diff options
| author | Dipen Dudhat <Dipen.Dudhat@freescale.com> | 2011-03-22 09:27:39 +0530 | 
|---|---|---|
| committer | Kumar Gala <galak@kernel.crashing.org> | 2011-09-29 19:01:04 -0500 | 
| commit | 52f90dad60d2252ec34c208cae1100bc75201ec7 (patch) | |
| tree | ac51b1ccc0fc541ee8ace1dfc6fe51f0dd8778ec | |
| parent | 49249e137daeec4d51c99aa69a8459d2f11cd94d (diff) | |
| download | olio-uboot-2014.01-52f90dad60d2252ec34c208cae1100bc75201ec7.tar.xz olio-uboot-2014.01-52f90dad60d2252ec34c208cae1100bc75201ec7.zip | |
nand: Freescale Integrated Flash Controller NAND support
Add NAND support (including spl) on IFC, such as is found on the p1010.
Note that using hardware ECC on IFC with small-page NAND (which is what
comes on the p1010rdb reference board) means there will be insufficient
OOB space for JFFS2, since IFC does not support 1-bit ECC.  UBI should
work, as it does not use OOB for anything but ECC.
When hardware ECC is not enabled in CSOR, software ECC is now used.
Signed-off-by: Dipen Dudhat <Dipen.Dudhat@freescale.com>
[scottwood@freescale.com: ECC rework and misc fixes]
Signed-off-by: Scott Wood <scottwood@freescale.com>
| -rw-r--r-- | arch/powerpc/cpu/mpc85xx/cpu_init_nand.c | 10 | ||||
| -rw-r--r-- | arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds | 18 | ||||
| -rw-r--r-- | arch/powerpc/include/asm/fsl_ifc.h | 6 | ||||
| -rw-r--r-- | drivers/mtd/nand/Makefile | 1 | ||||
| -rw-r--r-- | drivers/mtd/nand/fsl_ifc_nand.c | 850 | ||||
| -rw-r--r-- | nand_spl/nand_boot_fsl_ifc.c | 271 | 
6 files changed, 1149 insertions, 7 deletions
| diff --git a/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c b/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c index 796d39842..6d01479a9 100644 --- a/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c +++ b/arch/powerpc/cpu/mpc85xx/cpu_init_nand.c @@ -21,10 +21,12 @@   */  #include <common.h> +#include <asm/fsl_ifc.h>  #include <asm/io.h>  void cpu_init_f(void)  { +#ifdef CONFIG_FSL_LBC  	fsl_lbc_t *lbc = LBC_BASE_ADDR;  	/* @@ -39,6 +41,14 @@ void cpu_init_f(void)  #else  #error  CONFIG_SYS_NAND_BR_PRELIM, CONFIG_SYS_NAND_OR_PRELIM must be defined  #endif +#endif +#ifdef CONFIG_FSL_IFC +#if defined(CONFIG_SYS_CSPR0) && defined(CONFIG_SYS_CSOR0) +	set_ifc_cspr(IFC_CS0, CONFIG_SYS_CSPR0); +	set_ifc_amask(IFC_CS0, CONFIG_SYS_AMASK0); +	set_ifc_csor(IFC_CS0, CONFIG_SYS_CSOR0); +#endif +#endif  #if defined(CONFIG_SYS_RAMBOOT) && defined(CONFIG_SYS_INIT_L2_ADDR)  	ccsr_l2cache_t *l2cache = (void *)CONFIG_SYS_MPC85xx_L2_ADDR; diff --git a/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds b/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds index 8410bd797..852f9aa4a 100644 --- a/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds +++ b/arch/powerpc/cpu/mpc85xx/u-boot-nand_spl.lds @@ -23,6 +23,8 @@   * MA 02111-1307 USA   */ +#include "config.h"	/* CONFIG_BOARDDIR */ +  OUTPUT_ARCH(powerpc)  SECTIONS  { @@ -52,8 +54,18 @@ SECTIONS  	. = ALIGN(8);  	__init_begin = .;  	__init_end = .; - -	.resetvec ADDR(.text) + 0xffc : { +#if defined(CONFIG_FSL_IFC) /* Restrict bootpg at 4K boundry for IFC */ +	.bootpg ADDR(.text) + 0x1000 : +	{ +		start.o	(.bootpg) +	} +#define RESET_VECTOR_OFFSET 0x1ffc /* IFC has 8K sram */ +#elif defined(CONFIG_FSL_ELBC) +#define RESET_VECTOR_OFFSET 0xffc /* LBC has 4k sram */ +#else +#error unknown NAND controller +#endif +	.resetvec ADDR(.text) + RESET_VECTOR_OFFSET : {  		KEEP(*(.resetvec))  	} = 0xffff @@ -64,4 +76,4 @@ SECTIONS  	}  	__bss_end__ = .;  } -ASSERT(__init_end <= 0xfff00ffc, "NAND bootstrap too big"); +ASSERT(__init_end <= (0xfff00000 + RESET_VECTOR_OFFSET), "NAND bootstrap too big"); diff --git a/arch/powerpc/include/asm/fsl_ifc.h b/arch/powerpc/include/asm/fsl_ifc.h index d4d980905..fb12363c8 100644 --- a/arch/powerpc/include/asm/fsl_ifc.h +++ b/arch/powerpc/include/asm/fsl_ifc.h @@ -69,6 +69,7 @@   */  /* Enable ECC Encoder */  #define CSOR_NAND_ECC_ENC_EN		0x80000000 +#define CSOR_NAND_ECC_MODE_MASK		0x30000000  /* 4 bit correction per 520 Byte sector */  #define CSOR_NAND_ECC_MODE_4		0x00000000  /* 8 bit correction per 528 Byte sector */ @@ -857,10 +858,7 @@ struct fsl_ifc_nand {  	u32 res19[0x10];  	u32 nand_fsr;  	u32 res20; -	u32 nand_eccstat0; -	u32 nand_eccstat1; -	u32 nand_eccstat2; -	u32 nand_eccstat3; +	u32 nand_eccstat[4];  	u32 res21[0x20];  	u32 nanndcr;  	u32 res22[0x2]; diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index 8b598f6bf..3353dcd8c 