diff options
| author | Kyle Moffett <Kyle.D.Moffett@boeing.com> | 2011-10-18 11:05:29 +0000 | 
|---|---|---|
| committer | Wolfgang Denk <wd@denx.de> | 2011-10-28 00:37:01 +0200 | 
| commit | ce5207e191c59b3135303fd03b98dd2ac3701ba2 (patch) | |
| tree | d9f5458d8dde3142031f21b76e6909a9cb328ca0 /drivers/net/e1000_spi.c | |
| parent | 2326a94db10d9b6c0bf322c6536cafcac8e85522 (diff) | |
| download | olio-uboot-2014.01-ce5207e191c59b3135303fd03b98dd2ac3701ba2.tar.xz olio-uboot-2014.01-ce5207e191c59b3135303fd03b98dd2ac3701ba2.zip | |
e1000: Allow direct access to the E1000 SPI EEPROM device
As a part of the manufacturing process for some of our custom hardware,
we are programming the EEPROMs attached to our Intel 82571EB controllers
from software using U-Boot and Linux.
This code provides several conditionally-compiled features to assist in
our manufacturing process:
  CONFIG_CMD_E1000:
    This is a basic "e1000" command which allows querying the controller
    and (if other config options are set) performing EEPROM programming.
    In particular, with CONFIG_E1000_SPI this allows you to display a
    hex-dump of the EEPROM, copy to/from main memory, and verify/update
    the software checksum.
  CONFIG_E1000_SPI_GENERIC:
    Build a generic SPI driver providing the standard U-Boot SPI driver
    interface.  This allows commands such as "sspi" to access the bus
    attached to the E1000 controller.  Additionally, some E1000 chipsets
    can support user data in a reserved space in the E1000 EEPROM which
    could be used for U-Boot environment storage.
  CONFIG_E1000_SPI:
    The core SPI access code used by the above interfaces.
For example, the following commands allow you to program the EEPROM from
a USB device (assumes CONFIG_E1000_SPI and CONFIG_CMD_E1000 are enabled):
  usb start
  fatload usb 0 $loadaddr 82571EB_No_Mgmt_Discrete-LOM.bin
  e1000 0 spi program $loadaddr 0 1024
  e1000 0 spi checksum update
Please keep in mind that the Intel-provided .eep files are organized as
16-bit words.  When converting them to binary form for programming you
must byteswap each 16-bit word so that it is in little-endian form.
This means that when reading and writing words to the SPI EEPROM, the
bit ordering for each word looks like this on the wire:
  Time >>>
------------------------------------------------------------------
  ... [7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8], ...
------------------------------------------------------------------
  (MSB is 15, LSB is 0).
Signed-off-by: Kyle Moffett <Kyle.D.Moffett@boeing.com>
Cc: Ben Warren <biggerbadderben@gmail.com>
Diffstat (limited to 'drivers/net/e1000_spi.c')
| -rw-r--r-- | drivers/net/e1000_spi.c | 576 | 
1 files changed, 576 insertions, 0 deletions
| diff --git a/drivers/net/e1000_spi.c b/drivers/net/e1000_spi.c new file mode 100644 index 000000000..549178019 --- /dev/null +++ b/drivers/net/e1000_spi.c @@ -0,0 +1,576 @@ +#include "e1000.h" + +/*----------------------------------------------------------------------- + * SPI transfer + * + * This writes "bitlen" bits out the SPI MOSI port and simultaneously clocks + * "bitlen" bits in the SPI MISO port.  That's just the way SPI works. + * + * The source of the outgoing bits is the "dout" parameter and the + * destination of the input bits is the "din" parameter.  