diff options
Diffstat (limited to 'fs/udf/balloc.c')
| -rw-r--r-- | fs/udf/balloc.c | 959 | 
1 files changed, 959 insertions, 0 deletions
diff --git a/fs/udf/balloc.c b/fs/udf/balloc.c new file mode 100644 index 00000000000..b9ded26b10a --- /dev/null +++ b/fs/udf/balloc.c @@ -0,0 +1,959 @@ +/* + * balloc.c + * + * PURPOSE + *	Block allocation handling routines for the OSTA-UDF(tm) filesystem. + * + * CONTACTS + *	E-mail regarding any portion of the Linux UDF file system should be + *	directed to the development team mailing list (run by majordomo): + *		linux_udf@hpesjro.fc.hp.com + * + * COPYRIGHT + *	This file is distributed under the terms of the GNU General Public + *	License (GPL). Copies of the GPL can be obtained from: + *		ftp://prep.ai.mit.edu/pub/gnu/GPL + *	Each contributing author retains all rights to their own work. + * + *  (C) 1999-2001 Ben Fennema + *  (C) 1999 Stelias Computing Inc + * + * HISTORY + * + *  02/24/99 blf  Created. + * + */ + +#include "udfdecl.h" + +#include <linux/quotaops.h> +#include <linux/buffer_head.h> +#include <linux/bitops.h> + +#include "udf_i.h" +#include "udf_sb.h" + +#define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr) +#define udf_set_bit(nr,addr) ext2_set_bit(nr,addr) +#define udf_test_bit(nr, addr) ext2_test_bit(nr, addr) +#define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size) +#define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset) + +#define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x) +#define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y) +#define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y)) +#define uintBPL_t uint(BITS_PER_LONG) +#define uint(x) xuint(x) +#define xuint(x) __le ## x + +extern inline int find_next_one_bit (void * addr, int size, int offset) +{ +	uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG); +	int result = offset & ~(BITS_PER_LONG-1); +	unsigned long tmp; + +	if (offset >= size) +		return size; +	size -= result; +	offset &= (BITS_PER_LONG-1); +	if (offset) +	{ +		tmp = leBPL_to_cpup(p++); +		tmp &= ~0UL << offset; +		if (size < BITS_PER_LONG) +			goto found_first; +		if (tmp) +			goto found_middle; +		size -= BITS_PER_LONG; +		result += BITS_PER_LONG; +	} +	while (size & ~(BITS_PER_LONG-1)) +	{ +		if ((tmp = leBPL_to_cpup(p++))) +			goto found_middle; +		result += BITS_PER_LONG; +		size -= BITS_PER_LONG; +	} +	if (!size) +		return result; +	tmp = leBPL_to_cpup(p); +found_first: +	tmp &= ~0UL >> (BITS_PER_LONG-size); +found_middle: +	return result + ffz(~tmp); +} + +#define find_first_one_bit(addr, size)\ +	find_next_one_bit((addr), (size), 0) + +static int read_block_bitmap(struct super_block * sb, +	struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr) +{ +	struct buffer_head *bh = NULL; +	int retval = 0; +	kernel_lb_addr loc; + +	loc.logicalBlockNum = bitmap->s_extPosition; +	loc.partitionReferenceNum = UDF_SB_PARTITION(sb); + +	bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block)); +	if (!bh) +	{ +		retval = -EIO; +	} +	bitmap->s_block_bitmap[bitmap_nr] = bh; +	return retval; +} + +static int __load_block_bitmap(struct super_block * sb, +	struct udf_bitmap *bitmap, unsigned int block_group) +{ +	int retval = 0; +	int nr_groups = bitmap->s_nr_groups; + +	if (block_group >= nr_groups) +	{ +		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups); +	} + +	if (bitmap->s_block_bitmap[block_group]) +		return block_group; +	else +	{ +		retval = read_block_bitmap(sb, bitmap, block_group, block_group); +		if (retval < 0) +			return retval; +		return block_group; +	} +} + +static inline int load_block_bitmap(struct super_block * sb, +	struct udf_bitmap *bitmap, unsigned int block_group) +{ +	int slot; + +	slot = __load_block_bitmap(sb, bitmap, block_group); + +	if (slot < 0) +		return slot; + +	if (!bitmap->s_block_bitmap[slot]) +		return -EIO; + +	return slot; +} + +static void udf_bitmap_free_blocks(struct super_block * sb, +	struct inode * inode, +	struct udf_bitmap *bitmap, +	kernel_lb_addr bloc, uint32_t offset, uint32_t count) +{ +	struct udf_sb_info *sbi = UDF_SB(sb); +	struct buffer_head * bh = NULL; +	unsigned long block; +	unsigned long block_group; +	unsigned long bit; +	unsigned long i; +	int bitmap_nr; +	unsigned long overflow; + +	down(&sbi->s_alloc_sem); +	if (bloc.logicalBlockNum < 0 || +		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) +	{ +		udf_debug("%d < %d || %d + %d > %d\n", +			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, +			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); +		goto error_return; +	} + +	block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3); + +do_more: +	overflow = 0; +	block_group = block >> (sb->s_blocksize_bits + 3); +	bit = block % (sb->s_blocksize << 3); + +	/* +	 * Check to see if we are freeing blocks across a group boundary. +	 */ +	if (bit + count > (sb->s_blocksize << 3)) +	{ +		overflow = bit + count - (sb->s_blocksize << 3); +		count -= overflow; +	} +	bitmap_nr = load_block_bitmap(sb, bitmap, block_group); +	if (bitmap_nr < 0) +		goto error_return; + +	bh = bitmap->s_block_bitmap[bitmap_nr]; +	for (i=0; i < count; i++) +	{ +		if (udf_set_bit(bit + i, bh->b_data)) +		{ +			udf_debug("bit %ld already set\n", bit + i); +			udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]); +		} +		else +		{ +			if (inode) +				DQUOT_FREE_BLOCK(inode, 1); +			if (UDF_SB_LVIDBH(sb)) +			{ +				UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = +					cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1); +			} +		} +	} +	mark_buffer_dirty(bh); +	if (overflow) +	{ +		block += count; +		count = overflow; +		goto do_more; +	} +error_return: +	sb->s_dirt = 1; +	if (UDF_SB_LVIDBH(sb)) +		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); +	up(&sbi->s_alloc_sem); +	return; +} + +static int udf_bitmap_prealloc_blocks(struct super_block * sb, +	struct inode * inode, +	struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block, +	uint32_t block_count) +{ +	struct udf_sb_info *sbi = UDF_SB(sb); +	int alloc_count = 0; +	int bit, block, block_group, group_start; +	int nr_groups, bitmap_nr; +	struct buffer_head *bh; + +	down(&sbi->s_alloc_sem); +	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) +		goto out; + +	if (first_block + block_count > UDF_SB_PARTLEN(sb, partition)) +		block_count = UDF_SB_PARTLEN(sb, partition) - first_block; + +repeat: +	nr_groups = (UDF_SB_PARTLEN(sb, partition) + +		(sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8); +	block = first_block + (sizeof(struct spaceBitmapDesc) << 3); +	block_group = block >> (sb->s_blocksize_bits + 3); +	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); + +	bitmap_nr = load_block_bitmap(sb, bitmap, block_group); +	if (bitmap_nr < 0) +		goto out; +	bh = bitmap->s_block_bitmap[bitmap_nr]; + +	bit = block % (sb->s_blocksize << 3); + +	while (bit < (sb->s_blocksize << 3) && block_count > 0) +	{ +		if (!udf_test_bit(bit, bh->b_data)) +			goto out; +		else if (DQUOT_PREALLOC_BLOCK(inode, 1)) +			goto out; +		else if (!udf_clear_bit(bit, bh->b_data)) +		{ +			udf_debug("bit already cleared for block %d\n", bit); +			DQUOT_FREE_BLOCK(inode, 1); +			goto out; +		} +		block_count --; +		alloc_count ++; +		bit ++; +		block ++; +	} +	mark_buffer_dirty(bh); +	if (block_count > 0) +		goto repeat; +out: +	if (UDF_SB_LVIDBH(sb)) +	{ +		UDF_SB_LVID(sb)->freeSpaceTable[partition] = +			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); +		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); +	} +	sb->s_dirt = 1; +	up(&sbi->s_alloc_sem); +	return alloc_count; +} + +static int udf_bitmap_new_block(struct super_block * sb, +	struct inode * inode, +	struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err) +{ +	struct udf_sb_info *sbi = UDF_SB(sb); +	int newbit, bit=0, block, block_group, group_start; +	int end_goal, nr_groups, bitmap_nr, i; +	