this->erasesize; -	nftl->nb_blocks = this->totlen / this->erasesize; -	nftl->mtd = this; - -	if (find_boot_record(nftl) != 0) -		this->nftl_found = 0; -	else -		this->nftl_found = 1; - -	printf("%s @ 0x%lX, %ld MB\n", this->name, this->physadr, this->totlen >> 20); -} - -int doc_read_ecc(struct DiskOnChip* this, loff_t from, size_t len, -		 size_t * retlen, u_char * buf, u_char * eccbuf) -{ -	unsigned long docptr; -	struct Nand *mychip; -	unsigned char syndrome[6]; -	volatile char dummy; -	int i, len256 = 0, ret=0; - -	docptr = this->virtadr; - -	/* Don't allow read past end of device */ -	if (from >= this->totlen) { -		puts ("Out of flash\n"); -		return DOC_EINVAL; -	} - -	/* Don't allow a single read to cross a 512-byte block boundary */ -	if (from + len > ((from | 0x1ff) + 1)) -		len = ((from | 0x1ff) + 1) - from; - -	/* The ECC will not be calculated correctly if less than 512 is read */ -	if (len != 0x200 && eccbuf) -		printf("ECC needs a full sector read (adr: %lx size %lx)\n", -		       (long) from, (long) len); - -#ifdef PSYCHO_DEBUG -	printf("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); -#endif - -	/* Find the chip which is to be used and select it */ -	mychip = &this->chips[shr(from, this->chipshift)]; - -	if (this->curfloor != mychip->floor) { -		DoC_SelectFloor(this, mychip->floor); -		DoC_SelectChip(this, mychip->chip); -	} else if (this->curchip != mychip->chip) { -		DoC_SelectChip(this, mychip->chip); -	} - -	this->curfloor = mychip->floor; -	this->curchip = mychip->chip; - -	DoC_Command(this, -		    (!this->page256 -		     && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, -		    CDSN_CTRL_WP); -	DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, -		    CDSN_CTRL_ECC_IO); - -	if (eccbuf) { -		/* Prime the ECC engine */ -		WriteDOC(DOC_ECC_RESET, docptr, ECCConf); -		WriteDOC(DOC_ECC_EN, docptr, ECCConf); -	} else { -		/* disable the ECC engine */ -		WriteDOC(DOC_ECC_RESET, docptr, ECCConf); -		WriteDOC(DOC_ECC_DIS, docptr, ECCConf); -	} - -	/* treat crossing 256-byte sector for 2M x 8bits devices */ -	if (this->page256 && from + len > (from | 0xff) + 1) { -		len256 = (from | 0xff) + 1 - from; -		DoC_ReadBuf(this, buf, len256); - -		DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); -		DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, -			    CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); -	} - -	DoC_ReadBuf(this, &buf[len256], len - len256); - -	/* Let the caller know we completed it */ -	*retlen = len; - -	if (eccbuf) { -		/* Read the ECC data through the DiskOnChip ECC logic */ -		/* Note: this will work even with 2M x 8bit devices as   */ -		/*       they have 8 bytes of OOB per 256 page. mf.      */ -		DoC_ReadBuf(this, eccbuf, 6); - -		/* Flush the pipeline */ -		if (DoC_is_Millennium(this)) { -			dummy = ReadDOC(docptr, ECCConf); -			dummy = ReadDOC(docptr, ECCConf); -			i = ReadDOC(docptr, ECCConf); -		} else { -			dummy = ReadDOC(docptr, 2k_ECCStatus); -			dummy = ReadDOC(docptr, 2k_ECCStatus); -			i = ReadDOC(docptr, 2k_ECCStatus); -		} - -		/* Check the ECC Status */ -		if (i & 0x80) { -			int nb_errors; -			/* There was an ECC error */ -#ifdef ECC_DEBUG -			printf("DiskOnChip ECC Error: Read at %lx\n", (long)from); -#endif -			/* Read the ECC syndrom through the DiskOnChip ECC logic. -			   These syndrome will be all ZERO when there is no error */ -			for (i = 0; i < 6; i++) { -				syndrome[i] = -				    ReadDOC(docptr, ECCSyndrome0 + i); -			} -			nb_errors = doc_decode_ecc(buf, syndrome); - -#ifdef ECC_DEBUG -			printf("Errors corrected: %x\n", nb_errors); -#endif -			if (nb_errors < 0) { -				/* We return error, but have actually done the read. Not that -				   this can be told to user-space, via sys_read(), but at least -				   MTD-aware stuff can know about it by checking *retlen */ -				printf("ECC Errors at %lx\n", (long)from); -				ret = DOC_EECC; -			} -		} - -#ifdef PSYCHO_DEBUG -		printf("ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", -			     (long)from, eccbuf[0], eccbuf[1], eccbuf[2], -			     eccbuf[3], eccbuf[4], eccbuf[5]); -#endif - -		/* disable the ECC engine */ -		WriteDOC(DOC_ECC_DIS, docptr , ECCConf); -	} - -	/* according to 11.4.1, we need to wait for the busy line -	 * drop if we read to the end of the page.  */ -	if(0 == ((from + *retlen) & 0x1ff)) -	{ -	    DoC_WaitReady(this); -	} - -	return ret; -} - -int doc_write_ecc(struct DiskOnChip* this, loff_t to, size_t len, -		  size_t * retlen, const u_char * buf, -		  u_char * eccbuf) -{ -	int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ -	unsigned long docptr; -	volatile char dummy; -	int len256 = 0; -	struct Nand *mychip; - -	docptr = this->virtadr; - -	/* Don't allow write past end of device */ -	if (to >= this->totlen) { -		puts ("Out of flash\n"); -		return DOC_EINVAL; -	} - -	/* Don't allow a single write to cross a 512-byte block boundary */ -	if (to + len > ((to | 0x1ff) + 1)) -		len = ((to | 0x1ff) + 1) - to; - -	/* The ECC will not be calculated correctly if less than 512 is written */ -	if (len != 0x200 && eccbuf) -		printf("ECC needs a full sector write (adr: %lx size %lx)\n", -		       (long) to, (long) len); - -	/* printf("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ - -	/* Find the chip which is to be used and select it */ -	mychip = &this->chips[shr(to, this->chipshift)]; - -	if (this->curfloor != mychip->floor) { -		DoC_SelectFloor(this, mychip->floor); -		DoC_SelectChip(this, mychip->chip); -	} else if (this->curchip != mychip->chip) { -		DoC_SelectChip(this, mychip->chip); -	} - -	this->curfloor = mychip->floor; -	this->curchip = mychip->chip; - -	/* Set device to main plane of flash */ -	DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); -	DoC_Command(this, -		    (!this->page256 -		     && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, -		    CDSN_CTRL_WP); - -	DoC_Command(this, NAND_CMD_SEQIN, 0); -	DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); - -	if (eccbuf) { -		/* Prime the ECC engine */ -		WriteDOC(DOC_ECC_RESET, docptr, ECCConf); -		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); -	} else { -		/* disable the ECC engine */ -		WriteDOC(DOC_ECC_RESET, docptr, ECCConf); -		WriteDOC(DOC_ECC_DIS, docptr, ECCConf); -	} - -	/* treat crossing 256-byte sector for 2M x 8bits devices */ -	if (this->page256 && to + len > (to | 0xff) + 1) { -		len256 = (to | 0xff) + 1 - to; -		DoC_WriteBuf(this, buf, len256); - -		DoC_Command(this, NAND_CMD_PAGEPROG, 0); - -		DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); -		/* There's an implicit DoC_WaitReady() in DoC_Command */ - -		dummy = ReadDOC(docptr, CDSNSlowIO); -		DoC_Delay(this, 2); - -		if (ReadDOC_(docptr, this->ioreg) & 1) { -			puts ("Error programming flash\n"); -			/* Error in programming */ -			*retlen = 0; -			return DOC_EIO; -		} - -		DoC_Command(this, NAND_CMD_SEQIN, 0); -		DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, -			    CDSN_CTRL_ECC_IO); -	} - -	DoC_WriteBuf(this, &buf[len256], len - len256); - -	if (eccbuf) { -		WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, -			 CDSNControl); - -		if (DoC_is_Millennium(this)) { -			WriteDOC(0, docptr, NOP); -			WriteDOC(0, docptr, NOP); -			WriteDOC(0, docptr, NOP); -		} else { -			WriteDOC_(0, docptr, this->ioreg); -			WriteDOC_(0, docptr, this->ioreg); -			WriteDOC_(0, docptr, this->ioreg); -		} - -		/* Read the ECC data through the DiskOnChip ECC logic */ -		for (di = 0; di < 6; di++) { -			eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); -		} - -		/* Reset the ECC engine */ -		WriteDOC(DOC_ECC_DIS, docptr, ECCConf); - -#ifdef PSYCHO_DEBUG -		printf -		    ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", -		     (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], -		     eccbuf[4], eccbuf[5]); -#endif -	} - -	DoC_Command(this, NAND_CMD_PAGEPROG, 0); - -	DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); -	/* There's an implicit DoC_WaitReady() in DoC_Command */ - -	dummy = ReadDOC(docptr, CDSNSlowIO); -	DoC_Delay(this, 2); - -	if (ReadDOC_(docptr, this->ioreg) & 1) { -		puts ("Error programming flash\n"); -		/* Error in programming */ -		*retlen = 0; -		return DOC_EIO; -	} - -	/* Let the caller know we completed it */ -	*retlen = len; - -	if (eccbuf) { -		unsigned char x[8]; -		size_t dummy; -		int ret; - -		/* Write the ECC data to flash */ -		for (di=0; di<6; di++) -			x[di] = eccbuf[di]; - -		x[6]=0x55; -		x[7]=0x55; - -		ret = doc_write_oob(this, to, 8, &dummy, x); -		return ret; -	} -	return 0; -} - -int doc_read_oob(struct DiskOnChip* this, loff_t ofs, size_t len, -		 size_t * retlen, u_char * buf) -{ -	int len256 = 0, ret; -	unsigned long docptr; -	struct Nand *mychip; - -	docptr = this->virtadr; - -	mychip = &this->chips[shr(ofs, this->chipshift)]; - -	if (this->curfloor != mychip->floor) { -		DoC_SelectFloor(this, mychip->floor); -		DoC_SelectChip(this, mychip->chip); -	} else if (this->curchip != mychip->chip) { -		DoC_SelectChip(this, mychip->chip); -	} -	this->curfloor = mychip->floor; -	this->curchip = mychip->chip; - -	/* update address for 2M x 8bit devices. OOB starts on the second */ -	/* page to maintain compatibility with doc_read_ecc. */ -	if (this->page256) { -		if (!(ofs & 0x8)) -			ofs += 0x100; -		else -			ofs -= 0x8; -	} - -	DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); -	DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); - -	/* treat crossing 8-byte OOB data for 2M x 8bit devices */ -	/* Note: datasheet says it should automaticaly wrap to the */ -	/*       next OOB block, but it didn't work here. mf.      */ -	if (this->page256 && ofs + len > (ofs | 0x7) + 1) { -		len256 = (ofs | 0x7) + 1 - ofs; -		DoC_ReadBuf(this, buf, len256); - -		DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); -		DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), -			    CDSN_CTRL_WP, 0); -	} - -	DoC_ReadBuf(this, &buf[len256], len - len256); - -	*retlen = len; -	/* Reading the full OOB data drops us off of the end of the page, -	 * causing the flash device to go into busy mode, so we need -	 * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ - -	ret = DoC_WaitReady(this); - -	return ret; - -} - -int doc_write_oob(struct DiskOnChip* this, loff_t ofs, size_t len, -		  size_t * retlen, const u_char * buf) -{ -	int len256 = 0; -	unsigned long docptr = this->virtadr; -	struct Nand *mychip = &this->chips[shr(ofs, this->chipshift)]; -	volatile int dummy; - -#ifdef PSYCHO_DEBUG -	printf("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", -	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3], -	       buf[8], buf[9], buf[14],buf[15]); -#endif - -	/* Find the chip which is to be used and select it */ -	if (this->curfloor != mychip->floor) { -		DoC_SelectFloor(this, mychip->floor); -		DoC_SelectChip(this, mychip->chip); -	} else if (this->curchip != mychip->chip) { -		DoC_SelectChip(this, mychip->chip); -	} -	this->curfloor = mychip->floor; -	this->curchip = mychip->chip; - -	/* disable the ECC engine */ -	WriteDOC (DOC_ECC_RESET, docptr, ECCConf); -	WriteDOC (DOC_ECC_DIS, docptr, ECCConf); - -	/* Reset the chip, see Software Requirement 11.4 item 1. */ -	DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); - -	/* issue the Read2 command to set the pointer to the Spare Data Area. */ -	DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); - -	/* update address for 2M x 8bit devices. OOB starts on the second */ -	/* page to maintain compatibility with doc_read_ecc. */ -	if (this->page256) { -		if (!(ofs & 0x8)) -			ofs += 0x100; -		else -			ofs -= 0x8; -	} - -	/* issue the Serial Data In command to initial the Page Program process */ -	DoC_Command(this, NAND_CMD_SEQIN, 0); -	DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); - -	/* treat crossing 8-byte OOB data for 2M x 8bit devices */ -	/* Note: datasheet says it should automaticaly wrap to the */ -	/*       next OOB block, but it didn't work here. mf.      */ -	if (this->page256 && ofs + len > (ofs | 0x7) + 1) { -		len256 = (ofs | 0x7) + 1 - ofs; -		DoC_WriteBuf(this, buf, len256); - -		DoC_Command(this, NAND_CMD_PAGEPROG, 0); -		DoC_Command(this, NAND_CMD_STATUS, 0); -		/* DoC_WaitReady() is implicit in DoC_Command */ - -		dummy = ReadDOC(docptr, CDSNSlowIO); -		DoC_Delay(this, 2); - -		if (ReadDOC_(docptr, this->ioreg) & 1) { -			puts ("Error programming oob data\n"); -			/* There was an error */ -			*retlen = 0; -			return DOC_EIO; -		} -		DoC_Command(this, NAND_CMD_SEQIN, 0); -		DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); -	} - -	DoC_WriteBuf(this, &buf[len256], len - len256); - -	DoC_Command(this, NAND_CMD_PAGEPROG, 0); -	DoC_Command(this, NAND_CMD_STATUS, 0); -	/* DoC_WaitReady() is implicit in DoC_Command */ - -	dummy = ReadDOC(docptr, CDSNSlowIO); -	DoC_Delay(this, 2); - -	if (ReadDOC_(docptr, this->ioreg) & 1) { -		puts ("Error programming oob data\n"); -		/* There was an error */ -		*retlen = 0; -		return DOC_EIO; -	} - -	*retlen = len; -	return 0; - -} - -int doc_erase(struct DiskOnChip* this, loff_t ofs, size_t len) -{ -	volatile int dummy; -	unsigned long docptr; -	struct Nand *mychip; - -	if (ofs & (this->erasesize-1) || len & (this->erasesize-1)) { -		puts ("Offset and size must be sector aligned\n"); -		return DOC_EINVAL; -	} - -	docptr = this->virtadr; - -	/* FIXME: Do this in the background. Use timers or schedule_task() */ -	while(len) { -		mychip = &this->chips[shr(ofs, this->chipshift)]; - -		if (this->curfloor != mychip->floor) { -			DoC_SelectFloor(this, mychip->floor); -			DoC_SelectChip(this, mychip->chip); -		} else if (this->curchip != mychip->chip) { -			DoC_SelectChip(this, mychip->chip); -		} -		this->curfloor = mychip->floor; -		this->curchip = mychip->chip; - -		DoC_Command(this, NAND_CMD_ERASE1, 0); -		DoC_Address(this, ADDR_PAGE, ofs, 0, 0); -		DoC_Command(this, NAND_CMD_ERASE2, 0); - -		DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); - -		dummy = ReadDOC(docptr, CDSNSlowIO); -		DoC_Delay(this, 2); - -		if (ReadDOC_(docptr, this->ioreg) & 1) { -			printf("Error erasing at 0x%lx\n", (long)ofs); -			/* There was an error */ -			goto callback; -		} -		ofs += this->erasesize; -		len -= this->erasesize; -	} - - callback: -	return 0; -} - -static inline int doccheck(unsigned long potential, unsigned long physadr) -{ -	unsigned long window=potential; -	unsigned char tmp, ChipID; -#ifndef DOC_PASSIVE_PROBE -	unsigned char tmp2; -#endif - -	/* Routine copied from the Linux DOC driver */ - -#ifdef CONFIG_SYS_DOCPROBE_55AA -	/* Check for 0x55 0xAA signature at beginning of window, -	   this is no longer true once we remove the IPL (for Millennium */ -	if (ReadDOC(window, Sig1) != 0x55 || ReadDOC(window, Sig2) != 0xaa) -		return 0; -#endif /* CONFIG_SYS_DOCPROBE_55AA */ - -#ifndef DOC_PASSIVE_PROBE -	/* It's not possible to cleanly detect the DiskOnChip - the -	 * bootup procedure will put the device into reset mode, and -	 * it's not possible to talk to it without actually writing -	 * to the DOCControl register. So we store the current contents -	 * of the DOCControl register's location, in case we later decide -	 * that it's not a DiskOnChip, and want to put it back how we -	 * found it. -	 */ -	tmp2 = ReadDOC(window, DOCControl); - -	/* Reset the DiskOnChip ASIC */ -	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, -		 window, DOCControl); -	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, -		 window, DOCControl); - -	/* Enable the DiskOnChip ASIC */ -	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, -		 window, DOCControl); -	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, -		 window, DOCControl); -#endif /* !DOC_PASSIVE_PROBE */ - -	ChipID = ReadDOC(window, ChipID); - -	switch (ChipID) { -	case DOC_ChipID_Doc2k: -		/* Check the TOGGLE bit in the ECC register */ -		tmp = ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT; -		if ((ReadDOC(window, 2k_ECCStatus) & DOC_TOGGLE_BIT) != tmp) -				return ChipID; -		break; - -	case DOC_ChipID_DocMil: -		/* Check the TOGGLE bit in the ECC register */ -		tmp = ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT; -		if ((ReadDOC(window, ECCConf) & DOC_TOGGLE_BIT) != tmp) -				return ChipID; -		break; - -	default: -#ifndef CONFIG_SYS_DOCPROBE_55AA -/* - * if the ID isn't the DoC2000 or DoCMillenium ID, so we can assume - * the DOC is missing - */ -# if 0 -		printf("Possible DiskOnChip with unknown ChipID %2.2X found at 0x%lx\n", -		       ChipID, physadr); -# endif -#endif -#ifndef DOC_PASSIVE_PROBE -		/* Put back the contents of the DOCControl register, in case it's not -		 * actually a DiskOnChip. -		 */ -		WriteDOC(tmp2, window, DOCControl); -#endif -		return 0; -	} - -	puts ("DiskOnChip failed TOGGLE test, dropping.\n"); - -#ifndef DOC_PASSIVE_PROBE -	/* Put back the contents of the DOCControl register: it's not a DiskOnChip */ -	WriteDOC(tmp2, window, DOCControl); -#endif -	return 0; -} - -void doc_probe(unsigned long physadr) -{ -	struct DiskOnChip *this = NULL; -	int i=0, ChipID; - -	if ((ChipID = doccheck(physadr, physadr))) { - -		for (i=0; i<CONFIG_SYS_MAX_DOC_DEVICE; i++) { -			if (doc_dev_desc[i].ChipID == DOC_ChipID_UNKNOWN) { -				this = doc_dev_desc + i; -				break; -			} -		} - -		if (!this) { -			puts ("Cannot allocate memory for data structures.\n"); -			return; -		} - -		if (curr_device == -1) -			curr_device = i; - -		memset((char *)this, 0, sizeof(struct DiskOnChip)); - -		this->virtadr = physadr; -		this->physadr = physadr; -		this->ChipID = ChipID; - -		DoC2k_init(this); -	} else { -		puts ("No DiskOnChip found\n"); -	} -} -#else -void doc_probe(unsigned long physadr) {} -#endif diff --git a/common/cmd_jffs2.c b/common/cmd_jffs2.c index 4db4a83aa..372ccb2aa 100644 --- a/common/cmd_jffs2.c +++ b/common/cmd_jffs2.c @@ -96,12 +96,8 @@  #include <cramfs/cramfs_fs.h>  #if defined(CONFIG_CMD_NAND) -#ifdef CONFIG_NAND_LEGACY -#include <linux/mtd/nand_legacy.h> -#else /* !CONFIG_NAND_LEGACY */  #include <linux/mtd/nand.h>  #include <nand.h> -#endif /* !CONFIG_NAND_LEGACY */  #endif  #if defined(CONFIG_CMD_ONENAND) @@ -187,12 +183,7 @@ static int mtd_device_validate(u8 type, u8 num, u32 *size)  	} else if (type == MTD_DEV_TYPE_NAND) {  #if defined(CONFIG_JFFS2_NAND) && defined(CONFIG_CMD_NAND)  		if (num < CONFIG_SYS_MAX_NAND_DEVICE) { -#ifndef CONFIG_NAND_LEGACY  			*size = nand_info[num].size; -#else -			extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE]; -			*size = nand_dev_desc[num].totlen; -#endif  			return 0;  		} @@ -267,17 +258,11 @@ static int mtd_id_parse(const char *id, const char **ret_id, u8 *dev_type, u8 *d  static inline u32 get_part_sector_size_nand(struct mtdids *id)  {  #if defined(CONFIG_JFFS2_NAND) && defined(CONFIG_CMD_NAND) -#if defined(CONFIG_NAND_LEGACY) -	extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE]; - -	return nand_dev_desc[id->num].erasesize; -#else  	nand_info_t *nand;  	nand = &nand_info[id->num];  	return nand->erasesize; -#endif  #else  	BUG();  	return 0; diff --git a/common/cmd_mtdparts.c b/common/cmd_mtdparts.c index 2d1446ecb..665995d16 100644 --- a/common/cmd_mtdparts.c +++ b/common/cmd_mtdparts.c @@ -94,12 +94,8 @@  #include <linux/mtd/mtd.h>  #if defined(CONFIG_CMD_NAND) -#ifdef CONFIG_NAND_LEGACY -#include <linux/mtd/nand_legacy.h> -#else /* !CONFIG_NAND_LEGACY */  #include <linux/mtd/nand.h>  #include <nand.h> -#endif /* !CONFIG_NAND_LEGACY */  #endif  #if defined(CONFIG_CMD_ONENAND) @@ -462,9 +458,6 @@ static int part_del(struct mtd_device *dev, struct part_info *part)  		}  	} -#ifdef CONFIG_NAND_LEGACY -	jffs2_free_cache(part); -#endif  	list_del(&part->link);  	free(part);  	dev->num_parts--; @@ -491,9 +484,6 @@ static void part_delall(struct list_head *head)  	list_for_each_safe(entry, n, head) {  		part_tmp = list_entry(entry, struct part_info, link); -#ifdef CONFIG_NAND_LEGACY -		jffs2_free_cache(part_tmp); -#endif  		list_del(entry);  		free(part_tmp);  	} diff --git a/common/cmd_nand.c b/common/cmd_nand.c index 2f7052122..158a55fa7 100644 --- a/common/cmd_nand.c +++ b/common/cmd_nand.c @@ -11,7 +11,6 @@  #include <common.h> -#ifndef CONFIG_NAND_LEGACY  /*   *   * New NAND support @@ -688,414 +687,3 @@ U_BOOT_CMD(nboot, 4, 1, do_nandboot,  	"[partition] | [[[loadAddr] dev] offset]"  );  #endif - -#else /* CONFIG_NAND_LEGACY */ -/* - * - * Legacy NAND support - to be phased out - * - */ -#include <command.h> -#include <malloc.h> -#include <asm/io.h> -#include <watchdog.h> - -#ifdef CONFIG_show_boot_progress -# include <status_led.h> -# define show_boot_progress(arg)	show_boot_progress(arg) -#else -# define show_boot_progress(arg) -#endif - -#if defined(CONFIG_CMD_NAND) -#include <linux/mtd/nand_legacy.h> -#if 0 -#include <linux/mtd/nand_ids.h> -#include <jffs2/jffs2.h> -#endif - -#ifdef CONFIG_OMAP1510 -void archflashwp(void *archdata, int wp); -#endif - -#define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1))) - -#undef	NAND_DEBUG -#undef	PSYCHO_DEBUG - -/* ****************** WARNING ********************* - * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will - * erase (or at least attempt to erase) blocks that are marked - * bad. This can be very handy if you are _sure_ that the block - * is OK, say because you marked a good block bad to test bad - * block handling and you are done testing, or if you have - * accidentally marked blocks bad. - * - * Erasing factory marked bad blocks is a _bad_ idea. If the - * erase succeeds there is no reliable way to find them again, - * and attempting to program or erase bad blocks can affect - * the data in _other_ (good) blocks. - */ -#define	 ALLOW_ERASE_BAD_DEBUG 0 - -#define CONFIG_MTD_NAND_ECC  /* enable ECC */ -#define CONFIG_MTD_NAND_ECC_JFFS2 - -/* bits for nand_legacy_rw() `cmd'; or together as needed */ -#define NANDRW_READ         0x01 -#define NANDRW_WRITE        0x00 -#define NANDRW_JFFS2	    0x02 -#define NANDRW_JFFS2_SKIP   0x04 - -/* - * Imports from nand_legacy.c - */ -extern struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE]; -extern int curr_device; -extern int nand_legacy_erase(struct nand_chip *nand, size_t ofs, -			    size_t len, int clean); -extern int nand_legacy_rw(struct nand_chip *nand, int cmd, size_t start, -			 size_t len, size_t *retlen, u_char *buf); -extern void nand_print(struct nand_chip *nand); -extern void nand_print_bad(struct nand_chip *nand); -extern int nand_read_oob(struct nand_chip *nand, size_t ofs, -			       size_t len, size_t *retlen, u_char *buf); -extern int nand_write_oob(struct nand_chip *nand, size_t ofs, -				size_t len, size_t *retlen, const u_char *buf); - - -int do_nand (cmd_tbl_t * cmdtp, int flag, int argc, char *argv[]) -{ -	int rcode = 0; - -	switch (argc) { -	case 0: -	case 1: -		cmd_usage(cmdtp); -		return 1; -	case 2: -		if (strcmp (argv[1], "info") == 0) { -			int i; - -			putc ('\n'); - -			for (i = 0; i < CONFIG_SYS_MAX_NAND_DEVICE; ++i) { -				if (nand_dev_desc[i].ChipID == -				    NAND_ChipID_UNKNOWN) -					continue;	/* list only known devices */ -				printf ("Device %d: ", i); -				nand_print (&nand_dev_desc[i]); -			} -			return 0; - -		} else if (strcmp (argv[1], "device") == 0) { -			if ((curr_device < 0) -			    || (curr_device >= CONFIG_SYS_MAX_NAND_DEVICE)) { -				puts ("\nno devices available\n"); -				return 1; -			} -			printf ("\nDevice %d: ", curr_device); -			nand_print (&nand_dev_desc[curr_device]); -			return 0; - -		} else if (strcmp (argv[1], "bad") == 0) { -			if ((curr_device < 0) -			    || (curr_device >= CONFIG_SYS_MAX_NAND_DEVICE)) { -				puts ("\nno devices available\n"); -				return 1; -			} -			printf ("\nDevice %d bad blocks:\n", curr_device); -			nand_print_bad (&nand_dev_desc[curr_device]); -			return 0; - -		} -		cmd_usage(cmdtp); -		return 1; -	case 3: -		if (strcmp (argv[1], "device") == 0) { -			int dev = (int) simple_strtoul (argv[2], NULL, 10); - -			printf ("\nDevice %d: ", dev); -			if (dev >= CONFIG_SYS_MAX_NAND_DEVICE) { -				puts ("unknown device\n"); -				return 1; -			} -			nand_print (&nand_dev_desc[dev]); -			/*nand_print (dev); */ - -			if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) { -				return 1; -			} - -			curr_device = dev; - -			puts ("... is now current device\n"); - -			return 0; -		} else if (strcmp (argv[1], "erase") == 0 -			   && strcmp (argv[2], "clean") == 0) { -			struct nand_chip *nand = &nand_dev_desc[curr_device]; -			ulong off = 0; -			ulong size = nand->totlen; -			int ret; - -			printf ("\nNAND erase: device %d offset %ld, size %ld ... ", curr_device, off, size); - -			ret = nand_legacy_erase (nand, off, size, 1); - -			printf ("%s\n", ret ? "ERROR" : "OK"); - -			return ret; -		} - -		cmd_usage(cmdtp); -		return 1; -	default: -		/* at least 4 args */ - -		if (strncmp (argv[1], "read", 4) == 0 || -		    strncmp (argv[1], "write", 5) == 0) { -			ulong addr = simple_strtoul (argv[2], NULL, 16); -			off_t off = simple_strtoul (argv[3], NULL, 16); -			size_t size = simple_strtoul (argv[4], NULL, 16); -			int cmd = (strncmp (argv[1], "read", 4) == 0) ? -				  NANDRW_READ : NANDRW_WRITE; -			size_t total; -			int ret; -			char *cmdtail = strchr (argv[1], '.'); - -			if (cmdtail && !strncmp (cmdtail, ".oob", 2)) { -				/* read out-of-band data */ -				if (cmd & NANDRW_READ) { -					ret = nand_read_oob (nand_dev_desc + curr_device, -							     off, size, &total, -							     (u_char *) addr); -				} else { -					ret = nand_write_oob (nand_dev_desc + curr_device, -							      off, size, &total, -							      (u_char *) addr); -				} -				return ret; -			} else if (cmdtail && !strncmp (cmdtail, ".jffs2s", 7)) { -				cmd |= NANDRW_JFFS2;	/* skip bad blocks (on read too) */ -				if (cmd & NANDRW_READ) -					cmd |= NANDRW_JFFS2_SKIP;	/* skip bad blocks (on read too) */ -			} else if (cmdtail && !strncmp (cmdtail, ".jffs2", 2)) -				cmd |= NANDRW_JFFS2;	/* skip bad blocks */ -#ifdef SXNI855T -			/* need ".e" same as ".j" for compatibility with older units */ -			else if (cmdtail && !strcmp (cmdtail, ".e")) -				cmd |= NANDRW_JFFS2;	/* skip bad blocks */ -#endif -#ifdef CONFIG_SYS_NAND_SKIP_BAD_DOT_I -			/* need ".i" same as ".jffs2s" for compatibility with older units (esd) */ -			/* ".i" for image -> read skips bad block (no 0xff) */ -			else if (cmdtail && !strcmp (cmdtail, ".i")) { -				cmd |= NANDRW_JFFS2;	/* skip bad blocks (on read too) */ -				if (cmd & NANDRW_READ) -					cmd |= NANDRW_JFFS2_SKIP;	/* skip bad blocks (on read too) */ -			} -#endif /* CONFIG_SYS_NAND_SKIP_BAD_DOT_I */ -			else if (cmdtail) { -				cmd_usage(cmdtp); -				return 1; -			} - -			printf ("\nNAND %s: device %d offset %ld, size %lu ...