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile @@ -37,6 +37,7 @@ COBJS-$(CONFIG_NAND_ATMEL) += atmel_nand.o  COBJS-$(CONFIG_DRIVER_NAND_BFIN) += bfin_nand.o  COBJS-$(CONFIG_NAND_DAVINCI) += davinci_nand.o  COBJS-$(CONFIG_NAND_FSL_ELBC) += fsl_elbc_nand.o +COBJS-$(CONFIG_NAND_FSL_IFC) += fsl_ifc_nand.o  COBJS-$(CONFIG_NAND_FSL_UPM) += fsl_upm.o  COBJS-$(CONFIG_NAND_KB9202) += kb9202_nand.o  COBJS-$(CONFIG_NAND_KIRKWOOD) += kirkwood_nand.o diff --git a/drivers/mtd/nand/fsl_ifc_nand.c b/drivers/mtd/nand/fsl_ifc_nand.c new file mode 100644 index 000000000..b3f3c3c05 --- /dev/null +++ b/drivers/mtd/nand/fsl_ifc_nand.c @@ -0,0 +1,850 @@ +/* Integrated Flash Controller NAND Machine Driver + * + * Copyright (c) 2011 Freescale Semiconductor, Inc + * + * Authors: Dipen Dudhat <Dipen.Dudhat@freescale.com> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + */ + +#include <common.h> +#include <malloc.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> + +#include <asm/io.h> +#include <asm/errno.h> +#include <asm/fsl_ifc.h> + +#define MAX_BANKS	4 +#define ERR_BYTE	0xFF /* Value returned for read bytes +				when read failed */ +#define IFC_TIMEOUT_MSECS 10 /* Maximum number of mSecs to wait for IFC +				NAND Machine */ + +struct fsl_ifc_ctrl; + +/* mtd information per set */ +struct fsl_ifc_mtd { +	struct mtd_info mtd; +	struct nand_chip chip; +	struct fsl_ifc_ctrl *ctrl; + +	struct device *dev; +	int bank;               /* Chip select bank number                */ +	unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */ +	u8 __iomem *vbase;      /* Chip select base virtual address       */ +}; + +/* overview of the fsl ifc controller */ +struct fsl_ifc_ctrl { +	struct nand_hw_control controller; +	struct fsl_ifc_mtd *chips[MAX_BANKS]; + +	/* device info */ +	struct fsl_ifc *regs; +	uint8_t __iomem *addr;   /* Address of assigned IFC buffer        */ +	unsigned int cs_nand;    /* On which chipsel NAND is connected	  */ +	unsigned int page;       /* Last page written to / read from      */ +	unsigned int read_bytes; /* Number of bytes read during command   */ +	unsigned int column;     /* Saved column from SEQIN               */ +	unsigned int index;      /* Pointer to next byte to 'read'        */ +	unsigned int status;     /* status read from NEESR after last op  */ +	unsigned int oob;        /* Non zero if operating on OOB data     */ +	unsigned int eccread;    /* Non zero for a full-page ECC read     */ +}; + +static struct fsl_ifc_ctrl *ifc_ctrl; + +/* 512-byte page with 4-bit ECC, 8-bit */ +static struct nand_ecclayout oob_512_8bit_ecc4 = { +	.eccbytes = 8, +	.eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, +	.oobfree = { {0, 5}, {6, 2} }, +}; + +/* 512-byte page with 4-bit ECC, 16-bit */ +static struct nand_ecclayout oob_512_16bit_ecc4 = { +	.eccbytes = 8, +	.eccpos = {8, 9, 10, 11, 12, 13, 14, 15}, +	.oobfree = { {2, 6}, }, +}; + +/* 2048-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_2048_ecc4 = { +	.eccbytes = 32, +	.eccpos = { +		8, 9, 10, 11, 12, 13, 14, 15, +		16, 17, 18, 19, 20, 21, 22, 23, +		24, 25, 26, 27, 28, 29, 30, 31, +		32, 33, 34, 35, 36, 37, 38, 39, +	}, +	.oobfree = { {2, 6}, {40, 24} }, +}; + +/* 4096-byte page size with 4-bit ECC */ +static struct nand_ecclayout oob_4096_ecc4 = { +	.eccbytes = 64, +	.eccpos = { +		8, 9, 10, 11, 12, 13, 14, 15, +		16, 17, 18, 19, 20, 21, 22, 23, +		24, 25, 26, 27, 28, 29, 30, 31, +		32, 33, 34, 35, 36, 37, 38, 39, +		40, 41, 42, 43, 44, 45, 46, 47, +		48, 49, 50, 51, 52, 53, 54, 55, +		56, 57, 58, 59, 60, 61, 62, 63, +		64, 65, 66, 67, 68, 69, 70, 71, +	}, +	.oobfree = { {2, 6}, {72, 56} }, +}; + +/* 4096-byte page size with 8-bit ECC -- requires 218-byte OOB */ +static struct nand_ecclayout oob_4096_ecc8 = { +	.eccbytes = 128, +	.eccpos = { +		8, 9, 10, 11, 12, 13, 14, 15, +		16, 17, 18, 19, 20, 21, 22, 23, +		24, 25, 26, 27, 28, 29, 30, 31, +		32, 33, 34, 35, 36, 37, 38, 39, +		40, 41, 42, 43, 44, 45, 46, 47, +		48, 49, 50, 51, 52, 53, 54, 55, +		56, 57, 58, 59, 60, 61, 62, 63, +		64, 65, 66, 67, 68, 69, 70, 71, +		72, 73, 74, 75, 76, 77, 78, 79, +		80, 81, 82, 83, 84, 85, 86, 87, +		88, 89, 90, 91, 92, 93, 94, 95, +		96, 97, 98, 99, 100, 101, 102, 103, +		104, 105, 106, 107, 108, 109, 110, 111, +		112, 113, 114, 115, 116, 117, 118, 119, +		120, 121, 122, 123, 124, 125, 126, 127, +		128, 129, 130, 131, 132, 133, 134, 135, +	}, +	.oobfree = { {2, 6}, {136, 82} }, +}; + + +/* + * Generic