diff options
| author | Christian Hitz <christian.hitz@aizo.com> | 2011-10-12 09:31:59 +0200 | 
|---|---|---|
| committer | Scott Wood <scottwood@freescale.com> | 2012-01-26 16:09:02 -0600 | 
| commit | 4c6de8560cb42a6b6c2d565d41b6801e4b02d4b3 (patch) | |
| tree | 1244963352384b2b50a920020bab7370918c303e /lib/bch.c | |
| parent | 4d2aee2b3681234691b102194cc2f14857272828 (diff) | |
| download | olio-uboot-2014.01-4c6de8560cb42a6b6c2d565d41b6801e4b02d4b3.tar.xz olio-uboot-2014.01-4c6de8560cb42a6b6c2d565d41b6801e4b02d4b3.zip | |
nand: Merge BCH code from Linux nand driver
[backport from linux commit 02f8c6aee8df3cdc935e9bdd4f2d020306035dbe]
This patch merges the BCH ECC algorithm from the 3.0 Linux kernel.
This enables U-Boot to support modern NAND flash chips that
require more than 1-bit of ECC in software.
Signed-off-by: Christian Hitz <christian.hitz@aizo.com>
Cc: Scott Wood <scottwood@freescale.com>
Signed-off-by: Scott Wood <scottwood@freescale.com>
Diffstat (limited to 'lib/bch.c')
| -rw-r--r-- | lib/bch.c | 1358 | 
1 files changed, 1358 insertions, 0 deletions
| diff --git a/lib/bch.c b/lib/bch.c new file mode 100644 index 000000000..7f4ca9270 --- /dev/null +++ b/lib/bch.c @@ -0,0 +1,1358 @@ +/* + * Generic binary BCH encoding/decoding library + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 51 + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Copyright © 2011 Parrot S.A. + * + * Author: Ivan Djelic <ivan.djelic@parrot.com> + * + * Description: + * + * This library provides runtime configurable encoding/decoding of binary + * Bose-Chaudhuri-Hocquenghem (BCH) codes. + * + * Call init_bch to get a pointer to a newly allocated bch_control structure for + * the given m (Galois field order), t (error correction capability) and + * (optional) primitive polynomial parameters. + * + * Call encode_bch to compute and store ecc parity bytes to a given buffer. + * Call decode_bch to detect and locate errors in received data. + * + * On systems supporting hw BCH features, intermediate results may be provided + * to decode_bch in order to skip certain steps. See decode_bch() documentation + * for details. + * + * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of + * parameters m and t; thus allowing extra compiler optimizations and providing + * better (up to 2x) encoding performance. Using this option makes sense when + * (m,t) are fixed and known in advance, e.g. when using BCH error correction + * on a particular NAND flash device. + * + * Algorithmic details: + * + * Encoding is performed by processing 32 input bits in parallel, using 4 + * remainder lookup tables. + * + * The final stage of decoding involves the following internal steps: + * a. Syndrome computation + * b. Error locator polynomial computation using Berlekamp-Massey algorithm + * c. Error locator root finding (by far the most expensive step) + * + * In this implementation, step c is not performed using the usual Chien search. + * Instead, an alternative approach described in [1] is used. It consists in + * factoring the error locator polynomial using the Berlekamp Trace algorithm + * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial + * solving techniques [2] are used. The resulting algorithm, called BTZ, yields + * much better performance than Chien search for usual (m,t) values (typically + * m >= 13, t < 32, see [1]). + * + * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields + * of characteristic 2, in: Western European Workshop on Research in Cryptology + * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. + * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over + * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. + */ + +#include <common.h> +#include <ubi_uboot.h> + +#include <linux/bitops.h> +#include <asm/byteorder.h> +#include <linux/bch.h> + +#if defined(CONFIG_BCH_CONST_PARAMS) +#define GF_M(_p)               (CONFIG_BCH_CONST_M) +#define GF_T(_p)               (CONFIG_BCH_CONST_T) +#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1) +#else +#define GF_M(_p)               ((_p)->m) +#define GF_T(_p)               ((_p)->t) +#define GF_N(_p)               ((_p)->n) +#endif + +#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) +#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) + +#ifndef dbg +#define dbg(_fmt, args...)     do {} while (0) +#endif + +/* + * represent a polynomial over GF(2^m) + */ +struct gf_poly { +	unsigned int deg;    /* polynomial degree */ +	unsigned int c[0];   /* polynomial terms */ +}; + +/* given its degree, compute a polynomial size in bytes */ +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) + +/* polynomial of degree 1 */ +struct gf_poly_deg1 { +	