\n", -				(cmd & NANDRW_READ) ? "read" : "write", -				curr_device, off, (ulong)size); - -			ret = nand_legacy_rw (nand_dev_desc + curr_device, -					      cmd, off, size, -					      &total, (u_char *) addr); - -			printf (" %d bytes %s: %s\n", total, -				(cmd & NANDRW_READ) ? "read" : "written", -				ret ? "ERROR" : "OK"); - -			return ret; -		} else if (strcmp (argv[1], "erase") == 0 && -			   (argc == 4 || strcmp ("clean", argv[2]) == 0)) { -			int clean = argc == 5; -			ulong off = -				simple_strtoul (argv[2 + clean], NULL, 16); -			ulong size = -				simple_strtoul (argv[3 + clean], NULL, 16); -			int ret; - -			printf ("\nNAND erase: device %d offset %ld, size %ld ...\n", -				curr_device, off, size); - -			ret = nand_legacy_erase (nand_dev_desc + curr_device, -						 off, size, clean); - -			printf ("%s\n", ret ? "ERROR" : "OK"); - -			return ret; -		} else { -			cmd_usage(cmdtp); -			rcode = 1; -		} - -		return rcode; -	} -} - -U_BOOT_CMD( -	nand,	5,	1,	do_nand, -	"legacy NAND sub-system", -	"info  - show available NAND devices\n" -	"nand device [dev] - show or set current device\n" -	"nand read[.jffs2[s]]  addr off size\n" -	"nand write[.jffs2] addr off size - read/write `size' bytes starting\n" -	"    at offset `off' to/from memory address `addr'\n" -	"nand erase [clean] [off size] - erase `size' bytes from\n" -	"    offset `off' (entire device if not specified)\n" -	"nand bad - show bad blocks\n" -	"nand read.oob addr off size - read out-of-band data\n" -	"nand write.oob addr off size - read out-of-band data" -); - -int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) -{ -	char *boot_device = NULL; -	char *ep; -	int dev; -	ulong cnt; -	ulong addr; -	ulong offset = 0; -	image_header_t *hdr; -	int rcode = 0; -#if defined(CONFIG_FIT) -	const void *fit_hdr = NULL; -#endif - -	show_boot_progress (52); -	switch (argc) { -	case 1: -		addr = CONFIG_SYS_LOAD_ADDR; -		boot_device = getenv ("bootdevice"); -		break; -	case 2: -		addr = simple_strtoul(argv[1], NULL, 16); -		boot_device = getenv ("bootdevice"); -		break; -	case 3: -		addr = simple_strtoul(argv[1], NULL, 16); -		boot_device = argv[2]; -		break; -	case 4: -		addr = simple_strtoul(argv[1], NULL, 16); -		boot_device = argv[2]; -		offset = simple_strtoul(argv[3], NULL, 16); -		break; -	default: -		cmd_usage(cmdtp); -		show_boot_progress (-53); -		return 1; -	} - -	show_boot_progress (53); -	if (!boot_device) { -		puts ("\n** No boot device **\n"); -		show_boot_progress (-54); -		return 1; -	} -	show_boot_progress (54); - -	dev = simple_strtoul(boot_device, &ep, 16); - -	if ((dev >= CONFIG_SYS_MAX_NAND_DEVICE) || -	    (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) { -		printf ("\n** Device %d not available\n", dev); -		show_boot_progress (-55); -		return 1; -	} -	show_boot_progress (55); - -	printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n", -	    dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR, -	    offset); - -	if (nand_legacy_rw (nand_dev_desc + dev, NANDRW_READ, offset, -			    SECTORSIZE, NULL, (u_char *)addr)) { -		printf ("** Read error on %d\n", dev); -		show_boot_progress (-56); -		return 1; -	} -	show_boot_progress (56); - -	switch (genimg_get_format ((void *)addr)) { -	case IMAGE_FORMAT_LEGACY: -		hdr = (image_header_t *)addr; -		image_print_contents (hdr); - -		cnt = image_get_image_size (hdr); -		cnt -= SECTORSIZE; -		break; -#if defined(CONFIG_FIT) -	case IMAGE_FORMAT_FIT: -		fit_hdr = (const void *)addr; -		puts ("Fit image detected...\n"); - -		cnt = fit_get_size (fit_hdr); -		break; -#endif -	default: -		show_boot_progress (-57); -		puts ("** Unknown image type\n"); -		return 1; -	} -	show_boot_progress (57); - -	if (nand_legacy_rw (nand_dev_desc + dev, NANDRW_READ, -			    offset + SECTORSIZE, cnt, NULL, -			    (u_char *)(addr+SECTORSIZE))) { -		printf ("** Read error on %d\n", dev); -		show_boot_progress (-58); -		return 1; -	} -	show_boot_progress (58); - -#if defined(CONFIG_FIT) -	/* This cannot be done earlier, we need complete FIT image in RAM first */ -	if (genimg_get_format ((void *)addr) == IMAGE_FORMAT_FIT) { -		if (!fit_check_format (fit_hdr)) { -			show_boot_progress (-150); -			puts ("** Bad FIT image format\n"); -			return 1; -		} -		show_boot_progress (151); -		fit_print_contents (fit_hdr); -	} -#endif - -	/* Loading ok, update default load address */ - -	load_addr = addr; - -	/* Check if we should attempt an auto-start */ -	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { -		char *local_args[2]; -		extern int do_bootm (cmd_tbl_t *, int, int, char *[]); - -		local_args[0] = argv[0]; -		local_args[1] = NULL; - -		printf ("Automatic boot of image at addr 0x%08lx ...\n", addr); - -		do_bootm (cmdtp, 0, 1, local_args); -		rcode = 1; -	} -	return rcode; -} - -U_BOOT_CMD( -	nboot,	4,	1,	do_nandboot, -	"boot from NAND device", -	"loadAddr dev" -); - -#endif - -#endif /* CONFIG_NAND_LEGACY */ diff --git a/common/docecc.c b/common/docecc.c deleted file mode 100644 index 3412affc7..000000000 --- a/common/docecc.c +++ /dev/null @@ -1,513 +0,0 @@ -/* - * ECC algorithm for M-systems disk on chip. We use the excellent Reed - * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the - * GNU GPL License. The rest is simply to convert the disk on chip - * syndrom into a standard syndom. - * - * Author: Fabrice Bellard (fabrice.bellard@netgem.com) - * Copyright (C) 2000 Netgem S.A. - * - * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $ - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - */ - -#include <config.h> -#include <common.h> -#include <malloc.h> - -#undef ECC_DEBUG -#undef PSYCHO_DEBUG - -#include <linux/mtd/doc2000.h> - -/* need to undef it (from asm/termbits.h) */ -#undef B0 - -#define MM 10 /* Symbol size in bits */ -#define KK (1023-4) /* Number of data symbols per block */ -#define B0 510 /* First root of generator polynomial, alpha form */ -#define PRIM 1 /* power of alpha used to generate roots of generator poly */ -#define	NN ((1 << MM) - 1) - -typedef unsigned short dtype; - -/* 1+x^3+x^10 */ -static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; - -/* This defines the type used to store an element of the Galois Field - * used by the code. Make sure this is something larger than a char if - * if anything larger than GF(256) is used. - * - * Note: unsigned char will work up to GF(256) but int seems to run - * faster on the Pentium. - */ -typedef int gf; - -/* No legal value in index form represents zero, so - * we need a special value for this purpose - */ -#define A0	(NN) - -/* Compute x % NN, where NN is 2**MM - 1, - * without a slow divide - */ -static inline gf -modnn(int x) -{ -  while (x >= NN) { -    x -= NN; -    x = (x >> MM) + (x & NN); -  } -  return x; -} - -#define	CLEAR(a,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = 0;\ -} - -#define	COPY(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define	COPYDOWN(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define Ldec 1 - -/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] -   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i; -		   polynomial form -> index form  index_of[j=alpha**i] = i -   alpha=2 is the primitive element of GF(2**m) -   HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: -	Let @ represent the primitive element commonly called "alpha" that -   is the root of the primitive polynomial p(x). Then in GF(2^m), for any -   0 <= i <= 2^m-2, -	@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) -   where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation -   of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for -   example the polynomial representation of @^5 would be given by the binary -   representation of the integer "alpha_to[5]". -		   Similarily, index_of[] can be used as follows: -	As above, let @ represent the primitive element of GF(2^m) that is -   the root of the primitive polynomial p(x). In order to find the power -   of @ (alpha) that has the polynomial representation -	a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) -   we consider the integer "i" whose binary representation with a(0) being LSB -   and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry -   "index_of[i]". Now, @^index_of[i] is that element whose polynomial -    representation is (a(0),a(1),a(2),...,a(m-1)). -   NOTE: -	The element alpha_to[2^m-1] = 0 always signifying that the -   representation of "@^infinity" = 0 is (0,0,0,...,0). -	Similarily, the element index_of[0] = A0 always signifying -   that the power of alpha which has the polynomial representation -   (0,0,...,0) is "infinity". - -*/ - -static void -generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) -{ -  register int i, mask; - -  mask = 1; -  Alpha_to[MM] = 0; -  for (i = 0; i < MM; i++) { -    Alpha_to[i] = mask; -    Index_of[Alpha_to[i]] = i; -    /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ -    if (Pp[i] != 0) -      Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */ -    mask <<= 1;	/* single left-shift */ -  } -  Index_of[Alpha_to[MM]] = MM; -  /* -   * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by -   * poly-repr of @^i shifted left one-bit and accounting for any @^MM -   * term that may occur when poly-repr of @^i is shifted. -   */ -  mask >>= 1; -  for (i = MM + 1; i < NN; i++) { -    if (Alpha_to[i - 1] >= mask) -      Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); -    else -      Alpha_to[i] = Alpha_to[i - 1] << 1; -    Index_of[Alpha_to[i]] = i; -  } -  Index_of[0] = A0; -  Alpha_to[NN] = 0; -} - -/* - * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content - * of the feedback shift register after having processed the data and - * the ECC. - * - * Return number of symbols corrected, or -1 if codeword is illegal - * or uncorrectable. If eras_pos is non-null, the detected error locations - * are written back. NOTE! This array must be at least NN-KK elements long. - * The corrected data are written in eras_val[]. They must be xor with the data - * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . - * - * First "no_eras" erasures are declared by the calling program. Then, the - * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). - * If the number of channel errors is not greater than "t_after_eras" the - * transmitted codeword will be recovered. Details of algorithm can be found - * in R. Blahut's "Theory ... of Error-Correcting Codes". - - * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure - * will result. The decoder *could* check for this condition, but it would involve - * extra time on every decoding operation. - * */ -static int -eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], -	    gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], -	    int no_eras) -{ -  int deg_lambda, el, deg_omega; -  int i, j, r,k; -  gf u,q,tmp,num1,num2,den,discr_r; -  gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly -					 * and syndrome poly */ -  gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; -  gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; -  int syn_error, count; - -  syn_error = 0; -  for(i=0;i<NN-KK;i++) -      syn_error |= bb[i]; - -  if (!syn_error) { -    /* if remainder is zero, data[] is a codeword and there are no -     * errors to correct. So return data[] unmodified -     */ -    count = 0; -    goto finish; -  } - -  for(i=1;i<=NN-KK;i++){ -    s[i] = bb[0]; -  } -  for(j=1;j<NN-KK;j++){ -    if(bb[j] == 0) -      continue; -    tmp = Index_of[bb[j]]; - -    for(i=1;i<=NN-KK;i++) -      s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; -  } - -  /* undo the feedback register implicit multiplication and convert -     syndromes to index form */ - -  for(i=1;i<=NN-KK;i++) { -      tmp = Index_of[s[i]]; -      if (tmp != A0) -	  tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); -      s[i] = tmp; -  } - -  CLEAR(&lambda[1],NN-KK); -  lambda[0] = 1; - -  if (no_eras > 0) { -    /* Init lambda to be the erasure locator polynomial */ -    lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; -    for (i = 1; i < no_eras; i++) { -      u = modnn(PRIM*eras_pos[i]); -      for (j = i+1; j > 0; j--) { -	tmp = Index_of[lambda[j - 1]]; -	if(tmp != A0) -	  lambda[j] ^= Alpha_to[modnn(u + tmp)]; -      } -    } -#ifdef ECC_DEBUG -    /* Test code that verifies the erasure locator polynomial just constructed -       Needed only for decoder debugging. */ - -    /* find roots of the erasure location polynomial */ -    for(i=1;i<=no_eras;i++) -      reg[i] = Index_of[lambda[i]]; -    count = 0; -    for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { -      q = 1; -      for (j = 1; j <= no_eras; j++) -	if (reg[j] != A0) { -	  reg[j] = modnn(reg[j] + j); -	  q ^= Alpha_to[reg[j]]; -	} -      if (q != 0) -	continue; -      /* store root and error location number indices */ -      root[count] = i; -      loc[count] = k; -      count++; -    } -    if (count != no_eras) { -      printf("\n lambda(x) is WRONG\n"); -      count = -1; -      goto finish; -    } -#ifdef PSYCHO_DEBUG -    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); -    for (i = 0; i < count; i++) -      printf("%d ", loc[i]); -    printf("\n"); -#endif -#endif -  } -  for(i=0;i<NN-KK+1;i++) -    b[i] = Index_of[lambda[i]]; - -  /* -   * Begin Berlekamp-Massey algorithm to determine error+erasure -   * locator polynomial -   */ -  r = no_eras; -  el = no_eras; -  while (++r <= NN-KK) {	/* r is the step number */ -    /* Compute discrepancy at the r-th step in poly-form */ -    discr_r = 0; -    for (i = 0; i < r; i++){ -      if ((lambda[i] != 0) && (s[r - i] != A0)) { -	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; -      } -    } -    discr_r = Index_of[discr_r];	/* Index form */ -    if (discr_r == A0) { -      /* 2 lines below: B(x) <-- x*B(x) */ -      COPYDOWN(&b[1],b,NN-KK); -      b[0] = A0; -    } else { -      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ -      t[0] = lambda[0]; -      for (i = 0 ; i < NN-KK; i++) { -	if(b[i] != A0) -	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; -	else -	  t[i+1] = lambda[i+1]; -      } -      if (2 * el <= r + no_eras - 1) { -	el = r + no_eras - el; -	/* -	 * 2 lines below: B(x) <-- inv(discr_r) * -	 * lambda(x) -	 */ -	for (i = 0; i <= NN-KK; i++) -	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); -      } else { -	/* 2 lines below: B(x) <-- x*B(x) */ -	COPYDOWN(&b[1],b,NN-KK); -	b[0] = A0; -      } -      COPY(lambda,t,NN-KK+1); -    } -  } - -  /* Convert lambda to index form and compute deg(lambda(x)) */ -  deg_lambda = 0; -  for(i=0;i<NN-KK+1;i++){ -    lambda[i] = Index_of[lambda[i]]; -    if(lambda[i] != A0) -      deg_lambda = i; -  } -  /* -   * Find roots of the error+erasure locator polynomial by Chien -   * Search -   */ -  COPY(®[1],&lambda[1],NN-KK); -  count = 0;		/* Number of roots of lambda(x) */ -  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { -    q = 1; -    for (j = deg_lambda; j > 0; j--){ -      if (reg[j] != A0) { -	reg[j] = modnn(reg[j] + j); -	q ^= Alpha_to[reg[j]]; -      } -    } -    if (q != 0) -      continue; -    /* store root (index-form) and error location number */ -    root[count] = i; -    loc[count] = k; -    /* If we've already found max possible roots, -     * abort the search to save time -     */ -    if(++count == deg_lambda) -      break; -  } -  if (deg_lambda != count) { -    /* -     * deg(lambda) unequal to number of roots => uncorrectable -     * error detected -     */ -    count = -1; -    goto finish; -  } -  /* -   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo -   * x**(NN-KK)). in index form. Also find deg(omega). -   */ -  deg_omega = 0; -  for (i = 0; i < NN-KK;i++){ -    tmp = 0; -    j = (deg_lambda < i) ? deg_lambda : i; -    for(;j >= 0; j--){ -      if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) -	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; -    } -    if(tmp != 0) -      deg_omega = i; -    omega[i] = Index_of[tmp]; -  } -  omega[NN-KK] = A0; - -  /* -   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = -   * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form -   */ -  for (j = count-1; j >=0; j--) { -    num1 = 0; -    for (i = deg_omega; i >= 0; i--) { -      if (omega[i] != A0) -	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])]; -    } -    num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; -    den = 0; - -    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ -    for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { -      if(lambda[i+1] != A0) -	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; -    } -    if (den == 0) { -#ifdef ECC_DEBUG -      printf("\n ERROR: denominator = 0\n"); -#endif -      /* Convert to dual- basis */ -      count = -1; -      goto finish; -    } -    /* Apply error to data */ -    if (num1 != 0) { -	eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; -    } else { -	eras_val[j] = 0; -    } -  } - finish: -  for(i=0;i<count;i++) -      eras_pos[i] = loc[i]; -  return count; -} - -/***************************************************************************/ -/* The DOC specific code begins here */ - -#define SECTOR_SIZE 512 -/* The sector bytes are packed into NB_DATA MM bits words */ -#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) - -/* - * Correct the errors in 'sector[]' by using 'ecc1[]' which is the - * content of the feedback shift register applyied to the sector and - * the ECC. Return the number of errors corrected (and correct them in - * sector), or -1 if error - */ -int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) -{ -    int parity, i, nb_errors; -    gf bb[NN - KK + 1]; -    gf error_val[NN-KK]; -    int error_pos[NN-KK], pos, bitpos, index, val; -    dtype *Alpha_to, *Index_of; - -    /* init log and exp tables here to save memory. However, it is slower */ -    Alpha_to = malloc((NN + 1) * sizeof(dtype)); -    if (!Alpha_to) -	return -1; - -    Index_of = malloc((NN + 1) * sizeof(dtype)); -    if (!Index_of) { -	free(Alpha_to); -	return -1; -    } - -    generate_gf(Alpha_to, Index_of); - -    parity = ecc1[1]; - -    bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); -    bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); -    bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); -    bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); - -    nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, -			    error_val, error_pos, 0); -    if (nb_errors <= 0) -	goto the_end; - -    /* correct the errors */ -    for(i=0;i<nb_errors;i++) { -	pos = error_pos[i]; -	if (pos >= NB_DATA && pos < KK) { -	    nb_errors = -1; -	    goto the_end; -	} -	if (pos < NB_DATA) { -	    /* extract bit position (MSB first) */ -	    pos = 10 * (NB_DATA - 1 - pos) - 6; -	    /* now correct the following 10 bits. At most two bytes -	       can be modified since pos is even */ -	    index = (pos >> 3) ^ 1; -	    bitpos = pos & 7; -	    if ((index >= 0 && index < SECTOR_SIZE) || -		index == (SECTOR_SIZE + 1)) { -		val = error_val[i] >> (2 + bitpos); -		parity ^= val; -		if (index < SECTOR_SIZE) -		    sector[index] ^= val; -	    } -	    index = ((pos >> 3) + 1) ^ 1; -	    bitpos = (bitpos + 10) & 7; -	    if (bitpos == 0) -		bitpos = 8; -	    if ((index >= 0 && index < SECTOR_SIZE) || -		index == (SECTOR_SIZE + 1)) { -		val = error_val[i] << (8 - bitpos); -		parity ^= val; -		if (index < SECTOR_SIZE) -		    sector[index] ^= val; -	    } -	} -    } - -    /* use parity to test extra errors */ -    if ((parity & 0xff) != 0) -	nb_errors = -1; - - the_end: -    free(Alpha_to); -    free(Index_of); -    return nb_errors; -} diff --git a/common/env_nand.c b/common/env_nand.c index 90a1c4547..8052fb79e 100644 --- a/common/env_nand.c +++ b/common/env_nand.c @@ -57,10 +57,6 @@  #define CONFIG_ENV_RANGE	CONFIG_ENV_SIZE  #endif -int nand_legacy_rw (struct nand_chip* nand, int cmd, -	    size_t start, size_t len, -	    size_t * retlen, u_char * buf); -  /* references to names in env_common.c */  extern uchar default_environment[];  extern int default_environment_size; diff --git a/doc/README.nand b/doc/README.nand index b077d9ab3..8eedb6c4d 100644 --- a/doc/README.nand +++ b/doc/README.nand @@ -105,8 +105,7 @@ NOTE:  =====  The current NAND implementation is based on what is in recent -Linux kernels.  The old legacy implementation has been disabled, -and will be removed soon. +Linux kernels.  The old legacy implementation has been removed.  If you have board code which used CONFIG_NAND_LEGACY, you'll need  to convert to the current NAND interface for it to continue to work. diff --git a/doc/feature-removal-schedule.txt b/doc/feature-removal-schedule.txt index 9bbdc0a83..0238d97d2 100644 --- a/doc/feature-removal-schedule.txt +++ b/doc/feature-removal-schedule.txt @@ -56,11 +56,3 @@ Why:	Over time, a couple of files have sneaked in into the U-Boot  	for an old and probably incomplete list of such files.  Who:	Wolfgang Denk <wd@denx.de> and board maintainers - ---------------------------- - -What:	Legacy NAND code -When:	April 2009 -Why:	Legacy NAND code is deprecated.  Similar functionality exists in -	more recent NAND code ported from the Linux kernel. -Who:	Scott Wood <scottwood@freescale.com> diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 945a95445..89ccec280 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -26,14 +26,12 @@ include $(TOPDIR)/config.mk  LIB	:= $(obj)libnand.a  ifdef CONFIG_CMD_NAND -ifndef CONFIG_NAND_LEGACY  COBJS-y += nand.o  COBJS-y += nand_base.o  COBJS-y += nand_bbt.o  COBJS-y += nand_ecc.o  COBJS-y += nand_ids.o  COBJS-y += nand_util.o -endif  COBJS-$(CONFIG_NAND_ATMEL) += atmel_nand.o  COBJS-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c index e9dc4d1fd..edf3a099b 100644 --- a/drivers/mtd/nand/diskonchip.c +++ b/drivers/mtd/nand/diskonchip.c @@ -19,8 +19,6 @@  #include <common.h> -#if !defined(CONFIG_NAND_LEGACY) -  #include <linux/kernel.h>  #include <linux/init.h>  #include <linux/sched.h> @@ -1779,4 +1777,3 @@ module_exit(cleanup_nanddoc);  MODULE_LICENSE("GPL");  MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");  MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n"); -#endif diff --git a/drivers/mtd/nand_legacy/Makefile b/drivers/mtd/nand_legacy/Makefile deleted file mode 100644 index a1a9cc92b..000000000 --- a/drivers/mtd/nand_legacy/Makefile +++ /dev/null @@ -1,48 +0,0 @@ -# -# (C) Copyright 2006 -# Wolfgang Denk, DENX Software Engineering, wd@denx.de. -# -# See file CREDITS for list of people who contributed to this -# project. -# -# This program is free software; you can redistribute it and/or -# modify it under the terms of the GNU General Public License as -# published by the Free Software Foundation; either version 2 of -# the License, or (at your option) any later version. -# -# This program is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with this program; if not, write to the Free Software -# Foundation, Inc., 59 Temple Place, Suite 330, Boston, -# MA 02111-1307 USA -# - -include $(TOPDIR)/config.mk - -LIB	:= $(obj)libnand_legacy.a - -ifdef CONFIG_CMD_NAND -COBJS-$(CONFIG_NAND_LEGACY)	:= nand_legacy.o -endif - -COBJS	:= $(COBJS-y) -SRCS	:= $(COBJS:.o=.c) -OBJS	:= $(addprefix $(obj),$(COBJS)) - -all:	$(LIB) - -$(LIB):	$(obj).depend $(OBJS) -	$(AR) $(ARFLAGS) $@ $(OBJS) - -######################################################################### - -# defines $(obj).depend target -include $(SRCTREE)/rules.mk - -sinclude $(obj).depend - -######################################################################### diff --git a/drivers/mtd/nand_legacy/nand_legacy.c b/drivers/mtd/nand_legacy/nand_legacy.c deleted file mode 100644 index d9ae9c78b..000000000 --- a/drivers/mtd/nand_legacy/nand_legacy.c +++ /dev/null @@ -1,1610 +0,0 @@ -/* - * (C) 2006 Denx - * Driver for NAND support, Rick Bronson - * borrowed heavily from: - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> - * - * Added 16-bit nand support - * (C) 2004 Texas Instruments - */ - -#include <common.h> -#include <command.h> -#include <malloc.h> -#include <asm/io.h> -#include <watchdog.h> -#include <linux/mtd/nand_legacy.h> -#include <linux/mtd/nand_ids.h> -#include <jffs2/jffs2.h> - -#error Legacy NAND is deprecated.  