flash bbt descriptors + */ +static u8 bbt_pattern[] = {'B', 'b', 't', '0' }; +static u8 mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | +		   NAND_BBT_2BIT | NAND_BBT_VERSION, +	.offs =	2, /* 0 on 8-bit small page */ +	.len = 4, +	.veroffs = 6, +	.maxblocks = 4, +	.pattern = bbt_pattern, +}; + +static struct nand_bbt_descr bbt_mirror_descr = { +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | +		   NAND_BBT_2BIT | NAND_BBT_VERSION, +	.offs =	2, /* 0 on 8-bit small page */ +	.len = 4, +	.veroffs = 6, +	.maxblocks = 4, +	.pattern = mirror_pattern, +}; + +/* + * Set up the IFC hardware block and page address fields, and the ifc nand + * structure addr field to point to the correct IFC buffer in memory + */ +static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob) +{ +	struct nand_chip *chip = mtd->priv; +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; +	struct fsl_ifc *ifc = ctrl->regs; +	int buf_num; + +	ctrl->page = page_addr; + +	/* Program ROW0/COL0 */ +	out_be32(&ifc->ifc_nand.row0, page_addr); +	out_be32(&ifc->ifc_nand.col0, (oob ? IFC_NAND_COL_MS : 0) | column); + +	buf_num = page_addr & priv->bufnum_mask; + +	ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2); +	ctrl->index = column; + +	/* for OOB data point to the second half of the buffer */ +	if (oob) +		ctrl->index += mtd->writesize; +} + +static int is_blank(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, +		    unsigned int bufnum) +{ +	struct nand_chip *chip = mtd->priv; +	struct fsl_ifc_mtd *priv = chip->priv; +	u8 __iomem *addr = priv->vbase + bufnum * (mtd->writesize * 2); +	u32 __iomem *main = (u32 *)addr; +	u8 __iomem *oob = addr + mtd->writesize; +	int i; + +	for (i = 0; i < mtd->writesize / 4; i++) { +		if (__raw_readl(&main[i]) != 0xffffffff) +			return 0; +	} + +	for (i = 0; i < chip->ecc.layout->eccbytes; i++) { +		int pos = chip->ecc.layout->eccpos[i]; + +		if (__raw_readb(&oob[pos]) != 0xff) +			return 0; +	} + +	return 1; +} + +/* returns nonzero if entire page is blank */ +static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl, +			  u32 *eccstat, unsigned int bufnum) +{ +	u32 reg = eccstat[bufnum / 4]; +	int errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; + +	if (errors == 15) { /* uncorrectable */ +		/* Blank pages fail hw ECC checks */ +		if (is_blank(mtd, ctrl, bufnum)) +			return 1; + +		/* +		 * We disable ECCER reporting in hardware due to +		 * erratum IFC-A002770 -- so report it now if we +		 * see an uncorrectable error in ECCSTAT. +		 */ +		ctrl->status |= IFC_NAND_EVTER_STAT_ECCER; +	} else if (errors > 0) { +		mtd->ecc_stats.corrected += errors; +	} + +	return 0; +} + +/* + * execute IFC NAND command and wait for it to complete + */ +static int fsl_ifc_run_command(struct mtd_info *mtd) +{ +	struct nand_chip *chip = mtd->priv; +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; +	struct fsl_ifc *ifc = ctrl->regs; +	long long end_tick; +	u32 eccstat[4]; +	int i; + +	/* set the chip select for NAND Transaction */ +	out_be32(&ifc->ifc_nand.nand_csel, ifc_ctrl->cs_nand); + +	/* start read/write seq */ +	out_be32(&ifc->ifc_nand.nandseq_strt, +		 IFC_NAND_SEQ_STRT_FIR_STRT); + +	/* wait for NAND Machine complete flag or timeout */ +	end_tick = usec2ticks(IFC_TIMEOUT_MSECS * 1000) + get_ticks(); + +	while (end_tick > get_ticks()) { +		ctrl->status = in_be32(&ifc->ifc_nand.nand_evter_stat); + +		if (ctrl->status & IFC_NAND_EVTER_STAT_OPC) +			break; +	} + +	out_be32(&ifc->ifc_nand.nand_evter_stat, ctrl->status); + +	if (ctrl->status & IFC_NAND_EVTER_STAT_FTOER) +		printf("%s: Flash Time Out Error\n", __func__); +	if (ctrl->status & IFC_NAND_EVTER_STAT_WPER) +		printf("%s: Write Protect Error\n", __func__); + +	if (ctrl->eccread) { +		int bufperpage = mtd->writesize / 512; +		int bufnum = (ctrl->page & priv->bufnum_mask) * bufperpage; +		int bufnum_end = bufnum + bufperpage - 1; + +		for (i = bufnum / 4; i <= bufnum_end / 4; i++) +			eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]); + +		for (i = bufnum; i <= bufnum_end; i++) { +			if (check_read_ecc(mtd, ctrl, eccstat, i)) +				break; +		} + +		ctrl->eccread = 0; +	} + +	/* returns 0 on success otherwise non-zero) */ +	return ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO; +} + +static void fsl_ifc_do_read(struct nand_chip *chip, +			    int oob, +			    struct mtd_info *mtd) +{ +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; +	struct fsl_ifc *ifc = ctrl->regs; + +	/* Program FIR/IFC_NAND_FCR0 for Small/Large page */ +	if (mtd->writesize > 512) { +		out_be32(&ifc->ifc_nand.nand_fir0, +			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | +			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | +			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | +			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | +			 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT)); +		out_be32(&ifc->ifc_nand.nand_fir1, 0x0); + +		out_be32(&ifc->ifc_nand.nand_fcr0, +			(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | +			(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); +	} else { +		out_be32(&ifc->ifc_nand.nand_fir0, +			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | +			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | +			 (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) | +			 (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT)); + +		if (oob) +			out_be32(&ifc->ifc_nand.nand_fcr0, +				 NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT); +		else +			out_be32(&ifc->ifc_nand.nand_fcr0, +				NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); +	} +} + +/* cmdfunc send commands to the IFC NAND Machine */ +static void fsl_ifc_cmdfunc(struct mtd_info *mtd, unsigned int command, +			     int column, int page_addr) +{ +	struct nand_chip *chip = mtd->priv; +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; +	struct fsl_ifc *ifc = ctrl->regs; + +	/* clear the read buffer */ +	ctrl->read_bytes = 0; +	if (command != NAND_CMD_PAGEPROG) +		ctrl->index = 0; + +	switch (command) { +	/* READ0 read the entire buffer to use hardware ECC. */ +	case NAND_CMD_READ0: { +		out_be32(&ifc->ifc_nand.nand_fbcr, 0); +		set_addr(mtd, 0, page_addr, 0); + +		ctrl->read_bytes = mtd->writesize + mtd->oobsize; +		ctrl->index += column; + +		if (chip->ecc.mode == NAND_ECC_HW) +			ctrl->eccread = 1; + +		fsl_ifc_do_read(chip, 0, mtd); +		fsl_ifc_run_command(mtd); +		return; +	} + +	/* READOOB reads only the OOB because no ECC is performed. */ +	case NAND_CMD_READOOB: +		out_be32(&ifc->ifc_nand.nand_fbcr, mtd->oobsize - column); +		set_addr(mtd, column, page_addr, 1); + +		ctrl->read_bytes = mtd->writesize + mtd->oobsize; + +		fsl_ifc_do_read(chip, 1, mtd); +		fsl_ifc_run_command(mtd); + +		return; + +	/* READID must read all possible bytes while CEB is active */ +	case NAND_CMD_READID: +		out_be32(&ifc->ifc_nand.nand_fir0, +				(IFC_FIR_OP_CMD0 << IFC_NAND_FIR0_OP0_SHIFT) | +				(IFC_FIR_OP_UA  << IFC_NAND_FIR0_OP1_SHIFT) | +				(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT)); +		out_be32(&ifc->ifc_nand.nand_fcr0, +				NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT); +		/* 4 bytes for manuf, device and exts */ +		out_be32(&ifc->ifc_nand.nand_fbcr, 4); +		ctrl->read_bytes = 4; + +		set_addr(mtd, 0, 0, 0); +		fsl_ifc_run_command(mtd); +		return; + +	/* ERASE1 stores the block and page address */ +	case NAND_CMD_ERASE1: +		set_addr(mtd, 0, page_addr, 0); +		return; + +	/* ERASE2 uses the block and page address from ERASE1 */ +	case NAND_CMD_ERASE2: +		out_be32(&ifc->ifc_nand.nand_fir0, +			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | +			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) | +			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT)); + +		out_be32(&ifc->ifc_nand.nand_fcr0, +			 (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) | +			 (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT)); + +		out_be32(&ifc->ifc_nand.nand_fbcr, 0); +		ctrl->read_bytes = 0; +		fsl_ifc_run_command(mtd); +		return; + +	/* SEQIN sets up the addr buffer and all registers except the length */ +	case NAND_CMD_SEQIN: { +		u32 nand_fcr0; +		ctrl->column = column; +		ctrl->oob = 0; + +		if (mtd->writesize > 512) { +			nand_fcr0 = +				(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) | +				(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD1_SHIFT); + +			out_be32(&ifc->ifc_nand.nand_fir0, +				 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | +				 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | +				 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | +				 (IFC_FIR_OP_WBCD  << IFC_NAND_FIR0_OP3_SHIFT) | +				 (IFC_FIR_OP_CW1 << IFC_NAND_FIR0_OP4_SHIFT)); +			out_be32(&ifc->ifc_nand.nand_fir1, 0); +		} else { +			nand_fcr0 = ((NAND_CMD_PAGEPROG << +					IFC_NAND_FCR0_CMD1_SHIFT) | +				    (NAND_CMD_SEQIN << +					IFC_NAND_FCR0_CMD2_SHIFT)); + +			