struct gf_poly poly; +	unsigned int   c[2]; +}; + +/* + * same as encode_bch(), but process input data one byte at a time + */ +static void encode_bch_unaligned(struct bch_control *bch, +				 const unsigned char *data, unsigned int len, +				 uint32_t *ecc) +{ +	int i; +	const uint32_t *p; +	const int l = BCH_ECC_WORDS(bch)-1; + +	while (len--) { +		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); + +		for (i = 0; i < l; i++) +			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); + +		ecc[l] = (ecc[l] << 8)^(*p); +	} +} + +/* + * convert ecc bytes to aligned, zero-padded 32-bit ecc words + */ +static void load_ecc8(struct bch_control *bch, uint32_t *dst, +		      const uint8_t *src) +{ +	uint8_t pad[4] = {0, 0, 0, 0}; +	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; + +	for (i = 0; i < nwords; i++, src += 4) +		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; + +	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); +	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; +} + +/* + * convert 32-bit ecc words to ecc bytes + */ +static void store_ecc8(struct bch_control *bch, uint8_t *dst, +		       const uint32_t *src) +{ +	uint8_t pad[4]; +	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; + +	for (i = 0; i < nwords; i++) { +		*dst++ = (src[i] >> 24); +		*dst++ = (src[i] >> 16) & 0xff; +		*dst++ = (src[i] >>  8) & 0xff; +		*dst++ = (src[i] >>  0) & 0xff; +	} +	pad[0] = (src[nwords] >> 24); +	pad[1] = (src[nwords] >> 16) & 0xff; +	pad[2] = (src[nwords] >>  8) & 0xff; +	pad[3] = (src[nwords] >>  0) & 0xff; +	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); +} + +/** + * encode_bch - calculate BCH ecc parity of data + * @bch:   BCH control structure + * @data:  data to encode + * @len:   data length in bytes + * @ecc:   ecc parity data, must be initialized by caller + * + * The @ecc parity array is used both as input and output parameter, in order to + * allow incremental computations. It should be of the size indicated by member + * @ecc_bytes of @bch, and should be initialized to 0 before the first call. + * + * The exact number of computed ecc parity bits is given by member @ecc_bits of + * @bch; it may be less than m*t for large values of t. + */ +void encode_bch(struct bch_control *bch, const uint8_t *data, +		unsigned int len, uint8_t *ecc) +{ +	const unsigned int l = BCH_ECC_WORDS(bch)-1; +	unsigned int i, mlen; +	unsigned long m; +	uint32_t w, r[l+1]; +	const uint32_t * const tab0 = bch->mod8_tab; +	const uint32_t * const tab1 = tab0 + 256*(l+1); +	const uint32_t * const tab2 = tab1 + 256*(l+1); +	const uint32_t * const tab3 = tab2 + 256*(l+1); +	const uint32_t *pdata, *p0, *p1, *p2, *p3; + +	if (ecc) { +		/* load ecc parity bytes into internal 32-bit buffer */ +		load_ecc8(bch, bch->ecc_buf, ecc); +	} else { +		memset(bch->ecc_buf, 0, sizeof(r)); +	} + +	/* process first unaligned data bytes */ +	m = ((unsigned long)data) & 3; +	if (m) { +		mlen = (len < (4-m)) ? len : 4-m; +		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); +		data += mlen; +		len  -= mlen; +	} + +	/* process 32-bit aligned data words */ +	pdata = (uint32_t *)data; +	mlen  = len/4; +	data += 4*mlen; +	len  -= 4*mlen; +	memcpy(r, bch->ecc_buf, sizeof(r)); + +	/* +	 * split each 32-bit word into 4 polynomials of weight 8 as follows: +	 * +	 * 31 ...24  23 ...16  15 ... 8  7 ... 0 +	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt +	 *                               tttttttt  mod g = r0 (precomputed) +	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed) +	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed) +	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed) +	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3 +	 */ +	while (mlen--) { +		/* input data is read in big-endian format */ +		w = r[0]^cpu_to_be32(*pdata++); +		p0 = tab0 + (l+1)*((w >>  0) & 0xff); +		p1 = tab1 + (l+1)*((w >>  8) & 0xff); +		p2 = tab2 + (l+1)*((w >> 16) & 0xff); +		p3 = tab3 + (l+1)*((w >> 24) & 0xff); + +		for (i = 0; i < l; i++) +			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; + +		r[l] = p0[l]^p1[l]^p2[l]^p3[l]; +	} +	memcpy(bch->ecc_buf, r, sizeof(r)); + +	/* process last unaligned bytes */ +	if (len) +		encode_bch_unaligned(bch, data, len, bch->ecc_buf); + +	/* store ecc parity bytes into original parity buffer */ +	if (ecc) +		store_ecc8(bch, ecc, bch->ecc_buf); +} + +static inline int modulo(struct bch_control *bch, unsigned int v) +{ +	const unsigned int n = GF_N(bch); +	while (v >= n) { +		v -= n; +		v = (v & n) + (v >> GF_M(bch)); +	} +	return v; +} + +/* + * shorter and faster modulo function, only works when v < 2N. + */ +static inline int mod_s(struct bch_control *bch, unsigned int v) +{ +	const unsigned int n = GF_N(bch); +	return (v < n) ? v : v-n; +} + +static inline int deg(unsigned int poly) +{ +	/* polynomial degree is the most-significant bit index */ +	return fls(poly)-1; +} + +static inline int parity(unsigned int x) +{ +	/* +	 * public domain code snippet, lifted from +	 * http://www-graphics.stanford.edu/~seander/bithacks.html +	 */ +	x ^= x >> 1; +	x ^= x >> 2; +	x = (x & 0x11111111U) * 0x11111111U; +	return (x >> 28) & 1; +} + +/* Galois field basic operations: multiply, divide, inverse, etc. */ + +static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, +				  unsigned int b) +{ +	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ +					       bch->a_log_tab[b])] : 0; +} + +static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) +{ +	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; +} + +static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, +				  unsigned int b) +{ +	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ +					GF_N(bch)-bch->a_log_tab[b])] : 0; +} + +static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) +{ +	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; +} + +static inline unsigned int a_pow(struct bch_control *bch, int i) +{ +	return bch->a_pow_tab[modulo(bch, i)]; +} + +static inline int a_log(struct bch_control *bch, unsigned int x) +{ +	return bch->a_log_tab[x]; +} + +static inline int a_ilog(struct bch_control *bch, unsigned int x) +{ +	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); +} + +/* + * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t + */ +static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, +			      unsigned int *syn) +{ +	int i, j, s; +	unsigned int m; +	uint32_t poly; +	const int t = GF_T(bch); + +	s = bch->ecc_bits; + +	/* make sure extra bits in last ecc word are cleared */ +	m = ((unsigned int)s) & 31; +	if (m) +		ecc[s/32] &= ~((1u << (32-m))-1); +	memset(syn, 0, 2*t*sizeof(*syn)); + +	/* compute v(a^j) for j=1 .. 2t-1 */ +	do { +		poly = *ecc++; +		s -= 32; +		while (poly) { +			i = deg(poly); +			for (j = 0; j < 2*t; j += 2) +				syn[j] ^= a_pow(bch, (j+1)*(i+s)); + +			poly ^= (1 << i); +		} +	} while (s > 0); + +	/* v(a^(2j)) = v(a^j)^2 */ +	for (j = 0; j < t; j++) +		syn[2*j+1] = gf_sqr(bch, syn[j]); +} + +static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) +{ +	memcpy(dst, src, GF_POLY_SZ(src->deg)); +} + +static int compute_error_locator_polynomial(struct bch_control *bch, +					    const unsigned int *syn) +{ +	const unsigned int t = GF_T(bch); +	const unsigned int n = GF_N(bch); +	unsigned int i, j, tmp, l, pd = 1, d = syn[0]; +	struct gf_poly *elp = bch->elp; +	struct gf_poly *pelp = bch->poly_2t[0]; +	struct gf_poly *elp_copy = bch->poly_2t[1]; +	int k, pp = -1; + +	memset(pelp, 0, GF_POLY_SZ(2*t)); +	memset(elp, 0, GF_POLY_SZ(2*t)); + +	pelp->deg = 0; +	pelp->c[0] = 1; +	elp->deg = 0; +	elp->c[0] = 1; + +	/* use simplified binary Berlekamp-Massey algorithm */ +	for (i = 0; (i < t) && (elp->deg <= t); i++) { +		if (d) { +			k = 2*i-pp; +			gf_poly_copy(elp_copy, elp); +			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ +			tmp = a_log(bch, d)+n-a_log(bch, pd); +			for (j = 0; j <= pelp->deg; j++) { +				if (pelp->c[j]) { +					l = a_log(bch, pelp->c[j]); +					elp->c[j+k] ^= a_pow(bch, tmp+l); +				} +			} +			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ +			tmp = pelp->deg+k; +			if (tmp > elp->deg) { +				elp->deg = tmp; +				gf_poly_copy(pelp, elp_copy); +				pd = d; +				pp = 2*i; +			} +		} +		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ +		if (i < t-1) { +			d = syn[2*i+2]; +			for (j = 1; j <= elp->deg; j++) +				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); +		} +	} +	dbg("elp=%s\n", gf_poly_str(elp)); +	return (elp->deg > t) ? -1 : (int)elp->deg; +} + +/* + * solve a m x m linear system in GF(2) with an expected number of solutions, + * and return the number of found solutions + */ +static int solve_linear_system(struct bch_control *bch, unsigned int *rows, +			       unsigned int *sol, int nsol) +{ +	const int m = GF_M(bch); +	unsigned int tmp, mask; +	int rem, c, r, p, k, param[m]; + +	k = 0; +	mask = 1 << m; + +	/* Gaussian elimination */ +	for (c = 0; c < m; c++) { +		rem = 0; +		p = c-k; +		/* find suitable row for elimination */ +		for (r = p; r < m; r++) { +			if (rows[r] & mask) { +				if (r != p) { +					tmp = rows[r]; +					rows[r] = rows[p]; +					rows[p] = tmp; +				} +				rem = r+1; +				break; +			} +		} +		if (rem) { +			/* perform elimination on remaining rows */ +			tmp = rows[p]; +			for (r = rem; r < m; r++) { +				if (rows[r] & mask) +					rows[r] ^= tmp; +			} +		} else { +			/* elimination not needed, store defective row index */ +			param[k++] = c; +		} +		mask >>= 1; +	} +	/* rewrite system, inserting fake parameter rows */ +	if (k > 0) { +		p = k; +		for (r = m-1; r >= 0; r--) { +			if ((r > m-1-k) && rows[r]) +				/* system has no solution */ +				return 0; + +			rows[r] = (p && (r == param[p-1])) ? +				p--, 1u << (m-r) : rows[r-p]; +		} +	} + +	if (nsol != (1 << k)) +		/* unexpected number of solutions */ +		return 0; + +	for (p = 0; p < nsol; p++) { +		/* set parameters for p-th solution */ +		for (c = 0; c < k; c++) +			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); + +		/* compute unique solution */ +		tmp = 0; +		for (r = m-1; r >= 0; r--) { +			mask = rows[r] & (tmp|1); +			tmp |= parity(mask) << (m-r); +		} +		sol[p] = tmp >> 1; +	} +	return nsol; +} + +/* + * this function builds and solves a linear system for finding roots of a degree + * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). + */ +static int find_affine4_roots(struct bch_control *bch, unsigned int a, +			      unsigned int b, unsigned int c, +			      unsigned int *roots) +{ +	int i, j, k; +	const int m = GF_M(bch); +	unsigned int mask = 0xff, t, rows[16] = {0,}; + +	j = a_log(bch, b); +	k = a_log(bch, a); +	rows[0] = c; + +	/* buid linear system to solve X^4+aX^2+bX+c = 0 */ +	for (i = 0; i < m; i++) { +		rows[i+1] = bch->a_pow_tab[4*i]^ +			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ +			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0); +		j++; +		k += 2; +	} +	/* +	 * transpose 16x16 matrix before passing it to linear solver +	 * warning: this code assumes m < 16 +	 */ +	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { +		for (k = 0; k < 16; k = (k+j+1) & ~j) { +			t = ((rows[k] >> j)^rows[k+j]) & mask; +			rows[k] ^= (t << j); +			rows[k+j] ^= t; +		} +	} +	return solve_linear_system(bch, rows, roots, 4); +} + +/* + * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) + */ +static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, +				unsigned int *roots) +{ +	int n = 0; + +	if (poly->c[0]) +		/* poly[X] = bX+c with c!=0, root=c/b */ +		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ +				   bch->a_log_tab[poly->c[1]]); +	return n; +} + +/* + * compute roots of a degree 2 polynomial over GF(2^m) + */ +static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, +				unsigned int *roots) +{ +	int n = 0, i, l0, l1, l2; +	unsigned int u, v, r; + +	if (poly->c[0] && poly->c[1]) { + +		l0 = bch->a_log_tab[poly->c[0]]; +		l1 = bch->a_log_tab[poly->c[1]]; +		l2 = bch->a_log_tab[poly->c[2]]; + +		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ +		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); +		/* +		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): +		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = +		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) +		 * i.e. r and r+1 are roots iff Tr(u)=0 +		 */ +		r = 0; +		v = u; +		while (v) { +			i = deg(v); +			r ^= bch->xi_tab[i]; +			v ^= (1 << i); +		} +		/* verify root */ +		if ((gf_sqr(bch, r)^r) == u) { +			/* reverse z=a/bX transformation and compute log(1/r) */ +			roots[n++] = modulo(bch, 2*GF_N(bch)-l1- +					    bch->a_log_tab[r]+l2); +			roots[n++] = modulo(bch, 2*GF_N(bch)-l1- +					    bch->a_log_tab[r^1]+l2); +		} +	} +	return n; +} + +/* + * compute roots of a degree 3 polynomial over GF(2^m) + */ +static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, +				unsigned int *roots) +{ +	int i, n = 0; +	unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; + +	if (poly->c[0]) { +		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ +		e3 = poly->c[3]; +		c2 = gf_div(bch, poly->c[0], e3); +		b2 = gf_div(bch, poly->c[1], e3); +		a2 = gf_div(bch, poly->c[2], e3); + +		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ +		c = gf_mul(bch, a2, c2);           /* c = a2c2      */ +		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */ +		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */ + +		/* find the 4 roots of this affine polynomial */ +		if (find_affine4_roots(bch, a, b, c, tmp) == 4) { +			/* remove a2 from final list of roots */ +			for (i = 0; i < 4; i++) { +				if (tmp[i] != a2) +					roots[n++] = a_ilog(bch, tmp[i]); +			} +		} +	} +	return n; +} + +/* + * compute roots of a degree 4 polynomial over GF(2^m) + */ +static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, +				unsigned int *roots) +{ +	int i, l, n = 0; +	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; + +	if (poly->c[0] == 0) +		return 0; + +	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ +	e4 = poly->c[4]; +	d = gf_div(bch, poly->c[0], e4); +	c = gf_div(bch, poly->c[1], e4); +	b = gf_div(bch, poly->c[2], e4); +	a = gf_div(bch, poly->c[3], e4); + +	/* use Y=1/X transformation to get an affine polynomial */ +	if (a) { +		/* first, eliminate cX by using z=X+e with ae^2+c=0 */ +		if (c) { +			/* compute e such that e^2 = c/a */ +			f = gf_div(bch, c, a); +			l = a_log(bch, f); +			l += (l & 1) ? GF_N(bch) : 0; +			e = a_pow(bch, l/2); +			/* +			 * use transformation z=X+e: +			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d +			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d +			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d +			 * z^4 + az^3 +     b'z^2 + d' +			 */ +			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; +			b = gf_mul(bch, a, e)^b; +		} +		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ +		if (d == 0) +			/* assume all roots have multiplicity 1 */ +			return 0; + +		c2 = gf_inv(bch, d); +		b2 = gf_div(bch, a, d); +		a2 = gf_div(bch, b, d); +	} else { +		/* polynomial is already affine */ +		c2 = d; +		b2 = c; +		a2 = b; +	} +	/* find the 4 roots of this affine polynomial */ +	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { +		for (i = 0; i < 4; i++) { +			/* post-process roots (reverse transformations) */ +			f = a ? gf_inv(bch, roots[i]) : roots[i]; +			roots[i] = a_ilog(bch, f^e); +		} +		n = 4; +	} +	return n; +} + +/* + * build monic, log-based representation of a polynomial + */ +static void gf_poly_logrep(struct bch_control *bch, +			   const struct gf_poly *a, int *rep) +{ +	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); + +	/* represent 0 values with -1; warning, rep[d] is not set to 1 */ +	for (i = 0; i < d; i++) +		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; +} + +/* + * compute polynomial Euclidean division remainder in GF(2^m)[X] + */ +static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, +			const struct gf_poly *b, int *rep) +{ +	int la, p, m; +	unsigned int i, j, *c = a->c; +	const unsigned int d = b->deg; + +	if (a->deg < d) +		return; + +	/* reuse or compute log representation of denominator */ +	if (!rep) { +		rep = bch->cache; +		gf_poly_logrep(bch, b, rep); +	} + +	for (j = a->deg; j >= d; j--) { +		if (c[j]) { +			la = a_log(bch, c[j]); +			p = j-d; +			for (i = 0; i < d; i++, p++) { +				m = rep[i]; +				if (m >= 0) +					c[p] ^= bch->a_pow_tab[mod_s(bch, +								     m+la)]; +			} +		} +	} +	a->deg = d-1; +	while (!c[a->deg] && a->deg) +		a->deg--; +} + +/* + * compute polynomial Euclidean division quotient in GF(2^m)[X] + */ +static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, +			const struct gf_poly *b, struct gf_poly *q) +{ +	if (a->deg >= b->deg) { +		q->deg = a->deg-b->deg; +		/* compute a mod b (modifies a) */ +		gf_poly_mod(bch, a, b, NULL); +		/* quotient is stored in upper part of polynomial a */ +		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); +	} else { +		q->deg = 0; +		q->c[0] = 0; +	} +} + +/* + * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] + */ +static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, +				   struct gf_poly *b) +{ +	struct gf_poly *tmp; + +	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); + +	if (a->deg < b->deg) { +		tmp = b; +		b = a; +		a = tmp; +	} + +	while (b->deg > 0) { +		gf_poly_mod(bch, a, b, NULL); +		tmp = b; +		b = a; +		a = tmp; +	} + +	dbg("%s\n", gf_poly_str(a)); + +	return a; +} + +/* + * Given a polynomial f and an integer k, compute Tr(a^kX) mod f + * This is used in Berlekamp Trace algorithm for splitting polynomials + */ +static void compute_trace_bk_mod(struct bch_control *bch, int k, +				 const struct gf_poly *f, struct gf_poly *z, +				 struct gf_poly *out) +{ +	const int m = GF_M(bch); +	int i, j; + +	/* z contains z^2j mod f */ +	z->deg = 1; +	z->c[0] = 0; +	z->c[1] = bch->a_pow_tab[k]; + +	out->deg = 0; +	memset(out, 0, GF_POLY_SZ(f->deg)); + +	/* compute f log representation only once */ +	gf_poly_logrep(bch, f, bch->cache); + +	for (i = 0; i < m; i++) { +		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ +		for (j = z->deg; j >= 0; j--) { +			out->c[j] ^= z->c[j]; +			z->c[2*j] = gf_sqr(bch, z->c[j]); +			z->c[2*j+1] = 0; +		} +		if (z->deg > out->deg) +			out->deg = z->deg; + +		if (i < m-1) { +			z->deg *= 2; +			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ +			gf_poly_mod(bch, z, f, bch->cache); +		} +	} +	while (!out->c[out->deg] && out->deg) +		out->deg--; + +	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); +} + +/* + * factor a polynomial using Berlekamp Trace algorithm (BTA) + */ +static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, +			      struct gf_poly **g, struct gf_poly **h) +{ +	struct gf_poly *f2 = bch->poly_2t[0]; +	struct gf_poly *q  = bch->poly_2t[1]; +	struct gf_poly *tk = bch->poly_2t[2]; +	struct gf_poly *z  = bch->poly_2t[3]; +	struct gf_poly *gcd; + +	dbg("factoring %s...