Note that "dout" + * and "din" can point to the same memory location, in which case the + * input data overwrites the output data (since both are buffered by + * temporary variables, this is OK). + * + * This may be interrupted with Ctrl-C if "intr" is true, otherwise it will + * never return an error. + */ +static int e1000_spi_xfer(struct e1000_hw *hw, unsigned int bitlen, +		const void *dout_mem, void *din_mem, boolean_t intr) +{ +	const uint8_t *dout = dout_mem; +	uint8_t *din = din_mem; + +	uint8_t mask = 0; +	uint32_t eecd; +	unsigned long i; + +	/* Pre-read the control register */ +	eecd = E1000_READ_REG(hw, EECD); + +	/* Iterate over each bit */ +	for (i = 0, mask = 0x80; i < bitlen; i++, mask = (mask >> 1)?:0x80) { +		/* Check for interrupt */ +		if (intr && ctrlc()) +			return -1; + +		/* Determine the output bit */ +		if (dout && dout[i >> 3] & mask) +			eecd |=  E1000_EECD_DI; +		else +			eecd &= ~E1000_EECD_DI; + +		/* Write the output bit and wait 50us */ +		E1000_WRITE_REG(hw, EECD, eecd); +		E1000_WRITE_FLUSH(hw); +		udelay(50); + +		/* Poke the clock (waits 50us) */ +		e1000_raise_ee_clk(hw, &eecd); + +		/* Now read the input bit */ +		eecd = E1000_READ_REG(hw, EECD); +		if (din) { +			if (eecd & E1000_EECD_DO) +				din[i >> 3] |=  mask; +			else +				din[i >> 3] &= ~mask; +		} + +		/* Poke the clock again (waits 50us) */ +		e1000_lower_ee_clk(hw, &eecd); +	} + +	/* Now clear any remaining bits of the input */ +	if (din && (i & 7)) +		din[i >> 3] &= ~((mask << 1) - 1); + +	return 0; +} + +#ifdef CONFIG_E1000_SPI_GENERIC +static inline struct e1000_hw *e1000_hw_from_spi(struct spi_slave *spi) +{ +	return container_of(spi, struct e1000_hw, spi); +} + +/* Not sure why all of these are necessary */ +void spi_init_r(void) { /* Nothing to do */ } +void spi_init_f(void) { /* Nothing to do */ } +void spi_init(void)   { /* Nothing to do */ } + +struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, +		unsigned int max_hz, unsigned int mode) +{ +	/* Find the right PCI device */ +	struct e1000_hw *hw = e1000_find_card(bus); +	if (!hw) { +		printf("ERROR: No such e1000 device: e1000#%u\n", bus); +		return NULL; +	} + +	/* Make sure it has an SPI chip */ +	if (hw->eeprom.type != e1000_eeprom_spi) { +		E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n"); +		return NULL; +	} + +	/* Argument sanity checks */ +	if (cs != 0) { +		E1000_ERR(hw->nic, "No such SPI chip: %u\n", cs); +		return NULL; +	} +	if (mode != SPI_MODE_0) { +		E1000_ERR(hw->nic, "Only SPI MODE-0 is supported!\n"); +		return NULL; +	} + +	/* TODO: Use max_hz somehow */ +	E1000_DBG(hw->nic, "EEPROM SPI access requested\n"); +	return &hw->spi; +} + +void spi_free_slave(struct spi_slave *spi) +{ +	struct e1000_hw *hw = e1000_hw_from_spi(spi); +	E1000_DBG(hw->nic, "EEPROM SPI access released\n"); +} + +int spi_claim_bus(struct spi_slave *spi) +{ +	struct e1000_hw *hw = e1000_hw_from_spi(spi); + +	if (e1000_acquire_eeprom(hw)) { +		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); +		return -1; +	} + +	return 0; +} + +void spi_release_bus(struct spi_slave *spi) +{ +	struct e1000_hw *hw = e1000_hw_from_spi(spi); +	e1000_release_eeprom(hw); +} + +/* Skinny wrapper around e1000_spi_xfer */ +int spi_xfer(struct spi_slave *spi, unsigned int bitlen, +		const void *dout_mem, void *din_mem, unsigned long flags) +{ +	struct e1000_hw *hw = e1000_hw_from_spi(spi); +	int ret; + +	if (flags & SPI_XFER_BEGIN) +		e1000_standby_eeprom(hw); + +	ret = e1000_spi_xfer(hw, bitlen, dout_mem, din_mem, TRUE); + +	if (flags & SPI_XFER_END) +		e1000_standby_eeprom(hw); + +	return ret; +} + +#endif /* not CONFIG_E1000_SPI_GENERIC */ + +#ifdef CONFIG_CMD_E1000 + +/* The EEPROM