out_be32(&ifc->ifc_nand.nand_fir0, +				 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | +				 (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) | +				 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) | +				 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) | +				 (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT)); +			out_be32(&ifc->ifc_nand.nand_fir1, +				 (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT)); + +			if (column >= mtd->writesize) { +				/* OOB area --> READOOB */ +				column -= mtd->writesize; +				nand_fcr0 |= NAND_CMD_READOOB << +						IFC_NAND_FCR0_CMD0_SHIFT; +				ctrl->oob = 1; +			} else if (column < 256) { +				/* First 256 bytes --> READ0 */ +				nand_fcr0 |= NAND_CMD_READ0 << FCR_CMD0_SHIFT; +			} else { +				/* Second 256 bytes --> READ1 */ +				nand_fcr0 |= NAND_CMD_READ1 << FCR_CMD0_SHIFT; +			} +		} + +		out_be32(&ifc->ifc_nand.nand_fcr0, nand_fcr0); +		set_addr(mtd, column, page_addr, ctrl->oob); +		return; +	} + +	/* PAGEPROG reuses all of the setup from SEQIN and adds the length */ +	case NAND_CMD_PAGEPROG: +		if (ctrl->oob) +			out_be32(&ifc->ifc_nand.nand_fbcr, ctrl->index); +		else +			out_be32(&ifc->ifc_nand.nand_fbcr, 0); + +		fsl_ifc_run_command(mtd); +		return; + +	case NAND_CMD_STATUS: +		out_be32(&ifc->ifc_nand.nand_fir0, +				(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | +				(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT)); +		out_be32(&ifc->ifc_nand.nand_fcr0, +				NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT); +		out_be32(&ifc->ifc_nand.nand_fbcr, 1); +		set_addr(mtd, 0, 0, 0); +		ctrl->read_bytes = 1; + +		fsl_ifc_run_command(mtd); + +		/* Chip sometimes reporting write protect even when it's not */ +		out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP); +		return; + +	case NAND_CMD_RESET: +		out_be32(&ifc->ifc_nand.nand_fir0, +				IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT); +		out_be32(&ifc->ifc_nand.nand_fcr0, +				NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT); +		fsl_ifc_run_command(mtd); +		return; + +	default: +		printf("%s: error, unsupported command 0x%x.\n", +			__func__, command); +	} +} + +/* + * Write buf to the IFC NAND Controller Data Buffer + */ +static void fsl_ifc_write_buf(struct mtd_info *mtd, const u8 *buf, int len) +{ +	struct nand_chip *chip = mtd->priv; +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; +	unsigned int bufsize = mtd->writesize + mtd->oobsize; + +	if (len <= 0) { +		printf("%s of %d bytes", __func__, len); +		ctrl->status = 0; +		return; +	} + +	if ((unsigned int)len > bufsize - ctrl->index) { +		printf("%s beyond end of buffer " +		       "(%d requested, %u available)\n", +			__func__, len, bufsize - ctrl->index); +		len = bufsize - ctrl->index; +	} + +	memcpy_toio(&ctrl->addr[ctrl->index], buf, len); +	ctrl->index += len; +} + +/* + * read a byte from either the IFC hardware buffer if it has any data left + * otherwise issue a command to read a single byte. + */ +static u8 fsl_ifc_read_byte(struct mtd_info *mtd) +{ +	struct nand_chip *chip = mtd->priv; +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; + +	/* If there are still bytes in the IFC buffer, then use the +	 * next byte. */ +	if (ctrl->index < ctrl->read_bytes) +		return in_8(&ctrl->addr[ctrl->index++]); + +	printf("%s beyond end of buffer\n", __func__); +	return ERR_BYTE; +} + +/* + * Read two bytes from the IFC hardware buffer + * read function for 16-bit buswith + */ +static uint8_t fsl_ifc_read_byte16(struct mtd_info *mtd) +{ +	struct nand_chip *chip = mtd->priv; +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; +	uint16_t data; + +	/* +	 * If there are still bytes in the IFC buffer, then use the +	 * next byte. +	 */ +	if (ctrl->index < ctrl->read_bytes) { +		data = in_be16((uint16_t *)&ctrl-> +					addr[ctrl->index]); +		ctrl->index += 2; +		return (uint8_t)data; +	} + +	printf("%s beyond end of buffer\n", __func__); +	return ERR_BYTE; +} + +/* + * Read from the IFC Controller Data Buffer + */ +static void fsl_ifc_read_buf(struct mtd_info *mtd, u8 *buf, int len) +{ +	struct nand_chip *chip = mtd->priv; +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; +	int avail; + +	if (len < 0) +		return; + +	avail = min((unsigned int)len, ctrl->read_bytes - ctrl->index); +	memcpy_fromio(buf, &ctrl->addr[ctrl->index], avail); +	ctrl->index += avail; + +	if (len > avail) +		printf("%s beyond end of buffer " +		       "(%d requested, %d available)\n", +		       __func__, len, avail); +} + +/* + * Verify buffer against the IFC Controller Data Buffer + */ +static int fsl_ifc_verify_buf(struct mtd_info *mtd, +			       const u_char *buf, int len) +{ +	struct nand_chip *chip = mtd->priv; +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; +	int i; + +	if (len < 0) { +		printf("%s of %d bytes", __func__, len); +		return -EINVAL; +	} + +	if ((unsigned int)len > ctrl->read_bytes - ctrl->index) { +		printf("%s beyond end of buffer " +		       "(%d requested, %u available)\n", +		       __func__, len, ctrl->read_bytes - ctrl->index); + +		ctrl->index = ctrl->read_bytes; +		return -EINVAL; +	} + +	for (i = 0; i < len; i++) +		if (in_8(&ctrl->addr[ctrl->index + i]) != buf[i]) +			break; + +	ctrl->index += len; +	return i == len && ctrl->status == IFC_NAND_EVTER_STAT_OPC ? 0 : -EIO; +} + +/* This function is called after Program and Erase Operations to + * check for success or failure. + */ +static int fsl_ifc_wait(struct mtd_info *mtd, struct nand_chip *chip) +{ +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; +	struct fsl_ifc *ifc = ctrl->regs; +	u32 nand_fsr; + +	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) +		return NAND_STATUS_FAIL; + +	/* Use READ_STATUS command, but wait for the device to be ready */ +	out_be32(&ifc->ifc_nand.nand_fir0, +		 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | +		 (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT)); +	out_be32(&ifc->ifc_nand.nand_fcr0, NAND_CMD_STATUS << +			IFC_NAND_FCR0_CMD0_SHIFT); +	out_be32(&ifc->ifc_nand.nand_fbcr, 1); +	set_addr(mtd, 0, 0, 0); +	ctrl->read_bytes = 1; + +	fsl_ifc_run_command(mtd); + +	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) +		return NAND_STATUS_FAIL; + +	nand_fsr = in_be32(&ifc->ifc_nand.nand_fsr); + +	/* Chip sometimes reporting write protect even when it's not */ +	nand_fsr = nand_fsr | NAND_STATUS_WP; +	return nand_fsr; +} + +static int fsl_ifc_read_page(struct mtd_info *mtd, +			      struct nand_chip *chip, +			      uint8_t *buf, int page) +{ +	struct fsl_ifc_mtd *priv = chip->priv; +	struct fsl_ifc_ctrl *ctrl = priv->ctrl; + +	fsl_ifc_read_buf(mtd, buf, mtd->writesize); +	fsl_ifc_read_buf(mtd, chip->oob_poi, mtd->oobsize); + +	if (ctrl->status != IFC_NAND_EVTER_STAT_OPC) +		mtd->ecc_stats.failed++; + +	return 0; +} + +/* ECC will be calculated automatically, and errors will be detected in + * waitfunc. + */ +static void fsl_ifc_write_page(struct mtd_info *mtd, +				struct nand_chip *chip, +				const uint8_t *buf) +{ +	fsl_ifc_write_buf(mtd, buf, mtd->writesize); +	fsl_ifc_write_buf(mtd, chip->oob_poi, mtd->oobsize); +} + +static void fsl_ifc_ctrl_init(void) +{ +	ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL); +	if (!ifc_ctrl) +		return; + +	ifc_ctrl->regs = IFC_BASE_ADDR; + +	/* clear event registers */ +	out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_stat, ~0U); +	out_be32(&ifc_ctrl->regs->ifc_nand.pgrdcmpl_evt_stat, ~0U); + +	/* Enable error and event for any detected errors */ +	out_be32(&ifc_ctrl->regs->ifc_nand.nand_evter_en, +			IFC_NAND_EVTER_EN_OPC_EN | +			IFC_NAND_EVTER_EN_PGRDCMPL_EN | +			IFC_NAND_EVTER_EN_FTOER_EN | +			IFC_NAND_EVTER_EN_WPER_EN); + +	out_be32(&ifc_ctrl->regs->ifc_nand.ncfgr, 0x0); +} + +static void fsl_ifc_select_chip(struct mtd_info *mtd, int chip) +{ +} + +int board_nand_init(struct nand_chip *nand) +{ +	struct fsl_ifc_mtd *priv; +	struct nand_ecclayout *layout; +	uint32_t cspr = 0, csor = 0; + +	if (!ifc_ctrl) { +		fsl_ifc_ctrl_init(); +		if (!ifc_ctrl) +			return -1; +	} + +	priv = kzalloc(sizeof(*priv), GFP_KERNEL); +	if (!priv) +		return -ENOMEM; + +	priv->ctrl = ifc_ctrl; +	priv->vbase = nand->IO_ADDR_R; + +	/* Find which chip select it is connected to. +	 */ +	for (priv->bank = 0; priv->bank < MAX_BANKS; priv->bank++) { +		phys_addr_t base_addr = virt_to_phys(nand->IO_ADDR_R); + +		cspr = in_be32(&ifc_ctrl->regs->cspr_cs[priv->bank].cspr); +		csor = in_be32(&ifc_ctrl->regs->csor_cs[priv->bank].csor); + +		if ((cspr & CSPR_V) && (cspr & CSPR_MSEL) == CSPR_MSEL_NAND && +		    (cspr & CSPR_BA) == CSPR_PHYS_ADDR(base_addr)) { +			ifc_ctrl->cs_nand = priv->bank << IFC_NAND_CSEL_SHIFT; +			break; +		} +	} + +	if (priv->bank >= MAX_BANKS) { +		printf("%s: address did not match any " +		       "chip selects\n", __func__); +		return -ENODEV; +	} + +	ifc_ctrl->chips[priv->bank] = priv; + +	/* fill in nand_chip