\n", gf_poly_str(f)); + +	*g = f; +	*h = NULL; + +	/* tk = Tr(a^k.X) mod f */ +	compute_trace_bk_mod(bch, k, f, z, tk); + +	if (tk->deg > 0) { +		/* compute g = gcd(f, tk) (destructive operation) */ +		gf_poly_copy(f2, f); +		gcd = gf_poly_gcd(bch, f2, tk); +		if (gcd->deg < f->deg) { +			/* compute h=f/gcd(f,tk); this will modify f and q */ +			gf_poly_div(bch, f, gcd, q); +			/* store g and h in-place (clobbering f) */ +			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; +			gf_poly_copy(*g, gcd); +			gf_poly_copy(*h, q); +		} +	} +} + +/* + * find roots of a polynomial, using BTZ algorithm; see the beginning of this + * file for details + */ +static int find_poly_roots(struct bch_control *bch, unsigned int k, +			   struct gf_poly *poly, unsigned int *roots) +{ +	int cnt; +	struct gf_poly *f1, *f2; + +	switch (poly->deg) { +		/* handle low degree polynomials with ad hoc techniques */ +	case 1: +		cnt = find_poly_deg1_roots(bch, poly, roots); +		break; +	case 2: +		cnt = find_poly_deg2_roots(bch, poly, roots); +		break; +	case 3: +		cnt = find_poly_deg3_roots(bch, poly, roots); +		break; +	case 4: +		cnt = find_poly_deg4_roots(bch, poly, roots); +		break; +	default: +		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */ +		cnt = 0; +		if (poly->deg && (k <= GF_M(bch))) { +			factor_polynomial(bch, k, poly, &f1, &f2); +			if (f1) +				cnt += find_poly_roots(bch, k+1, f1, roots); +			if (f2) +				cnt += find_poly_roots(bch, k+1, f2, roots+cnt); +		} +		break; +	} +	return cnt; +} + +#if defined(USE_CHIEN_SEARCH) +/* + * exhaustive root search (Chien) implementation - not used, included only for + * reference/comparison tests + */ +static int chien_search(struct bch_control *bch, unsigned int len, +			struct gf_poly *p, unsigned int *roots) +{ +	int m; +	unsigned int i, j, syn, syn0, count = 0; +	const unsigned int k = 8*len+bch->ecc_bits; + +	/* use a log-based representation of polynomial */ +	gf_poly_logrep(bch, p, bch->cache); +	bch->cache[p->deg] = 0; +	syn0 = gf_div(bch, p->c[0], p->c[p->deg]); + +	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { +		/* compute elp(a^i) */ +		for (j = 1, syn = syn0; j <= p->deg; j++) { +			m = bch->cache[j]; +			if (m >= 0) +				syn ^= a_pow(bch, m+j*i); +		} +		if (syn == 0) { +			roots[count++] = GF_N(bch)-i; +			if (count == p->deg) +				break; +		} +	} +	return (count == p->deg) ? count : 0; +} +#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) +#endif /* USE_CHIEN_SEARCH */ + +/** + * decode_bch - decode received codeword and find bit error locations + * @bch:      BCH control structure + * @data:     received data, ignored if @calc_ecc is provided + * @len:      data length in bytes, must always be provided + * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc + * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data + * @syn:      hw computed syndrome data (if NULL, syndrome is calculated) + * @errloc:   output array of error locations + * + * Returns: + *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if + *  invalid parameters were provided + * + * Depending on the available hw BCH support and the need to compute @calc_ecc + * separately (using encode_bch()), this function should be called with one of + * the following parameter configurations - + * + * by providing @data and @recv_ecc only: + *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) + * + * by providing @recv_ecc and @calc_ecc: + *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) + * + * by providing ecc = recv_ecc XOR calc_ecc: + *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) + * + * by providing syndrome results @syn: + *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) + * + * Once decode_bch() has successfully returned with a positive value, error + * locations returned in array @errloc should be interpreted as follows - + * + * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for + * data correction) + * + * if (errloc[n] < 8*len), then n-th error is located in data and can be + * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); + * + * Note that this function does not perform any data correction by itself, it + * merely indicates error locations. + */ +int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, +	       const uint8_t *recv_ecc, const uint8_t *calc_ecc, +	       const unsigned int *syn, unsigned int *errloc) +{ +	const unsigned int ecc_words = BCH_ECC_WORDS(bch); +	unsigned int nbits; +	int i, err, nroots; +	uint32_t sum; + +	/* sanity check: make