opcodes */ +#define SPI_EEPROM_ENABLE_WR	0x06 +#define SPI_EEPROM_DISABLE_WR	0x04 +#define SPI_EEPROM_WRITE_STATUS	0x01 +#define SPI_EEPROM_READ_STATUS	0x05 +#define SPI_EEPROM_WRITE_PAGE	0x02 +#define SPI_EEPROM_READ_PAGE	0x03 + +/* The EEPROM status bits */ +#define SPI_EEPROM_STATUS_BUSY	0x01 +#define SPI_EEPROM_STATUS_WREN	0x02 + +static int e1000_spi_eeprom_enable_wr(struct e1000_hw *hw, boolean_t intr) +{ +	u8 op[] = { SPI_EEPROM_ENABLE_WR }; +	e1000_standby_eeprom(hw); +	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); +} + +/* + * These have been tested to perform correctly, but they are not used by any + * of the EEPROM commands at this time. + */ +#if 0 +static int e1000_spi_eeprom_disable_wr(struct e1000_hw *hw, boolean_t intr) +{ +	u8 op[] = { SPI_EEPROM_DISABLE_WR }; +	e1000_standby_eeprom(hw); +	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); +} + +static int e1000_spi_eeprom_write_status(struct e1000_hw *hw, +		u8 status, boolean_t intr) +{ +	u8 op[] = { SPI_EEPROM_WRITE_STATUS, status }; +	e1000_standby_eeprom(hw); +	return e1000_spi_xfer(hw, 8*sizeof(op), op, NULL, intr); +} +#endif + +static int e1000_spi_eeprom_read_status(struct e1000_hw *hw, boolean_t intr) +{ +	u8 op[] = { SPI_EEPROM_READ_STATUS, 0 }; +	e1000_standby_eeprom(hw); +	if (e1000_spi_xfer(hw, 8*sizeof(op), op, op, intr)) +		return -1; +	return op[1]; +} + +static int e1000_spi_eeprom_write_page(struct e1000_hw *hw, +		const void *data, u16 off, u16 len, boolean_t intr) +{ +	u8 op[] = { +		SPI_EEPROM_WRITE_PAGE, +		(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff +	}; + +	e1000_standby_eeprom(hw); + +	if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) +		return -1; +	if (e1000_spi_xfer(hw, len << 3, data, NULL, intr)) +		return -1; + +	return 0; +} + +static int e1000_spi_eeprom_read_page(struct e1000_hw *hw, +		void *data, u16 off, u16 len, boolean_t intr) +{ +	u8 op[] = { +		SPI_EEPROM_READ_PAGE, +		(off >> (hw->eeprom.address_bits - 8)) & 0xff, off & 0xff +	}; + +	e1000_standby_eeprom(hw); + +	if (e1000_spi_xfer(hw, 8 + hw->eeprom.address_bits, op, NULL, intr)) +		return -1; +	if (e1000_spi_xfer(hw, len << 3, NULL, data, intr)) +		return -1; + +	return 0; +} + +static int e1000_spi_eeprom_poll_ready(struct e1000_hw *hw, boolean_t intr) +{ +	int status; +	while ((status = e1000_spi_eeprom_read_status(hw, intr)) >= 0) { +		if (!(status & SPI_EEPROM_STATUS_BUSY)) +			return 0; +	} +	return -1; +} + +static int e1000_spi_eeprom_dump(struct e1000_hw *hw, +		void *data, u16 off, unsigned int len, boolean_t intr) +{ +	/* Interruptibly wait for the EEPROM to be ready */ +	if (e1000_spi_eeprom_poll_ready(hw, intr)) +		return -1; + +	/* Dump each page in sequence */ +	while (len) { +		/* Calculate the data bytes on this page */ +		u16 pg_off = off & (hw->eeprom.page_size - 1); +		u16 pg_len = hw->eeprom.page_size - pg_off; +		if (pg_len > len) +			pg_len = len; + +		/* Now dump the page */ +		if (e1000_spi_eeprom_read_page(hw, data, off, pg_len, intr)) +			return -1; + +		/* Otherwise go on to the next page */ +		len  -= pg_len; +		off  += pg_len; +		data += pg_len; +	} + +	/* We're done! */ +	return 0; +} + +static int e1000_spi_eeprom_program(struct e1000_hw *hw, +		const void *data, u16 off, u16 len, boolean_t intr) +{ +	/* Program each page in sequence */ +	while (len) { +		/* Calculate the data bytes on this page */ +		u16 pg_off = off & (hw->eeprom.page_size - 1); +		u16 pg_len = hw->eeprom.page_size - pg_off; +		if (pg_len > len) +			