diff options
| author | Wolfgang Denk <wd@denx.de> | 2009-07-19 00:38:23 +0200 | 
|---|---|---|
| committer | Wolfgang Denk <wd@denx.de> | 2009-07-19 00:38:23 +0200 | 
| commit | a694610d3361465d4c8d27dde72ab8b63d31115e (patch) | |
| tree | 063d03bcf75538fe45f940eda5b1e6f1859a96fb /common/docecc.c | |
| parent | 5669ed4557edf2714203aa8625c9fcd5a753b338 (diff) | |
| parent | 2419169f5749d7af501b3b77a5336d1d535320de (diff) | |
| download | olio-uboot-2014.01-a694610d3361465d4c8d27dde72ab8b63d31115e.tar.xz olio-uboot-2014.01-a694610d3361465d4c8d27dde72ab8b63d31115e.zip | |
Merge branch 'master' of git://git.denx.de/u-boot-nand-flash
Diffstat (limited to 'common/docecc.c')
| -rw-r--r-- | common/docecc.c | 513 | 
1 files changed, 0 insertions, 513 deletions
| diff --git a/common/docecc.c b/common/docecc.c deleted file mode 100644 index 3412affc7..000000000 --- a/common/docecc.c +++ /dev/null @@ -1,513 +0,0 @@ -/* - * ECC algorithm for M-systems disk on chip. We use the excellent Reed - * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the - * GNU GPL License. The rest is simply to convert the disk on chip - * syndrom into a standard syndom. - * - * Author: Fabrice Bellard (fabrice.bellard@netgem.com) - * Copyright (C) 2000 Netgem S.A. - * - * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $ - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2 of the License, or - * (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA - */ - -#include <config.h> -#include <common.h> -#include <malloc.h> - -#undef ECC_DEBUG -#undef PSYCHO_DEBUG - -#include <linux/mtd/doc2000.h> - -/* need to undef it (from asm/termbits.h) */ -#undef B0 - -#define MM 10 /* Symbol size in bits */ -#define KK (1023-4) /* Number of data symbols per block */ -#define B0 510 /* First root of generator polynomial, alpha form */ -#define PRIM 1 /* power of alpha used to generate roots of generator poly */ -#define	NN ((1 << MM) - 1) - -typedef unsigned short dtype; - -/* 1+x^3+x^10 */ -static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; - -/* This defines the type used to store an element of the Galois Field - * used by the code. Make sure this is something larger than a char if - * if anything larger than GF(256) is used. - * - * Note: unsigned char will work up to GF(256) but int seems to run - * faster on the Pentium. - */ -typedef int gf; - -/* No legal value in index form represents zero, so - * we need a special value for this purpose - */ -#define A0	(NN) - -/* Compute x % NN, where NN is 2**MM - 1, - * without a slow divide - */ -static inline gf -modnn(int x) -{ -  while (x >= NN) { -    x -= NN; -    x = (x >> MM) + (x & NN); -  } -  return x; -} - -#define	CLEAR(a,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = 0;\ -} - -#define	COPY(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define	COPYDOWN(a,b,n) {\ -int ci;\ -for(ci=(n)-1;ci >=0;ci--)\ -(a)[ci] = (b)[ci];\ -} - -#define Ldec 1 - -/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] -   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i; -		   polynomial form -> index form  index_of[j=alpha**i] = i -   alpha=2 is the primitive element of GF(2**m) -   HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: -	Let @ represent the primitive element commonly called "alpha" that -   is the root of the primitive polynomial p(x). Then in GF(2^m), for any -   0 <= i <= 2^m-2, -	@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) -   where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation -   of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for -   example the polynomial representation of @^5 would be given by the binary -   representation of the integer "alpha_to[5]". -		   Similarily, index_of[] can be used as follows: -	As above, let @ represent the primitive element of GF(2^m) that is -   the root of the primitive polynomial p(x). In order to find the power -   of @ (alpha) that has the polynomial representation -	a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) -   we consider the integer "i" whose binary representation with a(0) being LSB -   and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry -   "index_of[i]". Now, @^index_of[i] is that element whose polynomial -    representation is (a(0),a(1),a(2),...,a(m-1)). -   NOTE: -	The element alpha_to[2^m-1] = 0 always signifying that the -   representation of "@^infinity" = 0 is (0,0,0,...,0). -	Similarily, the element index_of[0] = A0 always signifying -   that the power of alpha which has the polynomial representation -   (0,0,...,0) is "infinity". - -*/ - -static void -generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) -{ -  register int i, mask; - -  mask = 1; -  Alpha_to[MM] = 0; -  for (i = 0; i < MM; i++) { -    Alpha_to[i] = mask; -    Index_of[Alpha_to[i]] = i; -    /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ -    if (Pp[i] != 0) -      Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */ -    mask <<= 1;	/* single left-shift */ -  } -  Index_of[Alpha_to[MM]] = MM; -  /* -   * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by -   * poly-repr of @^i shifted left one-bit and accounting for any @^MM -   * term that may occur when poly-repr of @^i is shifted. -   */ -  mask >>= 1; -  for (i = MM + 1; i < NN; i++) { -    if (Alpha_to[i - 1] >= mask) -      Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); -    else -      Alpha_to[i] = Alpha_to[i - 1] << 1; -    Index_of[Alpha_to[i]] = i; -  } -  Index_of[0] = A0; -  Alpha_to[NN] = 0; -} - -/* - * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content - * of the feedback shift register after having processed the data and - * the ECC. - * - * Return number of symbols corrected, or -1 if codeword is illegal - * or uncorrectable. If eras_pos is non-null, the detected error locations - * are written back. NOTE! This array must be at least NN-KK elements long. - * The corrected data are written in eras_val[]. They must be xor with the data - * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . - * - * First "no_eras" erasures are declared by the calling program. Then, the - * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). - * If the number of channel errors is not greater than "t_after_eras" the - * transmitted codeword will be recovered. Details of algorithm can be found - * in R. Blahut's "Theory ... of Error-Correcting Codes". - - * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure - * will result. The decoder *could* check for this condition, but it would involve - * extra time on every decoding operation. - * */ -static int -eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], -	    gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], -	    int no_eras) -{ -  int deg_lambda, el, deg_omega; -  int i, j, r,k; -  gf u,q,tmp,num1,num2,den,discr_r; -  gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly -					 * and syndrome poly */ -  gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; -  gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; -  int syn_error, count; - -  syn_error = 0; -  for(i=0;i<NN-KK;i++) -      syn_error |= bb[i]; - -  if (!syn_error) { -    /* if remainder is zero, data[] is a codeword and there are no -     * errors to correct. So return data[] unmodified -     */ -    count = 0; -    goto finish; -  } - -  for(i=1;i<=NN-KK;i++){ -    s[i] = bb[0]; -  } -  for(j=1;j<NN-KK;j++){ -    if(bb[j] == 0) -      continue; -    tmp = Index_of[bb[j]]; - -    for(i=1;i<=NN-KK;i++) -      s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; -  } - -  /* undo the feedback register implicit multiplication and convert -     syndromes to index form */ - -  for(i=1;i<=NN-KK;i++) { -      tmp = Index_of[s[i]]; -      if (tmp != A0) -	  tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); -      