sure data length can be handled */ +	if (8*len > (bch->n-bch->ecc_bits)) +		return -EINVAL; + +	/* if caller does not provide syndromes, compute them */ +	if (!syn) { +		if (!calc_ecc) { +			/* compute received data ecc into an internal buffer */ +			if (!data || !recv_ecc) +				return -EINVAL; +			encode_bch(bch, data, len, NULL); +		} else { +			/* load provided calculated ecc */ +			load_ecc8(bch, bch->ecc_buf, calc_ecc); +		} +		/* load received ecc or assume it was XORed in calc_ecc */ +		if (recv_ecc) { +			load_ecc8(bch, bch->ecc_buf2, recv_ecc); +			/* XOR received and calculated ecc */ +			for (i = 0, sum = 0; i < (int)ecc_words; i++) { +				bch->ecc_buf[i] ^= bch->ecc_buf2[i]; +				sum |= bch->ecc_buf[i]; +			} +			if (!sum) +				/* no error found */ +				return 0; +		} +		compute_syndromes(bch, bch->ecc_buf, bch->syn); +		syn = bch->syn; +	} + +	err = compute_error_locator_polynomial(bch, syn); +	if (err > 0) { +		nroots = find_poly_roots(bch, 1, bch->elp, errloc); +		if (err != nroots) +			err = -1; +	} +	if (err > 0) { +		/* post-process raw error locations for easier correction */ +		nbits = (len*8)+bch->ecc_bits; +		for (i = 0; i < err; i++) { +			if (errloc[i] >= nbits) { +				err = -1; +				break; +			} +			errloc[i] = nbits-1-errloc[i]; +			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); +		} +	} +	return (err >= 0) ? err : -EBADMSG; +} + +/* + * generate Galois field lookup tables + */ +static int build_gf_tables(struct bch_control *bch, unsigned int poly) +{ +	unsigned int i, x = 1; +	const unsigned int k = 1 << deg(poly); + +	/* primitive polynomial must be of degree m */ +	if (k != (1u << GF_M(bch))) +		return -1; + +	for (i = 0; i < GF_N(bch); i++) { +		bch->a_pow_tab[i] = x; +		bch->a_log_tab[x] = i; +		if (i && (x == 1)) +			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ +			return -1; +		x <<= 1; +		if (x & k) +			x ^= poly; +	} +	bch->a_pow_tab[GF_N(bch)] = 1; +	bch->a_log_tab[0] = 0; + +	return 0; +} + +/* + * compute generator polynomial remainder tables for fast encoding + */ +static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) +{ +	int i, j, b, d; +	uint32_t data, hi, lo, *tab; +	const int l = BCH_ECC_WORDS(bch); +	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); +	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); + +	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); + +	for (i = 0; i < 256; i++) { +		/* p(X)=i is a small polynomial of weight <= 8 */ +		for (b = 0; b < 4; b++) { +			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ +			tab = bch->mod8_tab + (b*256+i)*l; +			data = i << (8*b); +			while (data) { +				d = deg(data); +				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ +				data ^= g[0] >> (31-d); +				for (j = 0; j < ecclen; j++) { +					hi = (d < 31) ? g[j] << (d+1) : 0; +					lo = (j+1 < plen) ? +						g[j+1] >> (31-d) : 0; +					tab[j] ^= hi|lo; +				} +			} +		} +	} +} + +/* + * build a base for factoring degree 2 polynomials + */ +static int build_deg2_base(struct bch_control *bch) +{ +	const int m = GF_M(bch); +	int i, j, r; +	unsigned int sum, x, y, remaining, ak = 0, xi[m]; + +	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ +	for (i = 0; i < m; i++) { +		for (j = 0, sum = 0; j < m; j++) +			sum ^= a_pow(bch, i*(1 << j)); + +		if (sum) { +			ak = bch->a_pow_tab[i]; +			break; +		} +	} +	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ +	remaining = m; +	memset(xi, 0, sizeof(xi)); + +	for (x = 0; (x <= GF_N(bch)) && remaining; x++) { +		y = gf_sqr(bch, x)^x; +		for (i = 0; i < 2; i++) { +			r = a_log(bch, y); +			if (y && (r < m) && !xi[r]) { +				bch->xi_tab[r] = x; +				xi[r] = 1; +				remaining--; +				dbg("x%d = %x\n", r, x); +				break; +			} +			y ^= ak; +		} +	} +	/* should not happen but check anyway */ +	return remaining ? -1 : 0; +} + +static void *bch_alloc(size_t size, int *err) +{ +	void *ptr; + +	ptr = kmalloc(size, GFP_KERNEL); +	if (ptr == NULL) +		*err = 1; +	return ptr; +} + +/* + * compute generator polynomial for given (m,t) parameters. + */ +static uint32_t *compute_generator_polynomial(struct bch_control *bch) +{ +	const unsigned int m = GF_M(bch); +	const unsigned int t = GF_T(bch); +	int n, err = 0; +	unsigned int i, j, nbits, r, word, *roots; +	struct gf_poly *g; +	uint32_t *genpoly; + +	g = bch_alloc(GF_POLY_SZ(m*t), &err); +	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); +	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); + +	if (err) { +		kfree(genpoly); +		genpoly = NULL; +		goto finish; +	} + +	/* enumerate all roots of g(X) */ +	memset(roots , 0, (bch->n+1)*sizeof(*roots)); +	for (i = 0; i < t; i++) { +		for (j = 0, r = 2*i+1; j < m; j++) { +			roots[r] = 1; +			r = mod_s(bch, 2*r); +		} +	} +	/* build generator polynomial g(X) */ +	g->deg = 0; +	g->c[0] = 1; +	for (i = 0; i < GF_N(bch); i++) { +		if (roots[i]) { +			/* multiply g(X) by (X+root) */ +			r = bch->a_pow_tab[i]; +			g->c[g->deg+1] = 1; +			for (j = g->deg; j > 0; j--) +				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; + +			g->c[0] = gf_mul(bch, g->c[0], r); +			g->deg++; +		} +	} +	/* store left-justified binary representation of g(X) */ +	n = g->deg+1; +	i = 0; + +	while (n > 0) { +		nbits = (n > 32) ? 