pg_len = len; + +		/* Interruptibly wait for the EEPROM to be ready */ +		if (e1000_spi_eeprom_poll_ready(hw, intr)) +			return -1; + +		/* Enable write access */ +		if (e1000_spi_eeprom_enable_wr(hw, intr)) +			return -1; + +		/* Now program the page */ +		if (e1000_spi_eeprom_write_page(hw, data, off, pg_len, intr)) +			return -1; + +		/* Otherwise go on to the next page */ +		len  -= pg_len; +		off  += pg_len; +		data += pg_len; +	} + +	/* Wait for the last write to complete */ +	if (e1000_spi_eeprom_poll_ready(hw, intr)) +		return -1; + +	/* We're done! */ +	return 0; +} + +static int do_e1000_spi_show(cmd_tbl_t *cmdtp, struct e1000_hw *hw, +		int argc, char * const argv[]) +{ +	unsigned int length = 0; +	u16 i, offset = 0; +	u8 *buffer; +	int err; + +	if (argc > 2) { +		cmd_usage(cmdtp); +		return 1; +	} + +	/* Parse the offset and length */ +	if (argc >= 1) +		offset = simple_strtoul(argv[0], NULL, 0); +	if (argc == 2) +		length = simple_strtoul(argv[1], NULL, 0); +	else if (offset < (hw->eeprom.word_size << 1)) +		length = (hw->eeprom.word_size << 1) - offset; + +	/* Extra sanity checks */ +	if (!length) { +		E1000_ERR(hw->nic, "Requested zero-sized dump!\n"); +		return 1; +	} +	if ((0x10000 < length) || (0x10000 - length < offset)) { +		E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n"); +		return 1; +	} + +	/* Allocate a buffer to hold stuff */ +	buffer = malloc(length); +	if (!buffer) { +		E1000_ERR(hw->nic, "Out of Memory!\n"); +		return 1; +	} + +	/* Acquire the EEPROM and perform the dump */ +	if (e1000_acquire_eeprom(hw)) { +		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); +		free(buffer); +		return 1; +	} +	err = e1000_spi_eeprom_dump(hw, buffer, offset, length, TRUE); +	e1000_release_eeprom(hw); +	if (err) { +		E1000_ERR(hw->nic, "Interrupted!\n"); +		free(buffer); +		return 1; +	} + +	/* Now hexdump the result */ +	printf("%s: ===== Intel e1000 EEPROM (0x%04hX - 0x%04hX) =====", +			hw->nic->name, offset, offset + length - 1); +	for (i = 0; i < length; i++) { +		if ((i & 0xF) == 0) +			printf("\n%s: %04hX: ", hw->nic->name, offset + i); +		else if ((i & 0xF) == 0x8) +			printf(" "); +		printf(" %02hx", buffer[i]); +	} +	printf("\n"); + +	/* Success! */ +	free(buffer); +	return 0; +} + +static int do_e1000_spi_dump(cmd_tbl_t *cmdtp, struct e1000_hw *hw, +		int argc, char * const argv[]) +{ +	unsigned int length; +	u16 offset; +	void *dest; + +	if (argc != 3) { +		cmd_usage(cmdtp); +		return 1; +	} + +	/* Parse the arguments */ +	dest = (void *)simple_strtoul(argv[0], NULL, 16); +	offset = simple_strtoul(argv[1], NULL, 0); +	length = simple_strtoul(argv[2], NULL, 0); + +	/* Extra sanity checks */ +	if (!length) { +		E1000_ERR(hw->nic, "Requested zero-sized dump!\n"); +		return 1; +	} +	if ((0x10000 < length) || (0x10000 - length < offset)) { +		E1000_ERR(hw->nic, "Can't dump past 0xFFFF!\n"); +		return 1; +	} + +	/* Acquire the EEPROM */ +	if (e1000_acquire_eeprom(hw)) { +		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); +		return 1; +	} + +	/* Perform the programming operation */ +	if (e1000_spi_eeprom_dump(hw, dest, offset, length, TRUE) < 0) { +		E1000_ERR(hw->nic, "Interrupted!