structure */ +	/* set up function call table */ + +	nand->write_buf = fsl_ifc_write_buf; +	nand->read_buf = fsl_ifc_read_buf; +	nand->verify_buf = fsl_ifc_verify_buf; +	nand->select_chip = fsl_ifc_select_chip; +	nand->cmdfunc = fsl_ifc_cmdfunc; +	nand->waitfunc = fsl_ifc_wait; + +	/* set up nand options */ +	nand->bbt_td = &bbt_main_descr; +	nand->bbt_md = &bbt_mirror_descr; + +	/* set up nand options */ +	nand->options = NAND_NO_READRDY | NAND_NO_AUTOINCR | +			NAND_USE_FLASH_BBT; + +	if (cspr & CSPR_PORT_SIZE_16) { +		nand->read_byte = fsl_ifc_read_byte16; +		nand->options |= NAND_BUSWIDTH_16; +	} else { +		nand->read_byte = fsl_ifc_read_byte; +	} + +	nand->controller = &ifc_ctrl->controller; +	nand->priv = priv; + +	nand->ecc.read_page = fsl_ifc_read_page; +	nand->ecc.write_page = fsl_ifc_write_page; + +	/* Hardware generates ECC per 512 Bytes */ +	nand->ecc.size = 512; +	nand->ecc.bytes = 8; + +	switch (csor & CSOR_NAND_PGS_MASK) { +	case CSOR_NAND_PGS_512: +		if (nand->options & NAND_BUSWIDTH_16) { +			layout = &oob_512_16bit_ecc4; +		} else { +			layout = &oob_512_8bit_ecc4; + +			/* Avoid conflict with bad block marker */ +			bbt_main_descr.offs = 0; +			bbt_mirror_descr.offs = 0; +		} + +		priv->bufnum_mask = 15; +		break; + +	case CSOR_NAND_PGS_2K: +		layout = &oob_2048_ecc4; +		priv->bufnum_mask = 3; +		break; + +	case CSOR_NAND_PGS_4K: +		if ((csor & CSOR_NAND_ECC_MODE_MASK) == +		    CSOR_NAND_ECC_MODE_4) { +			layout = &oob_4096_ecc4; +		} else { +			layout = &oob_4096_ecc8; +			nand->ecc.bytes = 16; +		} + +		priv->bufnum_mask = 1; +		break; + +	default: +		printf("ifc nand: bad csor %#x: bad page size\n", csor); +		return -ENODEV; +	} + +	/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */ +	if (csor & CSOR_NAND_ECC_DEC_EN) { +		nand->ecc.mode = NAND_ECC_HW; +		nand->ecc.layout = layout; +	} else { +		nand->ecc.mode = NAND_ECC_SOFT; +	} + +	return 0; +} diff --git a/nand_spl/nand_boot_fsl_ifc.c b/nand_spl/nand_boot_fsl_ifc.c new file mode 100644 index 000000000..44972c5c0 --- /dev/null +++ b/nand_spl/nand_boot_fsl_ifc.c @@ -0,0 +1,271 @@ +/* + * NAND boot for FSL Integrated Flash Controller, NAND Flash Control Machine + * + * Copyright 2011 Freescale Semiconductor, Inc. + * Author: Dipen Dudhat <dipen.dudhat@freescale.com> + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of + * the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + */ + +#include <common.h> +#include <asm/io.h> +#include <asm/fsl_ifc.h> +#include <linux/mtd/nand.h> + +static inline int is_blank(uchar *addr, int page_size) +{ +	int i; + +	for (i = 0; i < page_size; i++) { +		if (__raw_readb(&addr[i]) != 0xff) +			return 0; +	} + +	/* +	 * For the SPL, don't worry about uncorrectable errors +	 * where the main area is all FFs but shouldn't be. +	 */ +	return 1; +} + +/* returns nonzero if entire page is blank */ +static inline int check_read_ecc(uchar *buf, u32 *eccstat, +				 unsigned int bufnum, int page_size) +{ +	u32 reg = eccstat[bufnum / 4]; +	int errors = (reg >> ((3 - bufnum % 4) * 8)) & 15; + +	if (errors == 15) { /* uncorrectable */ +		/* Blank pages fail hw ECC checks */ +		if (is_blank(buf, page_size)) +			return 1; + +		puts("ecc error\n"); +		for (;;) +			; +	} + +	return 0; +} + +static inline void nand_wait(uchar *buf, int bufnum, int page_size) +{ +	struct fsl_ifc *ifc = IFC_BASE_ADDR; +	u32 status; +	u32 eccstat[4]; +	int bufperpage = page_size / 512; +	int bufnum_end, i; + +	bufnum *= bufperpage; +	bufnum_end = bufnum + bufperpage - 1; + +	do { +		status = in_be32(&ifc->ifc_nand.nand_evter_stat); +	} while (!(status & IFC_NAND_EVTER_STAT_OPC)); + +	if (status & IFC_NAND_EVTER_STAT_FTOER) { +		puts("flash time out error\n"); +		for (;;) +			; +	} + +	for (i = bufnum / 4; i <= bufnum_end / 4; i++) +		eccstat[i] = in_be32(&ifc->ifc_nand.nand_eccstat[i]); + +	for (i = bufnum; i <= bufnum_end; i++) { +		if (check_read_ecc(buf, eccstat, i, page_size)) +			break; +	} + +	out_be32(&ifc->ifc_nand.nand_evter_stat, status); +} + +static inline int bad_block(uchar *marker, int port_size) +{ +	if (port_size == 8) +		return __raw_readb(marker) != 0xff; +	else +		return __raw_readw((u16 *)marker) != 0xffff; +} + +static void nand_load(unsigned int offs, int uboot_size, uchar *dst) +{ +	struct fsl_ifc *ifc = IFC_BASE_ADDR; +	uchar *buf = (uchar *)CONFIG_SYS_NAND_BASE; +	int page_size; +	int port_size; +	int pages_per_blk; +	int blk_size; +	int bad_marker = 0; +	int bufnum_mask, bufnum; + +	int csor, cspr; +	int pos = 0; +	int j = 0; + +	int sram_addr; +	int pg_no; + +	/* Get NAND Flash configuration */ +	csor = CONFIG_SYS_NAND_CSOR; +	cspr = CONFIG_SYS_NAND_CSPR; + +	if (!