s[i] = tmp; -  } - -  CLEAR(&lambda[1],NN-KK); -  lambda[0] = 1; - -  if (no_eras > 0) { -    /* Init lambda to be the erasure locator polynomial */ -    lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; -    for (i = 1; i < no_eras; i++) { -      u = modnn(PRIM*eras_pos[i]); -      for (j = i+1; j > 0; j--) { -	tmp = Index_of[lambda[j - 1]]; -	if(tmp != A0) -	  lambda[j] ^= Alpha_to[modnn(u + tmp)]; -      } -    } -#ifdef ECC_DEBUG -    /* Test code that verifies the erasure locator polynomial just constructed -       Needed only for decoder debugging. */ - -    /* find roots of the erasure location polynomial */ -    for(i=1;i<=no_eras;i++) -      reg[i] = Index_of[lambda[i]]; -    count = 0; -    for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { -      q = 1; -      for (j = 1; j <= no_eras; j++) -	if (reg[j] != A0) { -	  reg[j] = modnn(reg[j] + j); -	  q ^= Alpha_to[reg[j]]; -	} -      if (q != 0) -	continue; -      /* store root and error location number indices */ -      root[count] = i; -      loc[count] = k; -      count++; -    } -    if (count != no_eras) { -      printf("\n lambda(x) is WRONG\n"); -      count = -1; -      goto finish; -    } -#ifdef PSYCHO_DEBUG -    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); -    for (i = 0; i < count; i++) -      printf("%d ", loc[i]); -    printf("\n"); -#endif -#endif -  } -  for(i=0;i<NN-KK+1;i++) -    b[i] = Index_of[lambda[i]]; - -  /* -   * Begin Berlekamp-Massey algorithm to determine error+erasure -   * locator polynomial -   */ -  r = no_eras; -  el = no_eras; -  while (++r <= NN-KK) {	/* r is the step number */ -    /* Compute discrepancy at the r-th step in poly-form */ -    discr_r = 0; -    for (i = 0; i < r; i++){ -      if ((lambda[i] != 0) && (s[r - i] != A0)) { -	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; -      } -    } -    discr_r = Index_of[discr_r];	/* Index form */ -    if (discr_r == A0) { -      /* 2 lines below: B(x) <-- x*B(x) */ -      COPYDOWN(&b[1],b,NN-KK); -      b[0] = A0; -    } else { -      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ -      t[0] = lambda[0]; -      for (i = 0 ; i < NN-KK; i++) { -	if(b[i] != A0) -	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; -	else -	  t[i+1] = lambda[i+1]; -      } -      if (2 * el <= r + no_eras - 1) { -	el = r + no_eras - el; -	/* -	 * 2 lines below: B(x) <-- inv(discr_r) * -	 * lambda(x) -	 */ -	for (i = 0; i <= NN-KK; i++) -	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); -      } else { -	/* 2 lines below: B(x) <-- x*B(x) */ -	COPYDOWN(&b[1],b,NN-KK); -	b[0] = A0; -      } -      COPY(lambda,t,NN-KK+1); -    } -  } - -  /* Convert lambda to index form and compute deg(lambda(x)) */ -  deg_lambda = 0; -  for(i=0;i<NN-KK+1;i++){ -    lambda[i] = Index_of[lambda[i]]; -    if(lambda[i] != A0) -      deg_lambda = i; -  } -  /* -   * Find roots of the error+erasure locator polynomial by Chien -   * Search -   */ -  COPY(®[1],&lambda[1],NN-KK); -  count = 0;		/* Number of roots of lambda(x) */ -  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { -    q = 1; -    for (j = deg_lambda; j > 0; j--){ -      if (reg[j] != A0) { -	reg[j] = modnn(reg[j] + j); -	q ^= Alpha_to[reg[j]]; -      } -    } -    if (q != 0) -      continue; -    /* store root (index-form) and error location number */ -    root[count] = i; -    loc[count] = k; -    /* If we've already found max possible roots, -     * abort the search to save time -     */ -    if(++count == deg_lambda) -      break; -  } -  if (deg_lambda != count) { -    /* -     * deg(lambda) unequal to number of roots => uncorrectable -     * error detected -     */ -    count = -1; -    goto finish; -  } -  /* -   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo -   * x**(NN-KK)). in index form. Also find deg(omega). -   */ -  deg_omega = 0; -  for (i = 0; i < NN-KK;i++){ -    tmp = 0; -    j = (deg_lambda < i) ? deg_lambda : i; -    for(;j >= 0; j--){ -      if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) -	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; -    } -    if(tmp != 0) -      deg_omega = i; -    omega[i] = Index_of[tmp]; -  } -  omega[NN-KK] = A0; - -  /* -   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = -   * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form -   */ -  for (j = count-1; j >=0; j--) { -    num1 = 0; -    for (i = deg_omega; i >= 0; i--) { -      if (omega[i] != A0) -	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])]; -    } -    num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; -    den = 0; - -    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ -    for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { -      if(lambda[i+1] != A0) -	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; -    } -    if (den == 0) { -#ifdef ECC_DEBUG -      printf("\n ERROR: denominator = 0\n"); -#endif -      /* Convert to dual- basis */ -      count = -1; -      goto finish; -    } -    /* Apply error to data */ -    if (num1 != 0) { -	eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; -    } else { -	eras_val[j] = 0; -    } -  } - finish: -  for(i=0;i<count;i++) -      eras_pos[i] = loc[i]; -  return count; -} - -/***************************************************************************/ -/* The DOC specific code begins here */ - -#define SECTOR_SIZE 512 -/* The sector bytes are packed into NB_DATA MM bits words */ -#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) - -/* - * Correct the errors in 'sector[]' by using 'ecc1[]' which is the - * content of the feedback shift register applyied to the sector and - * the ECC. Return the number of errors corrected (and correct them in - * sector), or -1 if error - */ -int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) -{ -    int parity, i, nb_errors; -    gf bb[NN - KK + 1]; -    gf error_val[NN-KK]; -    int error_pos[NN-KK], pos, bitpos, index, val; -    dtype *Alpha_to, *Index_of; - -    /* init log and exp tables here to save memory. However, it is slower */ -    Alpha_to = malloc((NN + 1) * sizeof(dtype)); -    if (!Alpha_to) -	return -1; - -    Index_of = malloc((NN + 1) * sizeof(dtype)); -    if (!Index_of) { -	free(Alpha_to); -	return -1; -    } - -    generate_gf(Alpha_to, Index_of); - -    parity = ecc1[1]; - -    bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); -    bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); -    bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); -    bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); - -    nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, -			    error_val, error_pos, 0); -    if (nb_errors <= 0) -	goto the_end; - -    /* correct the errors */ -    for(i=0;i<nb_errors;i++) { -	pos = error_pos[i]; -	if (pos >= NB_DATA && pos < KK) { -	    nb_errors = -1; -	    goto the_end; -	} -	if (pos < NB_DATA) { -	    /* extract bit position (MSB first) */ -	    pos = 10 * (NB_DATA - 1 - pos) - 6; -	    /* now correct the following 10 bits. At most two bytes -	       can be modified since pos is even */ -	    index = (pos >> 3) ^ 1; -	    bitpos = pos & 7; -	    if ((index >= 0 && index < SECTOR_SIZE) || -		index == (SECTOR_SIZE + 1)) { -		val = error_val[i] >> (2 + bitpos); -		parity ^= val; -		if (index < SECTOR_SIZE) -		    sector[index] ^= val; -	    } -	    index = ((pos >> 3) + 1) ^ 1; -	    bitpos = (bitpos + 10) & 7; -	    if (bitpos == 0) -		bitpos = 8; -	    if ((index >= 0 && index < SECTOR_SIZE) || -		index == (SECTOR_SIZE + 1)) { -		val = error_val[i] << (8 - bitpos); -		parity ^= val; -		if (index < SECTOR_SIZE) -		    sector[index] ^= val; -	    } -	} -    } - -    /* use parity to test extra errors */ -    if ((parity & 0xff) != 0) -	nb_errors = -1; - - the_end: -    free(Alpha_to); -    free(Index_of); -    return nb_errors; -} |