\n"); +		e1000_release_eeprom(hw); +		return 1; +	} + +	e1000_release_eeprom(hw); +	printf("%s: ===== EEPROM DUMP COMPLETE =====\n", hw->nic->name); +	return 0; +} + +static int do_e1000_spi_program(cmd_tbl_t *cmdtp, struct e1000_hw *hw, +		int argc, char * const argv[]) +{ +	unsigned int length; +	const void *source; +	u16 offset; + +	if (argc != 3) { +		cmd_usage(cmdtp); +		return 1; +	} + +	/* Parse the arguments */ +	source = (const void *)simple_strtoul(argv[0], NULL, 16); +	offset = simple_strtoul(argv[1], NULL, 0); +	length = simple_strtoul(argv[2], NULL, 0); + +	/* Acquire the EEPROM */ +	if (e1000_acquire_eeprom(hw)) { +		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); +		return 1; +	} + +	/* Perform the programming operation */ +	if (e1000_spi_eeprom_program(hw, source, offset, length, TRUE) < 0) { +		E1000_ERR(hw->nic, "Interrupted!\n"); +		e1000_release_eeprom(hw); +		return 1; +	} + +	e1000_release_eeprom(hw); +	printf("%s: ===== EEPROM PROGRAMMED =====\n", hw->nic->name); +	return 0; +} + +static int do_e1000_spi_checksum(cmd_tbl_t *cmdtp, struct e1000_hw *hw, +		int argc, char * const argv[]) +{ +	uint16_t i, length, checksum, checksum_reg; +	uint16_t *buffer; +	boolean_t upd; + +	if (argc == 0) +		upd = 0; +	else if ((argc == 1) && !strcmp(argv[0], "update")) +		upd = 1; +	else { +		cmd_usage(cmdtp); +		return 1; +	} + +	/* Allocate a temporary buffer */ +	length = sizeof(uint16_t) * (EEPROM_CHECKSUM_REG + 1); +	buffer = malloc(length); +	if (!buffer) { +		E1000_ERR(hw->nic, "Unable to allocate EEPROM buffer!\n"); +		return 1; +	} + +	/* Acquire the EEPROM */ +	if (e1000_acquire_eeprom(hw)) { +		E1000_ERR(hw->nic, "EEPROM SPI cannot be acquired!\n"); +		return 1; +	} + +	/* Read the EEPROM */ +	if (e1000_spi_eeprom_dump(hw, buffer, 0, length, TRUE) < 0) { +		E1000_ERR(hw->nic, "Interrupted!\n"); +		e1000_release_eeprom(hw); +		return 1; +	} + +	/* Compute the checksum and read the expected value */ +	for (i = 0; i < EEPROM_CHECKSUM_REG; i++) +		checksum += le16_to_cpu(buffer[i]); +	checksum = ((uint16_t)EEPROM_SUM) - checksum; +	checksum_reg = le16_to_cpu(buffer[i]); + +	/* Verify it! */ +	if (checksum_reg == checksum) { +		printf("%s: INFO: EEPROM checksum is correct! (0x%04hx)\n", +				hw->nic->name, checksum); +		e1000_release_eeprom(hw); +		return 0; +	} + +	/* Hrm, verification failed, print an error */ +	E1000_ERR(hw->nic, "EEPROM checksum is incorrect!\n"); +	E1000_ERR(hw->nic, "  ...register was 0x%04hx, calculated 0x%04hx\n", +			checksum_reg, checksum); + +	/* If they didn't ask us to update it, just return an error */ +	if (!upd) { +		e1000_release_eeprom(hw); +		return 1; +	} + +	/* Ok, correct it! */ +	printf("%s: Reprogramming the EEPROM checksum...\n", hw->nic->name); +	buffer[i] = cpu_to_le16(checksum); +	if (e1000_spi_eeprom_program(hw, &buffer[i], i * sizeof(uint16_t), +			sizeof(uint16_t), TRUE)) { +		E1000_ERR(hw->nic, "Interrupted!\n"); +		e1000_release_eeprom(hw); +		return 1; +	} + +	e1000_release_eeprom(hw); +	return 0; +} + +int do_e1000_spi(cmd_tbl_t *cmdtp, struct e1000_hw *hw, +		int argc, char * const argv[]) +{ +	if (argc < 1) { +		cmd_usage(cmdtp); +		return 1; +	} + +	/* Make sure it has an SPI chip */ +	if (hw->eeprom.type != e1000_eeprom_spi) { +		E1000_ERR(hw->nic, "No attached SPI EEPROM found!\n"); +		return 1; +	} + +	/* Check the eeprom sub-sub-command arguments */ +	if (!strcmp(argv[0], "show")) +		return do_e1000_spi_show(cmdtp, hw, argc - 1, argv + 1); + +	if (!strcmp(argv[0], "dump")) +		return do_e1000_spi_dump(cmdtp, hw, argc - 1, argv + 1); + +	if (!strcmp(argv[0], "program")) +		return do_e1000_spi_program(cmdtp, hw, argc - 1, argv + 1); + +	if (!strcmp(argv[0], "checksum")) +		return do_e1000_spi_checksum(cmdtp, hw, argc - 1, argv + 1); + +	cmd_usage(cmdtp); +	return 1; +} + +#endif /* not CONFIG_CMD_E1000 */ |