(csor & CSOR_NAND_ECC_DEC_EN)) { +		/* soft ECC in SPL is unimplemented */ +		puts("WARNING: soft ECC not checked in SPL\n"); +	} else { +		u32 hwcsor; + +		/* make sure board is configured with ECC on boot */ +		hwcsor = in_be32(&ifc->csor_cs[0].csor); +		if (!(hwcsor & CSOR_NAND_ECC_DEC_EN)) +			puts("WARNING: ECC not checked in SPL, " +				"check board cfg\n"); +	} + +	port_size = (cspr & CSPR_PORT_SIZE_16) ? 16 : 8; + +	if (csor & CSOR_NAND_PGS_4K) { +		page_size = 4096; +		bufnum_mask = 1; +	} else if (csor & CSOR_NAND_PGS_2K) { +		page_size = 2048; +		bufnum_mask = 3; +	} else { +		page_size = 512; +		bufnum_mask = 15; + +		if (port_size == 8) +			bad_marker = 5; +	} + +	pages_per_blk = +		32 << ((csor & CSOR_NAND_PB_MASK) >> CSOR_NAND_PB_SHIFT); + +	blk_size = pages_per_blk * page_size; + +	/* Open Full SRAM mapping for spare are access */ +	out_be32(&ifc->ifc_nand.ncfgr, 0x0); + +	/* Clear Boot events */ +	out_be32(&ifc->ifc_nand.nand_evter_stat, 0xffffffff); + +	/* Program FIR/FCR for Large/Small page */ +	if (page_size > 512) { +		out_be32(&ifc->ifc_nand.nand_fir0, +			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | +			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | +			 (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) | +			 (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) | +			 (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP4_SHIFT)); +		out_be32(&ifc->ifc_nand.nand_fir1, 0x0); + +		out_be32(&ifc->ifc_nand.nand_fcr0, +			(NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) | +			(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT)); +	} else { +		out_be32(&ifc->ifc_nand.nand_fir0, +			 (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) | +			 (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) | +			 (IFC_FIR_OP_RA0  << IFC_NAND_FIR0_OP2_SHIFT) | +			 (IFC_FIR_OP_BTRD << IFC_NAND_FIR0_OP3_SHIFT)); +		out_be32(&ifc->ifc_nand.nand_fir1, 0x0); + +		out_be32(&ifc->ifc_nand.nand_fcr0, +			NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT); +	} + +	/* Program FBCR = 0 for full page read */ +	out_be32(&ifc->ifc_nand.nand_fbcr, 0); + +	/* Read and copy u-boot on SDRAM from NAND device, In parallel +	 * check for Bad block if found skip it and read continue to +	 * next Block +	 */ +	while (pos < uboot_size) { +		int i = 0; +		do { +			pg_no = offs / page_size; +			bufnum = pg_no & bufnum_mask; +			sram_addr = bufnum * page_size * 2; + +			out_be32(&ifc->ifc_nand.row0, pg_no); +			out_be32(&ifc->ifc_nand.col0, 0); +			/* start read */ +			out_be32(&ifc->ifc_nand.nandseq_strt, +				IFC_NAND_SEQ_STRT_FIR_STRT); + +			/* wait for read to complete */ +			nand_wait(&buf[sram_addr], bufnum, page_size); + +			/* +			 * If either of the first two pages are marked bad, +			 * continue to the next block. +			 */ +			if (i++ < 2 && +			    bad_block(&buf[sram_addr + page_size + bad_marker], +				      port_size)) { +				puts("skipping\n"); +				offs = (offs + blk_size) & ~(blk_size - 1); +				pos &= ~(blk_size - 1); +				break; +			} + +			for (j = 0; j < page_size; j++) +				dst[pos + j] = __raw_readb(&buf[sram_addr + j]); + +			pos += page_size; +			offs += page_size; +		} while ((offs & (blk_size - 1)) && (pos < uboot_size)); +	} +} + +/* + * Main entrypoint for NAND Boot. It's necessary that SDRAM is already + * configured and available since this code loads the main U-boot image + * from NAND into SDRAM and starts from there. + */ +void nand_boot(void) +{ +	__attribute__((noreturn)) void (*uboot)(void); + +	/* +	 * Load U-Boot image from NAND into RAM +	 */ +	nand_load(CONFIG_SYS_NAND_U_BOOT_OFFS, CONFIG_SYS_NAND_U_BOOT_SIZE, +		  (uchar *)CONFIG_SYS_NAND_U_BOOT_DST); + +#ifdef CONFIG_NAND_ENV_DST +	nand_load(CONFIG_ENV_OFFSET, CONFIG_ENV_SIZE, +		  (uchar *)CONFIG_NAND_ENV_DST); + +#ifdef CONFIG_ENV_OFFSET_REDUND +	nand_load(CONFIG_ENV_OFFSET_REDUND, CONFIG_ENV_SIZE, +		  (uchar *)CONFIG_NAND_ENV_DST + CONFIG_ENV_SIZE); +#endif +#endif + +	/* +	 * Jump to U-Boot image +	 */ +	/* +	 * Clean d-cache and invalidate i-cache, to +	 * make sure that no stale data is executed. +	 */ +	flush_cache(CONFIG_SYS_NAND_U_BOOT_DST, CONFIG_SYS_NAND_U_BOOT_SIZE); +	uboot = (void *)CONFIG_SYS_NAND_U_BOOT_START; +	uboot(); +} |