Please convert to the current NAND interface. -#error This code will be removed outright in the next release. - -#ifdef CONFIG_OMAP1510 -void archflashwp(void *archdata, int wp); -#endif - -#define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1))) - -#undef	PSYCHO_DEBUG -#undef	NAND_DEBUG - -/* ****************** WARNING ********************* - * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will - * erase (or at least attempt to erase) blocks that are marked - * bad. This can be very handy if you are _sure_ that the block - * is OK, say because you marked a good block bad to test bad - * block handling and you are done testing, or if you have - * accidentally marked blocks bad. - * - * Erasing factory marked bad blocks is a _bad_ idea. If the - * erase succeeds there is no reliable way to find them again, - * and attempting to program or erase bad blocks can affect - * the data in _other_ (good) blocks. - */ -#define	 ALLOW_ERASE_BAD_DEBUG 0 - -#define CONFIG_MTD_NAND_ECC  /* enable ECC */ -#define CONFIG_MTD_NAND_ECC_JFFS2 - -/* bits for nand_legacy_rw() `cmd'; or together as needed */ -#define NANDRW_READ	0x01 -#define NANDRW_WRITE	0x00 -#define NANDRW_JFFS2	0x02 -#define NANDRW_JFFS2_SKIP	0x04 - - -/* - * Exported variables etc. - */ - -/* Definition of the out of band configuration structure */ -struct nand_oob_config { -	/* position of ECC bytes inside oob */ -	int ecc_pos[6]; -	/* position of  bad blk flag inside oob -1 = inactive */ -	int badblock_pos; -	/* position of ECC valid flag inside oob -1 = inactive */ -	int eccvalid_pos; -} oob_config = { {0}, 0, 0}; - -struct nand_chip nand_dev_desc[CONFIG_SYS_MAX_NAND_DEVICE] = {{0}}; - -int curr_device = -1; /* Current NAND Device */ - - -/* - * Exported functionss - */ -int nand_legacy_erase(struct nand_chip* nand, size_t ofs, -		     size_t len, int clean); -int nand_legacy_rw(struct nand_chip* nand, int cmd, -		  size_t start, size_t len, -		  size_t * retlen, u_char * buf); -void nand_print(struct nand_chip *nand); -void nand_print_bad(struct nand_chip *nand); -int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, -		 size_t * retlen, u_char * buf); -int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, -		 size_t * retlen, const u_char * buf); - -/* - * Internals - */ -static int NanD_WaitReady(struct nand_chip *nand, int ale_wait); -static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, -		 size_t * retlen, u_char *buf, u_char *ecc_code); -static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, -			   size_t * retlen, const u_char * buf, -			   u_char * ecc_code); -#ifdef CONFIG_MTD_NAND_ECC -static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc); -static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code); -#endif - - -/* - * - * Function definitions - * - */ - -/* returns 0 if block containing pos is OK: - *		valid erase block and - *		not marked bad, or no bad mark position is specified - * returns 1 if marked bad or otherwise invalid - */ -static int check_block (struct nand_chip *nand, unsigned long pos) -{ -	size_t retlen; -	uint8_t oob_data; -	uint16_t oob_data16[6]; -	int page0 = pos & (-nand->erasesize); -	int page1 = page0 + nand->oobblock; -	int badpos = oob_config.badblock_pos; - -	if (pos >= nand->totlen) -		return 1; - -	if (badpos < 0) -		return 0;	/* no way to check, assume OK */ - -	if (nand->bus16) { -		if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16) -		    || (oob_data16[2] & 0xff00) != 0xff00) -			return 1; -		if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16) -		    || (oob_data16[2] & 0xff00) != 0xff00) -			return 1; -	} else { -		/* Note - bad block marker can be on first or second page */ -		if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data) -		    || oob_data != 0xff -		    || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data) -		    || oob_data != 0xff) -			return 1; -	} - -	return 0; -} - -/* print bad blocks in NAND flash */ -void nand_print_bad(struct nand_chip* nand) -{ -	unsigned long pos; - -	for (pos = 0; pos < nand->totlen; pos += nand->erasesize) { -		if (check_block(nand, pos)) -			printf(" 0x%8.8lx\n", pos); -	} -	puts("\n"); -} - -/* cmd: 0: NANDRW_WRITE			write, fail on bad block - *	1: NANDRW_READ			read, fail on bad block - *	2: NANDRW_WRITE | NANDRW_JFFS2	write, skip bad blocks - *	3: NANDRW_READ | NANDRW_JFFS2	read, data all 0xff for bad blocks - *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks - */ -int nand_legacy_rw (struct nand_chip* nand, int cmd, -		   size_t start, size_t len, -		   size_t * retlen, u_char * buf) -{ -	int ret = 0, n, total = 0; -	char eccbuf[6]; -	/* eblk (once set) is the start of the erase block containing the -	 * data being processed. -	 */ -	unsigned long eblk = ~0;	/* force mismatch on first pass */ -	unsigned long erasesize = nand->erasesize; - -	while (len) { -		if ((start & (-erasesize)) != eblk) { -			/* have crossed into new erase block, deal with -			 * it if it is sure marked bad. -			 */ -			eblk = start & (-erasesize); /* start of block */ -			if (check_block(nand, eblk)) { -				if (cmd == (NANDRW_READ | NANDRW_JFFS2)) { -					while (len > 0 && -					       start - eblk < erasesize) { -						*(buf++) = 0xff; -						++start; -						++total; -						--len; -					} -					continue; -				} else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) { -					start += erasesize; -					continue; -				} else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) { -					/* skip bad block */ -					start += erasesize; -					continue; -				} else { -					ret = 1; -					break; -				} -			} -		} -		/* The ECC will not be calculated correctly if -		   less than 512 is written or read */ -		/* Is request at least 512 bytes AND it starts on a proper boundry */ -		if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200)) -			printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n"); - -		if (cmd & NANDRW_READ) { -			ret = nand_read_ecc(nand, start, -					   min(len, eblk + erasesize - start), -					   (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); -		} else { -			ret = nand_write_ecc(nand, start, -					    min(len, eblk + erasesize - start), -					    (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); -		} - -		if (ret) -			break; - -		start  += n; -		buf   += n; -		total += n; -		len   -= n; -	} -	if (retlen) -		*retlen = total; - -	return ret; -} - -void nand_print(struct nand_chip *nand) -{ -	if (nand->numchips > 1) { -		printf("%s at 0x%lx,\n" -		       "\t  %d chips %s, size %d MB, \n" -		       "\t  total size %ld MB, sector size %ld kB\n", -		       nand->name, nand->IO_ADDR, nand->numchips, -		       nand->chips_name, 1 << (nand->chipshift - 20), -		       nand->totlen >> 20, nand->erasesize >> 10); -	} -	else { -		printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR); -		print_size(nand->totlen, ", "); -		print_size(nand->erasesize, " sector)\n"); -	} -} - -/* ------------------------------------------------------------------------- */ - -static int NanD_WaitReady(struct nand_chip *nand, int ale_wait) -{ -	/* This is inline, to optimise the common case, where it's ready instantly */ -	int ret = 0; - -#ifdef NAND_NO_RB	/* in config file, shorter delays currently wrap accesses */ -	if(ale_wait) -		NAND_WAIT_READY(nand);	/* do the worst case 25us wait */ -	else -		udelay(10); -#else	/* has functional r/b signal */ -	NAND_WAIT_READY(nand); -#endif -	return ret; -} - -/* NanD_Command: Send a flash command to the flash chip */ - -static inline int NanD_Command(struct nand_chip *nand, unsigned char command) -{ -	unsigned long nandptr = nand->IO_ADDR; - -	/* Assert the CLE (Command Latch Enable) line to the flash chip */ -	NAND_CTL_SETCLE(nandptr); - -	/* Send the command */ -	WRITE_NAND_COMMAND(command, nandptr); - -	/* Lower the CLE line */ -	NAND_CTL_CLRCLE(nandptr); - -#ifdef NAND_NO_RB -	if(command == NAND_CMD_RESET){ -		u_char ret_val; -		NanD_Command(nand, NAND_CMD_STATUS); -		do { -			ret_val = READ_NAND(nandptr);/* wait till ready */ -		} while((ret_val & 0x40) != 0x40); -	} -#endif -	return NanD_WaitReady(nand, 0); -} - -/* NanD_Address: Set the current address for the flash chip */ - -static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs) -{ -	unsigned long nandptr; -	int i; - -	nandptr = nand->IO_ADDR; - -	/* Assert the ALE (Address Latch Enable) line to the flash chip */ -	NAND_CTL_SETALE(nandptr); - -	/* Send the address */ -	/* Devices with 256-byte page are addressed as: -	 * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) -	 * there is no device on the market with page256 -	 * and more than 24 bits. -	 * Devices with 512-byte page are addressed as: -	 * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) -	 * 25-31 is sent only if the chip support it. -	 * bit 8 changes the read command to be sent -	 * (NAND_CMD_READ0 or NAND_CMD_READ1). -	 */ - -	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) -		WRITE_NAND_ADDRESS(ofs, nandptr); - -	ofs = ofs >> nand->page_shift; - -	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { -		for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) { -			WRITE_NAND_ADDRESS(ofs, nandptr); -		} -	} - -	/* Lower the ALE line */ -	NAND_CTL_CLRALE(nandptr); - -	/* Wait for the chip to respond */ -	return NanD_WaitReady(nand, 1); -} - -/* NanD_SelectChip: Select a given flash chip within the current floor */ - -static inline int NanD_SelectChip(struct nand_chip *nand, int chip) -{ -	/* Wait for it to be ready */ -	return NanD_WaitReady(nand, 0); -} - -/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */ - -static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip) -{ -	int mfr, id, i; - -	NAND_ENABLE_CE(nand);  /* set pin low */ -	/* Reset the chip */ -	if (NanD_Command(nand, NAND_CMD_RESET)) { -#ifdef NAND_DEBUG -		printf("NanD_Command (reset) for %d,%d returned true\n", -		       floor, chip); -#endif -		NAND_DISABLE_CE(nand);  /* set pin high */ -		return 0; -	} - -	/* Read the NAND chip ID: 1. Send ReadID command */ -	if (NanD_Command(nand, NAND_CMD_READID)) { -#ifdef NAND_DEBUG -		printf("NanD_Command (ReadID) for %d,%d returned true\n", -		       floor, chip); -#endif -		NAND_DISABLE_CE(nand);  /* set pin high */ -		return 0; -	} - -	/* Read the NAND chip ID: 2. Send address byte zero */ -	NanD_Address(nand, ADDR_COLUMN, 0); - -	/* Read the manufacturer and device id codes from the device */ - -	mfr = READ_NAND(nand->IO_ADDR); - -	id = READ_NAND(nand->IO_ADDR); - -	NAND_DISABLE_CE(nand);  /* set pin high */ - -#ifdef NAND_DEBUG -	printf("NanD_Command (ReadID) got %x %x\n", mfr, id); -#endif -	if (mfr == 0xff || mfr == 0) { -		/* No response - return failure */ -		return 0; -	} - -	/* Check it's the same as the first chip we identified. -	 * M-Systems say that any given nand_chip device should only -	 * contain _one_ type of flash part, although that's not a -	 * hardware restriction. */ -	if (nand->mfr) { -		if (nand->mfr == mfr && nand->id == id) { -			return 1;	/* This is another the same the first */ -		} else { -			printf("Flash chip at floor %d, chip %d is different:\n", -			       floor, chip); -		} -	} - -	/* Print and store the manufacturer and ID codes. */ -	for (i = 0; nand_flash_ids[i].name != NULL; i++) { -		if (mfr == nand_flash_ids[i].manufacture_id && -		    id == nand_flash_ids[i].model_id) { -#ifdef NAND_DEBUG -			printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, " -			       "Chip ID: 0x%2.2X (%s)\n", mfr, id, -			       nand_flash_ids[i].name); -#endif -			if (!nand->mfr) { -				nand->mfr = mfr; -				nand->id = id; -				nand->chipshift = -				    nand_flash_ids[i].chipshift; -				nand->page256 = nand_flash_ids[i].page256; -				nand->eccsize = 256; -				if (nand->page256) { -					nand->oobblock = 256; -					nand->oobsize = 8; -					nand->page_shift = 8; -				} else { -					nand->oobblock = 512; -					nand->oobsize = 16; -					nand->page_shift = 9; -				} -				nand->pageadrlen = nand_flash_ids[i].pageadrlen; -				nand->erasesize  = nand_flash_ids[i].erasesize; -				nand->chips_name = nand_flash_ids[i].name; -				nand->bus16	 = nand_flash_ids[i].bus16; -				return 1; -			} -			return 0; -		} -	} - - -#ifdef NAND_DEBUG -	/* We haven't fully identified the chip. Print as much as we know. */ -	printf("Unknown flash chip found: %2.2X %2.2X\n", -	       id, mfr); -#endif - -	return 0; -} - -/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */ - -static void NanD_ScanChips(struct nand_chip *nand) -{ -	int floor, chip; -	int numchips[NAND_MAX_FLOORS]; -	int maxchips = CONFIG_SYS_NAND_MAX_CHIPS; -	int ret = 1; - -	nand->numchips = 0; -	nand->mfr = 0; -	nand->id = 0; - - -	/* For each floor, find the number of valid chips it contains */ -	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { -		ret = 1; -		numchips[floor] = 0; -		for (chip = 0; chip < maxchips && ret != 0; chip++) { - -			ret = NanD_IdentChip(nand, floor, chip); -			if (ret) { -				numchips[floor]++; -				nand->numchips++; -			} -		} -	} - -	/* If there are none at all that we recognise, bail */ -	if (!nand->numchips) { -#ifdef NAND_DEBUG -		puts ("No NAND flash chips recognised.