32 : n; +		for (j = 0, word = 0; j < nbits; j++) { +			if (g->c[n-1-j]) +				word |= 1u << (31-j); +		} +		genpoly[i++] = word; +		n -= nbits; +	} +	bch->ecc_bits = g->deg; + +finish: +	kfree(g); +	kfree(roots); + +	return genpoly; +} + +/** + * init_bch - initialize a BCH encoder/decoder + * @m:          Galois field order, should be in the range 5-15 + * @t:          maximum error correction capability, in bits + * @prim_poly:  user-provided primitive polynomial (or 0 to use default) + * + * Returns: + *  a newly allocated BCH control structure if successful, NULL otherwise + * + * This initialization can take some time, as lookup tables are built for fast + * encoding/decoding; make sure not to call this function from a time critical + * path. Usually, init_bch() should be called on module/driver init and + * free_bch() should be called to release memory on exit. + * + * You may provide your own primitive polynomial of degree @m in argument + * @prim_poly, or let init_bch() use its default polynomial. + * + * Once init_bch() has successfully returned a pointer to a newly allocated + * BCH control structure, ecc length in bytes is given by member @ecc_bytes of + * the structure. + */ +struct bch_control *init_bch(int m, int t, unsigned int prim_poly) +{ +	int err = 0; +	unsigned int i, words; +	uint32_t *genpoly; +	struct bch_control *bch = NULL; + +	const int min_m = 5; +	const int max_m = 15; + +	/* default primitive polynomials */ +	static const unsigned int prim_poly_tab[] = { +		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, +		0x402b, 0x8003, +	}; + +#if defined(CONFIG_BCH_CONST_PARAMS) +	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { +		printk(KERN_ERR "bch encoder/decoder was configured to support " +		       "parameters m=%d, t=%d only!\n", +		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); +		goto fail; +	} +#endif +	if ((m < min_m) || (m > max_m)) +		/* +		 * values of m greater than 15 are not currently supported; +		 * supporting m > 15 would require changing table base type +		 * (uint16_t) and a small patch in matrix transposition +		 */ +		goto fail; + +	/* sanity checks */ +	if ((t < 1) || (m*t >= ((1 << m)-1))) +		/* invalid t value */ +		goto fail; + +	/* select a primitive polynomial for generating GF(2^m) */ +	if (prim_poly == 0) +		prim_poly = prim_poly_tab[m-min_m]; + +	bch = kzalloc(sizeof(*bch), GFP_KERNEL); +	if (bch == NULL) +		goto fail; + +	bch->m = m; +	bch->t = t; +	bch->n = (1 << m)-1; +	words  = DIV_ROUND_UP(m*t, 32); +	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); +	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); +	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); +	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); +	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err); +	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); +	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err); +	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err); +	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err); +	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); + +	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) +		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); + +	if (err) +		goto fail; + +	err = build_gf_tables(bch, prim_poly); +	if (err) +		goto fail; + +	/* use generator polynomial for computing encoding tables */ +	genpoly = compute_generator_polynomial(bch); +	if (genpoly == NULL) +		goto fail; + +	build_mod8_tables(bch, genpoly); +	kfree(genpoly); + +	err = build_deg2_base(bch); +	if (err) +		goto fail; + +	return bch; + +fail: +	free_bch(bch); +	return NULL; +} + +/** + *  free_bch - free the BCH control structure + *  @bch:    BCH control structure to release + */ +void free_bch(struct bch_control *bch) +{ +	unsigned int i; + +	if (bch) { +		kfree(bch->a_pow_tab); +		kfree(bch->a_log_tab); +		kfree(bch->mod8_tab); +		kfree(bch->ecc_buf); +		kfree(bch->ecc_buf2); +		kfree(bch->xi_tab); +		kfree(bch->syn); +		kfree(bch->cache); +		kfree(bch->elp); + +		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) +			kfree(bch->poly_2t[i]); + +		kfree(bch); +	} +} |