\n"); -#endif -		return; -	} - -	/* Allocate an array to hold the information for each chip */ -	nand->chips = malloc(sizeof(struct Nand) * nand->numchips); -	if (!nand->chips) { -		puts ("No memory for allocating chip info structures\n"); -		return; -	} - -	ret = 0; - -	/* Fill out the chip array with {floor, chipno} for each -	 * detected chip in the device. */ -	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { -		for (chip = 0; chip < numchips[floor]; chip++) { -			nand->chips[ret].floor = floor; -			nand->chips[ret].chip = chip; -			nand->chips[ret].curadr = 0; -			nand->chips[ret].curmode = 0x50; -			ret++; -		} -	} - -	/* Calculate and print the total size of the device */ -	nand->totlen = nand->numchips * (1 << nand->chipshift); - -#ifdef NAND_DEBUG -	printf("%d flash chips found. Total nand_chip size: %ld MB\n", -	       nand->numchips, nand->totlen >> 20); -#endif -} - -/* we need to be fast here, 1 us per read translates to 1 second per meg */ -static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr) -{ -	unsigned long nandptr = nand->IO_ADDR; - -	NanD_Command (nand, NAND_CMD_READ0); - -	if (nand->bus16) { -		u16 val; - -		while (cntr >= 16) { -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			cntr -= 16; -		} - -		while (cntr > 0) { -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			cntr -= 2; -		} -	} else { -		while (cntr >= 16) { -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			cntr -= 16; -		} - -		while (cntr > 0) { -			*data_buf++ = READ_NAND (nandptr); -			cntr--; -		} -	} -} - -/* - * NAND read with ECC - */ -static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, -		 size_t * retlen, u_char *buf, u_char *ecc_code) -{ -	int col, page; -	int ecc_status = 0; -#ifdef CONFIG_MTD_NAND_ECC -	int j; -	int ecc_failed = 0; -	u_char *data_poi; -	u_char ecc_calc[6]; -#endif - -	/* Do not allow reads past end of device */ -	if ((start + len) > nand->totlen) { -		printf ("%s: Attempt read beyond end of device %x %x %x\n", -			__FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen); -		*retlen = 0; -		return -1; -	} - -	/* First we calculate the starting page */ -	/*page = shr(start, nand->page_shift);*/ -	page = start >> nand->page_shift; - -	/* Get raw starting column */ -	col = start & (nand->oobblock - 1); - -	/* Initialize return value */ -	*retlen = 0; - -	/* Select the NAND device */ -	NAND_ENABLE_CE(nand);  /* set pin low */ - -	/* Loop until all data read */ -	while (*retlen < len) { - -#ifdef CONFIG_MTD_NAND_ECC -		/* Do we have this page in cache ? */ -		if (nand->cache_page == page) -			goto readdata; -		/* Send the read command */ -		NanD_Command(nand, NAND_CMD_READ0); -		if (nand->bus16) { -			NanD_Address(nand, ADDR_COLUMN_PAGE, -				     (page << nand->page_shift) + (col >> 1)); -		} else { -			NanD_Address(nand, ADDR_COLUMN_PAGE, -				     (page << nand->page_shift) + col); -		} - -		/* Read in a page + oob data */ -		NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize); - -		/* copy data into cache, for read out of cache and if ecc fails */ -		if (nand->data_cache) { -			memcpy (nand->data_cache, nand->data_buf, -				nand->oobblock + nand->oobsize); -		} - -		/* Pick the ECC bytes out of the oob data */ -		for (j = 0; j < 6; j++) { -			ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])]; -		} - -		/* Calculate the ECC and verify it */ -		/* If block was not written with ECC, skip ECC */ -		if (oob_config.eccvalid_pos != -1 && -		    (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) { - -			nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]); -			switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) { -			case -1: -				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); -				ecc_failed++; -				break; -			case 1: -			case 2:	/* transfer ECC corrected data to cache */ -				if (nand->data_cache) -					memcpy (nand->data_cache, nand->data_buf, 256); -				break; -			} -		} - -		if (oob_config.eccvalid_pos != -1 && -		    nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) { - -			nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]); -			switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) { -			case -1: -				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); -				ecc_failed++; -				break; -			case 1: -			case 2:	/* transfer ECC corrected data to cache */ -				if (nand->data_cache) -					memcpy (&nand->data_cache[256], &nand->data_buf[256], 256); -				break; -			} -		} -readdata: -		/* Read the data from ECC data buffer into return buffer */ -		data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf; -		data_poi += col; -		if ((*retlen + (nand->oobblock - col)) >= len) { -			memcpy (buf + *retlen, data_poi, len - *retlen); -			*retlen = len; -		} else { -			memcpy (buf + *retlen, data_poi,  nand->oobblock - col); -			*retlen += nand->oobblock - col; -		} -		/* Set cache page address, invalidate, if ecc_failed */ -		nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1; - -		ecc_status += ecc_failed; -		ecc_failed = 0; - -#else -		/* Send the read command */ -		NanD_Command(nand, NAND_CMD_READ0); -		if (nand->bus16) { -			NanD_Address(nand, ADDR_COLUMN_PAGE, -				     (page << nand->page_shift) + (col >> 1)); -		} else { -			NanD_Address(nand, ADDR_COLUMN_PAGE, -				     (page << nand->page_shift) + col); -		} - -		/* Read the data directly into the return buffer */ -		if ((*retlen + (nand->oobblock - col)) >= len) { -			NanD_ReadBuf(nand, buf + *retlen, len - *retlen); -			*retlen = len; -			/* We're done */ -			continue; -		} else { -			NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col); -			*retlen += nand->oobblock - col; -			} -#endif -		/* For subsequent reads align to page boundary. */ -		col = 0; -		/* Increment page address */ -		page++; -	} - -	/* De-select the NAND device */ -	NAND_DISABLE_CE(nand);  /* set pin high */ - -	/* -	 * Return success, if no ECC failures, else -EIO -	 * fs driver will take care of that, because -	 * retlen == desired len and result == -EIO -	 */ -	return ecc_status ? -1 : 0; -} - -/* - *	Nand_page_program function is used for write and writev ! - */ -static int nand_write_page (struct nand_chip *nand, -			    int page, int col, int last, u_char * ecc_code) -{ - -	int i; -	unsigned long nandptr = nand->IO_ADDR; - -#ifdef CONFIG_MTD_NAND_ECC -#ifdef CONFIG_MTD_NAND_VERIFY_WRITE -	int ecc_bytes = (nand->oobblock == 512) ? 6 : 3; -#endif -#endif -	/* pad oob area */ -	for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++) -		nand->data_buf[i] = 0xff; - -#ifdef CONFIG_MTD_NAND_ECC -	/* Zero out the ECC array */ -	for (i = 0; i < 6; i++) -		ecc_code[i] = 0x00; - -	/* Read back previous written data, if col > 0 */ -	if (col) { -		NanD_Command (nand, NAND_CMD_READ0); -		if (nand->bus16) { -			NanD_Address (nand, ADDR_COLUMN_PAGE, -				      (page << nand->page_shift) + (col >> 1)); -		} else { -			NanD_Address (nand, ADDR_COLUMN_PAGE, -				      (page << nand->page_shift) + col); -		} - -		if (nand->bus16) { -			u16 val; - -			for (i = 0; i < col; i += 2) { -				val = READ_NAND (nandptr); -				nand->data_buf[i] = val & 0xff; -				nand->data_buf[i + 1] = val >> 8; -			} -		} else { -			for (i = 0; i < col; i++) -				nand->data_buf[i] = READ_NAND (nandptr); -		} -	} - -	/* Calculate and write the ECC if we have enough data */ -	if ((col < nand->eccsize) && (last >= nand->eccsize)) { -		nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0])); -		for (i = 0; i < 3; i++) { -			nand->data_buf[(nand->oobblock + -					oob_config.ecc_pos[i])] = ecc_code[i]; -		} -		if (oob_config.eccvalid_pos != -1) { -			nand->data_buf[nand->oobblock + -				       oob_config.eccvalid_pos] = 0xf0; -		} -	} - -	/* Calculate and write the second ECC if we have enough data */ -	if ((nand->oobblock == 512) && (last == nand->oobblock)) { -		nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3])); -		for (i = 3; i < 6; i++) { -			nand->data_buf[(nand->oobblock + -					oob_config.ecc_pos[i])] = ecc_code[i]; -		} -		if (oob_config.eccvalid_pos != -1) { -			nand->data_buf[nand->oobblock + -				       oob_config.eccvalid_pos] &= 0x0f; -		} -	} -#endif -	/* Prepad for partial page programming !!! */ -	for (i = 0; i < col; i++) -		nand->data_buf[i] = 0xff; - -	/* Postpad for partial page programming !!! oob is already padded */ -	for (i = last; i < nand->oobblock; i++) -		nand->data_buf[i] = 0xff; - -	/* Send command to begin auto page programming */ -	NanD_Command (nand, NAND_CMD_READ0); -	NanD_Command (nand, NAND_CMD_SEQIN); -	if (nand->bus16) { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + (col >> 1)); -	} else { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + col); -	} - -	/* Write out complete page of data */ -	if (nand->bus16) { -		for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) { -			WRITE_NAND (nand->data_buf[i] + -				    (nand->data_buf[i + 1] << 8), -				    nand->IO_ADDR); -		} -	} else { -		for (i = 0; i < (nand->oobblock + nand->oobsize); i++) -			WRITE_NAND (nand->data_buf[i], nand->IO_ADDR); -	} - -	/* Send command to actually program the data */ -	NanD_Command (nand, NAND_CMD_PAGEPROG); -	NanD_Command (nand, NAND_CMD_STATUS); -#ifdef NAND_NO_RB -	{ -		u_char ret_val; - -		do { -			ret_val = READ_NAND (nandptr);	/* wait till ready */ -		} while ((ret_val & 0x40) != 0x40); -	} -#endif -	/* See if device thinks it succeeded */ -	if (READ_NAND (nand->IO_ADDR) & 0x01) { -		printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__, -			page); -		return -1; -	} -#ifdef CONFIG_MTD_NAND_VERIFY_WRITE -	/* -	 * The NAND device assumes that it is always writing to -	 * a cleanly erased page. Hence, it performs its internal -	 * write verification only on bits that transitioned from -	 * 1 to 0. The device does NOT verify the whole page on a -	 * byte by byte basis. It is possible that the page was -	 * not completely erased or the page is becoming unusable -	 * due to wear. The read with ECC would catch the error -	 * later when the ECC page check fails, but we would rather -	 * catch it early in the page write stage. Better to write -	 * no data than invalid data. -	 */ - -	/* Send command to read back the page */ -	if (col < nand->eccsize) -		NanD_Command (nand, NAND_CMD_READ0); -	else -		NanD_Command (nand, NAND_CMD_READ1); -	if (nand->bus16) { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + (col >> 1)); -	} else { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + col); -	} - -	/* Loop through and verify the data */ -	if (nand->bus16) { -		for (i = col; i < last; i = +2) { -			if ((nand->data_buf[i] + -			     (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) { -				printf ("%s: Failed write verify, page 0x%08x ", -					__FUNCTION__, page); -				return -1; -			} -		} -	} else { -		for (i = col; i < last; i++) { -			if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) { -				printf ("%s: Failed write verify, page 0x%08x ", -					__FUNCTION__, page); -				return -1; -			} -		} -	} - -#ifdef CONFIG_MTD_NAND_ECC -	/* -	 * We also want to check that the ECC bytes wrote -	 * correctly for the same reasons stated above. -	 */ -	NanD_Command (nand, NAND_CMD_READOOB); -	if (nand->bus16) { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + (col >> 1)); -	} else { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + col); -	} -	if (nand->bus16) { -		for (i = 0; i < nand->oobsize; i += 2) { -			u16 val; - -			val = READ_NAND (nand->IO_ADDR); -			nand->data_buf[i] = val & 0xff; -			nand->data_buf[i + 1] = val >> 8; -		} -	} else { -		for (i = 0; i < nand->oobsize; i++) { -			nand->data_buf[i] = READ_NAND (nand->IO_ADDR); -		} -	} -	for (i = 0; i < ecc_bytes; i++) { -		if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) { -			printf ("%s: Failed ECC write " -				"verify, page 0x%08x, " -				"%6i bytes were succesful\n", -				__FUNCTION__, page, i); -			return -1; -		} -	} -#endif	/* CONFIG_MTD_NAND_ECC */ -#endif	/* CONFIG_MTD_NAND_VERIFY_WRITE */ -	return 0; -} - -static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, -			   size_t * retlen, const u_char * buf, u_char * ecc_code) -{ -	int i, page, col, cnt, ret = 0; - -	/* Do not allow write past end of device */ -	if ((to + len) > nand->totlen) { -		printf ("%s: Attempt to write past end of page\n", __FUNCTION__); -		return -1; -	} - -	/* Shift to get page */ -	page = ((int) to) >> nand->page_shift; - -	/* Get the starting column */ -	col = to & (nand->oobblock - 1); - -	/* Initialize return length value */ -	*retlen = 0; - -	/* Select the NAND device */ -#ifdef CONFIG_OMAP1510 -	archflashwp(0,0); -#endif -#ifdef CONFIG_SYS_NAND_WP -	NAND_WP_OFF(); -#endif - -	NAND_ENABLE_CE(nand);  /* set pin low */ - -	/* Check the WP bit */ -	NanD_Command(nand, NAND_CMD_STATUS); -	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { -		printf ("%s: Device is write protected!!!\n", __FUNCTION__); -		ret = -1; -		goto out; -	} - -	/* Loop until all data is written */ -	while (*retlen < len) { -		/* Invalidate cache, if we write to this page */ -		if (nand->cache_page == page) -			nand->cache_page = -1; - -		/* Write data into buffer */ -		if ((col + len) >= nand->oobblock) { -			for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) { -				nand->data_buf[i] = buf[(*retlen + cnt)]; -			} -		} else { -			for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) { -				nand->data_buf[i] = buf[(*retlen + cnt)]; -			} -		} -		/* We use the same function for write and writev !) */ -		ret = nand_write_page (nand, page, col, i, ecc_code); -		if (ret) -			goto out; - -		/* Next data start at page boundary */ -		col = 0; - -		/* Update written bytes count */ -		*retlen += cnt; - -		/* Increment page address */ -		page++; -	} - -	/* Return happy */ -	*retlen = len; - -out: -	/* De-select the NAND device */ -	NAND_DISABLE_CE(nand);  /* set pin high */ -#ifdef CONFIG_OMAP1510 -	archflashwp(0,1); -#endif -#ifdef CONFIG_SYS_NAND_WP -	NAND_WP_ON(); -#endif - -	return ret; -} - -/* read from the 16 bytes of oob data that correspond to a 512 byte - * page or 2 256-byte pages. - */ -int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, -			 size_t * retlen, u_char * buf) -{ -	int len256 = 0; -	struct Nand *mychip; -	int ret = 0; - -	mychip = &nand->chips[ofs >> nand->chipshift]; - -	/* update address for 2M x 8bit devices. OOB starts on the second */ -	/* page to maintain compatibility with nand_read_ecc. */ -	if (nand->page256) { -		if (!(ofs & 0x8)) -			ofs += 0x100; -		else -			ofs -= 0x8; -	} - -	NAND_ENABLE_CE(nand);  /* set pin low */ -	NanD_Command(nand, NAND_CMD_READOOB); -	if (nand->bus16) { -		NanD_Address(nand, ADDR_COLUMN_PAGE, -			     ((ofs >> nand->page_shift) << nand->page_shift) + -				((ofs & (nand->oobblock - 1)) >> 1)); -	} else { -		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); -	} - -	/* treat crossing 8-byte OOB data for 2M x 8bit devices */ -	/* Note: datasheet says it should automaticaly wrap to the */ -	/*       next OOB block, but it didn't work here. mf.      */ -	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { -		len256 = (ofs | 0x7) + 1 - ofs; -		NanD_ReadBuf(nand, buf, len256); - -		NanD_Command(nand, NAND_CMD_READOOB); -		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); -	} - -	NanD_ReadBuf(nand, &buf[len256], len - len256); - -	*retlen = len; -	/* Reading the full OOB data drops us off of the end of the page, -	 * causing the flash device to go into busy mode, so we need -	 * to wait until ready 11.4.1 and Toshiba TC58256FT nands */ - -	ret = NanD_WaitReady(nand, 1); -	NAND_DISABLE_CE(nand);  /* set pin high */ - -	return ret; - -} - -/* write to the 16 bytes of oob data that correspond to a 512 byte - * page or 2 256-byte pages. - */ -int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, -		  size_t * retlen, const u_char * buf) -{ -	int len256 = 0; -	int i; -	unsigned long nandptr = nand->IO_ADDR; - -#ifdef PSYCHO_DEBUG -	printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", -	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3], -	       buf[8], buf[9], buf[14],buf[15]); -#endif - -	NAND_ENABLE_CE(nand);  /* set pin low to enable chip */ - -	/* Reset the chip */ -	NanD_Command(nand, NAND_CMD_RESET); - -	/* issue the Read2 command to set the pointer to the Spare Data Area. */ -	NanD_Command(nand, NAND_CMD_READOOB); -	if (nand->bus16) { -		NanD_Address(nand, ADDR_COLUMN_PAGE, -			     ((ofs >> nand->page_shift) << nand->page_shift) + -				((ofs & (nand->oobblock - 1)) >> 1)); -	} else { -		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); -	} - -	/* update address for 2M x 8bit devices. OOB starts on the second */ -	/* page to maintain compatibility with nand_read_ecc. */ -	if (nand->page256) { -		if (!(ofs & 0x8)) -			ofs += 0x100; -		else -			ofs -= 0x8; -	} - -	/* issue the Serial Data In command to initial the Page Program process */ -	NanD_Command(nand, NAND_CMD_SEQIN); -	if (nand->bus16) { -		NanD_Address(nand, ADDR_COLUMN_PAGE, -			     ((ofs >> nand->page_shift) << nand->page_shift) + -				((ofs & (nand->oobblock - 1)) >> 1)); -	} else { -		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); -	} - -	/* treat crossing 8-byte OOB data for 2M x 8bit devices */ -	/* Note: datasheet says it should automaticaly wrap to the */ -	/*       next OOB block, but it didn't work here. mf.      */ -	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { -		len256 = (ofs | 0x7) + 1 - ofs; -		for (i = 0; i < len256; i++) -			WRITE_NAND(buf[i], nandptr); - -		NanD_Command(nand, NAND_CMD_PAGEPROG); -		NanD_Command(nand, NAND_CMD_STATUS); -#ifdef NAND_NO_RB -		{ u_char ret_val; -			do { -				ret_val = READ_NAND(nandptr); /* wait till ready */ -			} while ((ret_val & 0x40) != 0x40); -		} -#endif -		if (READ_NAND(nandptr) & 1) { -			puts ("Error programming oob data\n"); -			/* There was an error */ -			NAND_DISABLE_CE(nand);  /* set pin high */ -			*retlen = 0; -			return -1; -		} -		NanD_Command(nand, NAND_CMD_SEQIN); -		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); -	} - -	if (nand->bus16) { -		for (i = len256; i < len; i += 2) { -			WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr); -		} -	} else { -		for (i = len256; i < len; i++) -			WRITE_NAND(buf[i], nandptr); -	} - -	NanD_Command(nand, NAND_CMD_PAGEPROG); -	NanD_Command(nand, NAND_CMD_STATUS); -#ifdef NAND_NO_RB -	{	u_char ret_val; -		do { -			ret_val = READ_NAND(nandptr); /* wait till ready */ -		} while ((ret_val & 0x40) != 0x40); -	} -#endif -	if (READ_NAND(nandptr) & 1) { -		puts ("Error programming oob data\n"); -		/* There was an error */ -		NAND_DISABLE_CE(nand);  /* set pin high */ -		*retlen = 0; -		return -1; -	} - -	NAND_DISABLE_CE(nand);  /* set pin high */ -	*retlen = len; -	return 0; - -} - -int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean) -{ -	/* This is defined as a structure so it will work on any system -	 * using native endian jffs2 (the default). -	 */ -	static struct jffs2_unknown_node clean_marker = { -		JFFS2_MAGIC_BITMASK, -		JFFS2_NODETYPE_CLEANMARKER, -		8		/* 8 bytes in this node */ -	}; -	unsigned long nandptr; -	struct Nand *mychip; -	int ret = 0; - -	if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) { -		printf ("Offset and size must be sector aligned, erasesize = %d\n", -			(int) nand->erasesize); -		return -1; -	} - -	nandptr = nand->IO_ADDR; - -	/* Select the NAND device */ -#ifdef CONFIG_OMAP1510 -	archflashwp(0,0); -#endif -#ifdef CONFIG_SYS_NAND_WP -	NAND_WP_OFF(); -#endif -    NAND_ENABLE_CE(nand);  /* set pin low */ - -	/* Check the WP bit */ -	NanD_Command(nand, NAND_CMD_STATUS); -	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { -		printf ("nand_write_ecc: Device is write protected!!!\n"); -		ret = -1; -		goto out; -	} - -	/* Check the WP bit */ -	NanD_Command(nand, NAND_CMD_STATUS); -	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { -		printf ("%s: Device is write protected!!!\n", __FUNCTION__); -		ret = -1; -		goto out; -	} - -	/* FIXME: Do nand in the background. Use timers or schedule_task() */ -	while(len) { -		/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/ -		mychip = &nand->chips[ofs >> nand->chipshift]; - -		/* always check for bad block first, genuine bad blocks -		 * should _never_  be erased. -		 */ -		if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) { -			/* Select the NAND device */ -			NAND_ENABLE_CE(nand);  /* set pin low */ - -			NanD_Command(nand, NAND_CMD_ERASE1); -			NanD_Address(nand, ADDR_PAGE, ofs); -			NanD_Command(nand, NAND_CMD_ERASE2); - -			NanD_Command(nand, NAND_CMD_STATUS); - -#ifdef NAND_NO_RB -			{	u_char ret_val; -				do { -					ret_val = READ_NAND(nandptr); /* wait till ready */ -				} while ((ret_val & 0x40) != 0x40); -			} -#endif -			if (READ_NAND(nandptr) & 1) { -				printf ("%s: Error erasing at 0x%lx\n", -					__FUNCTION__, (long)ofs); -				/* There was an error */ -				ret = -1; -				goto out; -			} -			if (clean) { -				int n;	/* return value not used */ -				int p, l; - -				/* clean marker position and size depend -				 * on the page size, since 256 byte pages -				 * only have 8 bytes of oob data -				 */ -				if (nand->page256) { -					p = NAND_JFFS2_OOB8_FSDAPOS; -					l = NAND_JFFS2_OOB8_FSDALEN; -				} else { -					p = NAND_JFFS2_OOB16_FSDAPOS; -					l = NAND_JFFS2_OOB16_FSDALEN; -				} - -				ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n, -						     (u_char *)&clean_marker); -				/* quit here if write failed */ -				if (ret) -					goto out; -			} -		} -		ofs += nand->erasesize; -		len -= nand->erasesize; -	} - -out: -	/* De-select the NAND device */ -	NAND_DISABLE_CE(nand);  /* set pin high */ -#ifdef CONFIG_OMAP1510 -	archflashwp(0,1); -#endif -#ifdef CONFIG_SYS_NAND_WP -	NAND_WP_ON(); -#endif - -	return ret; -} - - -static inline int nandcheck(unsigned long potential, unsigned long physadr) -{ -	return 0; -} - -unsigned long nand_probe(unsigned long physadr) -{ -	struct nand_chip *nand = NULL; -	int i = 0, ChipID = 1; - -#ifdef CONFIG_MTD_NAND_ECC_JFFS2 -	oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0; -	oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1; -	oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2; -	oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3; -	oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4; -	oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5; -	oob_config.eccvalid_pos = 4; -#else -	oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0; -	oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1; -	oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2; -	oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3; -	oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4; -	oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5; -	oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS; -#endif -	oob_config.badblock_pos = 5; - -	for (i=0; i<CONFIG_SYS_MAX_NAND_DEVICE; i++) { -		if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) { -			nand = &nand_dev_desc[i]; -			break; -		} -	} -	if (!nand) -		return (0); - -	memset((char *)nand, 0, sizeof(struct nand_chip)); - -	nand->IO_ADDR = physadr; -	nand->cache_page = -1;  /* init the cache page */ -	NanD_ScanChips(nand); - -	if (nand->totlen == 0) { -		/* no chips found, clean up and quit */ -		memset((char *)nand, 0, sizeof(struct nand_chip)); -		nand->ChipID = NAND_ChipID_UNKNOWN; -		return (0); -	} - -	nand->ChipID = ChipID; -	if (curr_device == -1) -		curr_device = i; - -	nand->data_buf = malloc (nand->oobblock + nand->oobsize); -	if (!nand->data_buf) { -		puts ("Cannot allocate memory for data structures.\n"); -		return (0); -	} - -	return (nand->totlen); -} - -#ifdef CONFIG_MTD_NAND_ECC -/* - * Pre-calculated 256-way 1 byte column parity - */ -static const u_char nand_ecc_precalc_table[] = { -	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, -	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, -	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, -	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, -	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, -	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, -	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, -	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, -	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, -	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, -	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, -	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, -	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, -	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, -	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, -	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, -	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, -	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, -	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, -	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, -	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, -	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, -	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, -	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, -	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, -	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, -	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, -	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, -	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, -	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, -	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, -	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 -}; - - -/* - * Creates non-inverted ECC code from line parity - */ -static void nand_trans_result(u_char reg2, u_char reg3, -	u_char *ecc_code) -{ -	u_char a, b, i, tmp1, tmp2; - -	/* Initialize variables */ -	a = b = 0x80; -	tmp1 = tmp2 = 0; - -	/* Calculate first ECC byte */ -	for (i = 0; i < 4; i++) { -		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */ -			tmp1 |= b; -		b >>= 1; -		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */ -			tmp1 |= b; -		b >>= 1; -		a >>= 1; -	} - -	/* Calculate second ECC byte */ -	b = 0x80; -	for (i = 0; i < 4; i++) { -		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */ -			tmp2 |= b; -		b >>= 1; -		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */ -			tmp2 |= b; -		b >>= 1; -		a >>= 1; -	} - -	/* Store two of the ECC bytes */ -	ecc_code[0] = tmp1; -	ecc_code[1] = tmp2; -} - -/* - * Calculate 3 byte ECC code for 256 byte block - */ -static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) -{ -	u_char idx, reg1, reg3; -	int j; - -	/* Initialize variables */ -	reg1 = reg3 = 0; -	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; - -	/* Build up column parity */ -	for(j = 0; j < 256; j++) { - -		/* Get CP0 - CP5 from table */ -		idx = nand_ecc_precalc_table[dat[j]]; -		reg1 ^= idx; - -		/* All bit XOR = 1 ? */ -		if (idx & 0x40) { -			reg3 ^= (u_char) j; -		} -	} - -	/* Create non-inverted ECC code from line parity */ -	nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code); - -	/* Calculate final ECC code */ -	ecc_code[0] = ~ecc_code[0]; -	ecc_code[1] = ~ecc_code[1]; -	ecc_code[2] = ((~reg1) << 2) | 0x03; -} - -/* - * Detect and correct a 1 bit error for 256 byte block - */ -static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) -{ -	u_char a, b, c, d1, d2, d3, add, bit, i; - -	/* Do error detection */ -	d1 = calc_ecc[0] ^ read_ecc[0]; -	d2 = calc_ecc[1] ^ read_ecc[1]; -	d3 = calc_ecc[2] ^ read_ecc[2]; - -	if ((d1 | d2 | d3) == 0) { -		/* No errors */ -		return 0; -	} else { -		a = (d1 ^ (d1 >> 1)) & 0x55; -		b = (d2 ^ (d2 >> 1)) & 0x55; -		c = (d3 ^ (d3 >> 1)) & 0x54; - -		/* Found and will correct single bit error in the data */ -		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { -			c = 0x80; -			add = 0; -			a = 0x80; -			for (i=0; i<4; i++) { -				if (d1 & c) -					add |= a; -				c >>= 2; -				a >>= 1; -			} -			c = 0x80; -			for (i=0; i<4; i++) { -				if (d2 & c) -					add |= a; -				c >>= 2; -				a >>= 1; -			} -			bit = 0; -			b = 0x04; -			c = 0x80; -			for (i=0; i<3; i++) { -				if (d3 & c) -					bit |= b; -				c >>= 2; -				b >>= 1; -			} -			b = 0x01; -			a = dat[add]; -			a ^= (b << bit); -			dat[add] = a; -			return 1; -		} -		else { -			i = 0; -			while (d1) { -				if (d1 & 0x01) -					++i; -				d1 >>= 1; -			} -			while (d2) { -				if (d2 & 0x01) -					++i; -				d2 >>= 1; -			} -			while (d3) { -				if (d3 & 0x01) -					++i; -				d3 >>= 1; -			} -			if (i == 1) { -				/* ECC Code Error Correction */ -				read_ecc[0] = calc_ecc[0]; -				read_ecc[1] = calc_ecc[1]; -				read_ecc[2] = calc_ecc[2]; -				return 2; -			} -			else { -				/* Uncorrectable Error */ -				return -1; -			} -		} -	} - -	/* Should never happen */ -	return -1; -} - -#endif - -#ifdef CONFIG_JFFS2_NAND -int read_jffs2_nand(size_t start, size_t len, -		size_t * retlen, u_char * buf, int nanddev) -{ -	return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2, -			start, len, retlen, buf); -} -#endif /* CONFIG_JFFS2_NAND */ diff --git a/fs/jffs2/jffs2_1pass.c b/fs/jffs2/jffs2_1pass.c index 11b66ab4b..8c9e2eb42 100644 --- a/fs/jffs2/jffs2_1pass.c +++ b/fs/jffs2/jffs2_1pass.c @@ -146,11 +146,7 @@ static struct part_info *current_part;  #if (defined(CONFIG_JFFS2_NAND) && \       defined(CONFIG_CMD_NAND) ) -#if defined(CONFIG_NAND_LEGACY) -#include <linux/mtd/nand_legacy.h> -#else  #include <nand.h> -#endif  /*   * Support for jffs2 on top of NAND-flash   * @@ -161,12 +157,6 @@ static struct part_info *current_part;   *   */ -#if defined(CONFIG_NAND_LEGACY) -/* this one defined in nand_legacy.c */ -int read_jffs2_nand(size_t start, size_t len, -		size_t * retlen, u_char * buf, int nanddev); -#endif -  #define NAND_PAGE_SIZE 512  #define NAND_PAGE_SHIFT 9  #define NAND_PAGE_MASK (~(NAND_PAGE_SIZE-1)) @@ -201,15 +191,6 @@ static int read_nand_cached(u32 off, u32 size, u_char *buf)  				}  			} -#if defined(CONFIG_NAND_LEGACY) -			if (read_jffs2_nand(nand_cache_off, NAND_CACHE_SIZE, -						&retlen, nand_cache, id->num) < 0 || -					retlen != NAND_CACHE_SIZE) { -				printf("read_nand_cached: error reading nand off %#x size %d bytes\n", -						nand_cache_off, NAND_CACHE_SIZE); -				return -1; -			} -#else  			retlen = NAND_CACHE_SIZE;  			if (nand_read(&nand_info[id->num], nand_cache_off,  						&retlen, nand_cache) != 0 || @@ -218,7 +199,6 @@ static int read_nand_cached(u32 off, u32 size, u_char *buf)  						nand_cache_off, NAND_CACHE_SIZE);  				return -1;  			} -#endif  		}  		cpy_bytes = nand_cache_off + NAND_CACHE_SIZE - (off + bytes_read);  		if (cpy_bytes > size - bytes_read) diff --git a/fs/jffs2/jffs2_nand_1pass.c b/fs/jffs2/jffs2_nand_1pass.c index 6eb674550..fe8c70d91 100644 --- a/fs/jffs2/jffs2_nand_1pass.c +++ b/fs/jffs2/jffs2_nand_1pass.c @@ -1,7 +1,5 @@  #include <common.h> -#if !defined(CONFIG_NAND_LEGACY) -  #include <malloc.h>  #include <linux/stat.h>  #include <linux/time.h> @@ -1034,5 +1032,3 @@ jffs2_1pass_info(struct part_info * part)  	}  	return 1;  } - -#endif diff --git a/include/linux/mtd/nand_ids.h b/include/linux/mtd/nand_ids.h deleted file mode 100644 index e7aa26df0..000000000 --- a/include/linux/mtd/nand_ids.h +++ /dev/null @@ -1,60 +0,0 @@ -/* - *  u-boot/include/linux/mtd/nand_ids.h - * - *  Copyright (c) 2000 David Woodhouse <dwmw2@mvhi.com> - *                     Steven J. Hill <sjhill@cotw.com> - * - * $Id: nand_ids.h,v 1.1 2000/10/13 16:16:26 mdeans Exp $ - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - *  Info: - *   Contains standard defines and IDs for NAND flash devices - * - *  Changelog: - *   01-31-2000 DMW     Created - *   09-18-2000 SJH     Moved structure out of the Disk-On-Chip drivers - *			so it can be used by other NAND flash device - *			drivers. I also changed the copyright since none - *			of the original contents of this file are specific - *			to DoC devices. David can whack me with a baseball - *			bat later if I did something naughty. - *   10-11-2000 SJH     Added private NAND flash structure for driver - *   2000-10-13 BE      Moved out of 'nand.h' - avoids duplication. - */ - -#ifndef __LINUX_MTD_NAND_IDS_H -#define __LINUX_MTD_NAND_IDS_H - -#ifndef CONFIG_NAND_LEGACY -#error This module is for the legacy NAND support -#endif - -static struct nand_flash_dev nand_flash_ids[] = { -	{"Toshiba TC5816BDC",     NAND_MFR_TOSHIBA, 0x64, 21, 1, 2, 0x1000, 0}, -	{"Toshiba TC5832DC",      NAND_MFR_TOSHIBA, 0x6b, 22, 0, 2, 0x2000, 0}, -	{"Toshiba TH58V128DC",    NAND_MFR_TOSHIBA, 0x73, 24, 0, 2, 0x4000, 0}, -	{"Toshiba TC58256FT/DC",  NAND_MFR_TOSHIBA, 0x75, 25, 0, 2, 0x4000, 0}, -	{"Toshiba TH58512FT",     NAND_MFR_TOSHIBA, 0x76, 26, 0, 3, 0x4000, 0}, -	{"Toshiba TC58V32DC",     NAND_MFR_TOSHIBA, 0xe5, 22, 0, 2, 0x2000, 0}, -	{"Toshiba TC58V64AFT/DC", NAND_MFR_TOSHIBA, 0xe6, 23, 0, 2, 0x2000, 0}, -	{"Toshiba TC58V16BDC",    NAND_MFR_TOSHIBA, 0xea, 21, 1, 2, 0x1000, 0}, -	{"Toshiba TH58100FT",     NAND_MFR_TOSHIBA, 0x79, 27, 0, 3, 0x4000, 0}, -	{"Samsung KM29N16000",    NAND_MFR_SAMSUNG, 0x64, 21, 1, 2, 0x1000, 0}, -	{"Samsung unknown 4Mb",   NAND_MFR_SAMSUNG, 0x6b, 22, 0, 2, 0x2000, 0}, -	{"Samsung KM29U128T",     NAND_MFR_SAMSUNG, 0x73, 24, 0, 2, 0x4000, 0}, -	{"Samsung KM29U256T",     NAND_MFR_SAMSUNG, 0x75, 25, 0, 2, 0x4000, 0}, -	{"Samsung unknown 64Mb",  NAND_MFR_SAMSUNG, 0x76, 26, 0, 3, 0x4000, 0}, -	{"Samsung KM29W32000",    NAND_MFR_SAMSUNG, 0xe3, 22, 0, 2, 0x2000, 0}, -	{"Samsung unknown 4Mb",   NAND_MFR_SAMSUNG, 0xe5, 22, 0, 2, 0x2000, 0}, -	{"Samsung KM29U64000",    NAND_MFR_SAMSUNG, 0xe6, 23, 0, 2, 0x2000, 0}, -	{"Samsung KM29W16000",    NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0}, -	{"Samsung K9F5616Q0C",    NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1}, -	{"Samsung K9K1216Q0C",    NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1}, -	{"Samsung K9F1G08U0M",    NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0}, -	{NULL,} -}; - -#endif /* __LINUX_MTD_NAND_IDS_H */ diff --git a/include/linux/mtd/nand_legacy.h b/include/linux/mtd/nand_legacy.h deleted file mode 100644 index 433444814..000000000 --- a/include/linux/mtd/nand_legacy.h +++ /dev/null @@ -1,196 +0,0 @@ -/* - *  linux/include/linux/mtd/nand.h - * - *  Copyright (c) 2000 David Woodhouse <dwmw2@mvhi.com> - *                     Steven J. Hill <sjhill@cotw.com> - *		       Thomas Gleixner <gleixner@autronix.de> - * - * $Id: nand.h,v 1.7 2003/07/24 23:30:46 a0384864 Exp $ - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License version 2 as - * published by the Free Software Foundation. - * - *  Info: - *   Contains standard defines and IDs for NAND flash devices - * - *  Changelog: - *   01-31-2000 DMW     Created - *   09-18-2000 SJH     Moved structure out of the Disk-On-Chip drivers - *			so it can be used by other NAND flash device - *			drivers. I also changed the copyright since none - *			of the original contents of this file are specific - *			to DoC devices. David can whack me with a baseball - *			bat later if I did something naughty. - *   10-11-2000 SJH     Added private NAND flash structure for driver - *   10-24-2000 SJH     Added prototype for 'nand_scan' function - *   10-29-2001 TG	changed nand_chip structure to support - *			hardwarespecific function for accessing control lines - *   02-21-2002 TG	added support for different read/write adress and - *			ready/busy line access function - *   02-26-2002 TG	added chip_delay to nand_chip structure to optimize - *			command delay times for different chips - *   04-28-2002 TG	OOB config defines moved from nand.c to avoid duplicate - *			defines in jffs2/wbuf.c - */ -#ifndef __LINUX_MTD_NAND_LEGACY_H -#define __LINUX_MTD_NAND_LEGACY_H - -#ifndef CONFIG_NAND_LEGACY -#error This module is for the legacy NAND support -#endif - -/* The maximum number of NAND chips in an array */ -#ifndef CONFIG_SYS_NAND_MAX_CHIPS -#define CONFIG_SYS_NAND_MAX_CHIPS	1 -#endif - -/* - * Standard NAND flash commands - */ -#define NAND_CMD_READ0		0 -#define NAND_CMD_READ1		1 -#define NAND_CMD_PAGEPROG	0x10 -#define NAND_CMD_READOOB	0x50 -#define NAND_CMD_ERASE1		0x60 -#define NAND_CMD_STATUS		0x70 -#define NAND_CMD_SEQIN		0x80 -#define NAND_CMD_READID		0x90 -#define NAND_CMD_ERASE2		0xd0 -#define NAND_CMD_RESET		0xff - -/* - * NAND Private Flash Chip Data - * - * Structure overview: - * - *  IO_ADDR - address to access the 8 I/O lines of the flash device - * - *  hwcontrol - hardwarespecific function for accesing control-lines - * - *  dev_ready - hardwarespecific function for accesing device ready/busy line - * - *  chip_lock - spinlock used to protect access to this structure - * - *  wq - wait queue to sleep on if a NAND operation is in progress - * - *  state - give the current state of the NAND device - * - *  page_shift - number of address bits in a page (column address bits) - * - *  data_buf - data buffer passed to/from MTD user modules - * - *  data_cache - data cache for redundant page access and shadow for - *		 ECC failure - * - *  ecc_code_buf - used only for holding calculated or read ECCs for - *                 a page read or written when ECC is in use - * - *  reserved - padding to make structure fall on word boundary if - *             when ECC is in use - */ -struct Nand { -	char floor, chip; -	unsigned long curadr; -	unsigned char curmode; -	/* Also some erase/write/pipeline info when we get that far */ -}; - -struct nand_chip { -	int		page_shift; -	u_char		*data_buf; -	u_char		*data_cache; -	int		cache_page; -	u_char		ecc_code_buf[6]; -	u_char		reserved[2]; -	char ChipID; /* Type of DiskOnChip */ -	struct Nand *chips; -	int chipshift; -	char* chips_name; -	unsigned long erasesize; -	unsigned long mfr; /* Flash IDs - only one type of flash per device */ -	unsigned long id; -	char* name; -	int numchips; -	char page256; -	char pageadrlen; -	unsigned long IO_ADDR;  /* address to access the 8 I/O lines to the flash device */ -	unsigned long totlen; -	uint oobblock;  /* Size of OOB blocks (e.g. 512) */ -	uint oobsize;   /* Amount of OOB data per block (e.g. 16) */ -	uint eccsize; -	int bus16; -}; - -/* - * NAND Flash Manufacturer ID Codes - */ -#define NAND_MFR_TOSHIBA	0x98 -#define NAND_MFR_SAMSUNG	0xec - -/* - * NAND Flash Device ID Structure - * - * Structure overview: - * - *  name - Complete name of device - * - *  manufacture_id - manufacturer ID code of device. - * - *  model_id - model ID code of device. - * - *  chipshift - total number of address bits for the device which - *              is used to calculate address offsets and the total - *              number of bytes the device is capable of. - * - *  page256 - denotes if flash device has 256 byte pages or not. - * - *  pageadrlen - number of bytes minus one needed to hold the - *               complete address into the flash array. Keep in - *               mind that when a read or write is done to a - *               specific address, the address is input serially - *               8 bits at a time. This structure member is used - *               by the read/write routines as a loop index for - *               shifting the address out 8 bits at a time. - * - *  erasesize - size of an erase block in the flash device. - */ -struct nand_flash_dev { -	char * name; -	int manufacture_id; -	int model_id; -	int chipshift; -	char page256; -	char pageadrlen; -	unsigned long erasesize; -	int bus16; -}; - -/* -* Constants for oob configuration -*/ -#define NAND_NOOB_ECCPOS0		0 -#define NAND_NOOB_ECCPOS1		1 -#define NAND_NOOB_ECCPOS2		2 -#define NAND_NOOB_ECCPOS3		3 -#define NAND_NOOB_ECCPOS4		6 -#define NAND_NOOB_ECCPOS5		7 -#define NAND_NOOB_BADBPOS		-1 -#define NAND_NOOB_ECCVPOS		-1 - -#define NAND_JFFS2_OOB_ECCPOS0		0 -#define NAND_JFFS2_OOB_ECCPOS1		1 -#define NAND_JFFS2_OOB_ECCPOS2		2 -#define NAND_JFFS2_OOB_ECCPOS3		3 -#define NAND_JFFS2_OOB_ECCPOS4		6 -#define NAND_JFFS2_OOB_ECCPOS5		7 -#define NAND_JFFS2_OOB_BADBPOS		5 -#define NAND_JFFS2_OOB_ECCVPOS		4 - -#define NAND_JFFS2_OOB8_FSDAPOS		6 -#define NAND_JFFS2_OOB16_FSDAPOS	8 -#define NAND_JFFS2_OOB8_FSDALEN		2 -#define NAND_JFFS2_OOB16_FSDALEN	8 - -unsigned long nand_probe(unsigned long physadr); -#endif /* __LINUX_MTD_NAND_LEGACY_H */ diff --git a/include/nand.h b/include/nand.h index 23f3ca1db..2a81597a6 100644 --- a/include/nand.h +++ b/include/nand.h @@ -26,7 +26,6 @@  extern void nand_init(void); -#ifndef CONFIG_NAND_LEGACY  #include <linux/mtd/compat.h>  #include <linux/mtd/mtd.h>  #include <linux/mtd/nand.h> @@ -130,5 +129,4 @@ void board_nand_select_device(struct nand_chip *nand, int chip);  __attribute__((noreturn)) void nand_boot(void); -#endif /* !CONFIG_NAND_LEGACY */  #endif diff --git a/lib_generic/crc32.c b/lib_generic/crc32.c index 3927ce13c..b27048cee 100644 --- a/lib_generic/crc32.c +++ b/lib_generic/crc32.c @@ -172,9 +172,7 @@ uint32_t ZEXPORT crc32 (uint32_t crc, const Bytef *buf, uInt len)      return crc ^ 0xffffffffL;  } -#if defined(CONFIG_CMD_JFFS2) || \ -	(defined(CONFIG_CMD_NAND) \ -	&& !defined(CONFIG_NAND_LEGACY)) +#if defined(CONFIG_CMD_JFFS2) || defined(CONFIG_CMD_NAND)  /* No ones complement version. JFFS2 (and other things ?)   * don't use ones compliment in their CRC calculations. |