struct buffer_head *bh = NULL; +	char *ptr; +	int newblock = 0; + +	*err = -ENOSPC; +	down(&sbi->s_alloc_sem); + +repeat: +	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) +		goal = 0; + +	nr_groups = bitmap->s_nr_groups; +	block = goal + (sizeof(struct spaceBitmapDesc) << 3); +	block_group = block >> (sb->s_blocksize_bits + 3); +	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); + +	bitmap_nr = load_block_bitmap(sb, bitmap, block_group); +	if (bitmap_nr < 0) +		goto error_return; +	bh = bitmap->s_block_bitmap[bitmap_nr]; +	ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); + +	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) +	{ +		bit = block % (sb->s_blocksize << 3); + +		if (udf_test_bit(bit, bh->b_data)) +		{ +			goto got_block; +		} +		end_goal = (bit + 63) & ~63; +		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); +		if (bit < end_goal) +			goto got_block; +		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3)); +		newbit = (ptr - ((char *)bh->b_data)) << 3; +		if (newbit < sb->s_blocksize << 3) +		{ +			bit = newbit; +			goto search_back; +		} +		newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit); +		if (newbit < sb->s_blocksize << 3) +		{ +			bit = newbit; +			goto got_block; +		} +	} + +	for (i=0; i<(nr_groups*2); i++) +	{ +		block_group ++; +		if (block_group >= nr_groups) +			block_group = 0; +		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); + +		bitmap_nr = load_block_bitmap(sb, bitmap, block_group); +		if (bitmap_nr < 0) +			goto error_return; +		bh = bitmap->s_block_bitmap[bitmap_nr]; +		if (i < nr_groups) +		{ +			ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); +			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) +			{ +				bit = (ptr - ((char *)bh->b_data)) << 3; +				break; +			} +		} +		else +		{ +			bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3); +			if (bit < sb->s_blocksize << 3) +				break; +		} +	} +	if (i >= (nr_groups*2)) +	{ +		up(&sbi->s_alloc_sem); +		return newblock; +	} +	if (bit < sb->s_blocksize << 3) +		goto search_back; +	else +		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3); +	if (bit >= sb->s_blocksize << 3) +	{ +		up(&sbi->s_alloc_sem); +		return 0; +	} + +search_back: +	for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--); + +got_block: + +	/* +	 * Check quota for allocation of this block. +	 */ +	if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) +	{ +		up(&sbi->s_alloc_sem); +		*err = -EDQUOT; +		return 0; +	} + +	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - +		(sizeof(struct spaceBitmapDesc) << 3); + +	if (!udf_clear_bit(bit, bh->b_data)) +	{ +		udf_debug("bit already cleared for block %d\n", bit); +		goto repeat; +	} + +	mark_buffer_dirty(bh); + +	if (UDF_SB_LVIDBH(sb)) +	{ +		UDF_SB_LVID(sb)->freeSpaceTable[partition] = +			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); +		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); +	} +	sb->s_dirt = 1; +	up(&sbi->s_alloc_sem); +	*err = 0; +	return newblock; + +error_return: +	*err = -EIO; +	up(&sbi->s_alloc_sem); +	return 0; +} + +static void udf_table_free_blocks(struct super_block * sb, +	struct inode * inode, +	struct inode * table, +	kernel_lb_addr bloc, uint32_t offset, uint32_t count) +{ +	struct udf_sb_info *sbi = UDF_SB(sb); +	uint32_t start, end; +	uint32_t nextoffset, oextoffset, elen; +	kernel_lb_addr nbloc, obloc, eloc; +	struct buffer_head *obh, *nbh; +	int8_t etype; +	int i; + +	down(&sbi->s_alloc_sem); +	if (bloc.logicalBlockNum < 0 || +		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) +	{ +		udf_debug("%d < %d || %d + %d > %d\n", +			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, +			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); +		goto error_return; +	} + +	/* We do this up front - There are some error conditions that could occure, +	   but.. oh well */ +	if (inode) +		DQUOT_FREE_BLOCK(inode, count); +	if (UDF_SB_LVIDBH(sb)) +	{ +		UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = +			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count); +		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); +	} + +	start = bloc.logicalBlockNum + offset; +	end = bloc.logicalBlockNum + offset + count - 1; + +	oextoffset = nextoffset = sizeof(struct unallocSpaceEntry); +	elen = 0; +	obloc = nbloc = UDF_I_LOCATION(table); + +	obh = nbh = NULL; + +	while (count && (etype = +		udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1) +	{ +		if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) == +			start)) +		{ +			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) +			{ +				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); +				start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); +				elen = (etype << 30) | (0x40000000 - sb->s_blocksize); +			} +			else +			{ +				elen = (etype << 30) | +					(elen + (count << sb->s_blocksize_bits)); +				start += count; +				count = 0; +			} +			udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1); +		} +		else if (eloc.logicalBlockNum == (end + 1)) +		{ +			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) +			{ +				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); +				end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); +				eloc.logicalBlockNum -= +					((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); +				elen = (etype << 30) | (0x40000000 - sb->s_blocksize); +			} +			else +			{ +				eloc.logicalBlockNum = start; +				elen = (etype << 30) | +					(elen + (count << sb->s_blocksize_bits)); +				end -= count; +				count = 0; +			} +			udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1); +		} + +		if (nbh != obh) +		{ +			i = -1; +			obloc = nbloc; +			udf_release_data(obh); +			atomic_inc(&nbh->b_count); +			obh = nbh; +			oextoffset = 0; +		} +		else +			oextoffset = nextoffset; +	} + +	if (count) +	{ +		/* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate +				 a new block, and since we hold the super block lock already +				 very bad things would happen :) + +				 We copy the behavior of udf_add_aext, but instead of +				 trying to allocate a new block close to the existing one, +				 we just steal a block from the extent we are trying to add. + +				 It would be nice if the blocks were close together, but it +				 isn't required. +		*/ + +		int adsize; +		short_ad *sad = NULL; +		long_ad *lad = NULL; +		struct allocExtDesc *aed; + +		eloc.logicalBlockNum = start; +		elen = EXT_RECORDED_ALLOCATED | +			(count << sb->s_blocksize_bits); + +		if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) +			adsize = sizeof(short_ad); +		else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) +			adsize = sizeof(long_ad); +		else +		{ +			udf_release_data(obh); +			udf_release_data(nbh); +			goto error_return; +		} + +		if (nextoffset + (2 * adsize) > sb->s_blocksize) +		{ +			char *sptr, *dptr; +			int loffset; +	 +			udf_release_data(obh); +			obh = nbh; +			obloc = nbloc; +			oextoffset = nextoffset; + +			/* Steal a block from the extent being free'd */ +			nbloc.logicalBlockNum = eloc.logicalBlockNum; +			eloc.logicalBlockNum ++; +			elen -= sb->s_blocksize; + +			if (!(nbh = udf_tread(sb, +				udf_get_lb_pblock(sb, nbloc, 0)))) +			{ +				udf_release_data(obh); +				goto error_return; +			} +			aed = (struct allocExtDesc *)(nbh->b_data); +			aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum); +			if (nextoffset + adsize > sb->s_blocksize) +			{ +				loffset = nextoffset; +				aed->lengthAllocDescs = cpu_to_le32(adsize); +				if (obh) +					sptr = UDF_I_DATA(inode) + nextoffset -  udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode) - adsize; +				else +					sptr = obh->b_data + nextoffset - adsize; +				dptr = nbh->b_data + sizeof(struct allocExtDesc); +				memcpy(dptr, sptr, adsize); +				nextoffset = sizeof(struct allocExtDesc) + adsize; +			} +			else +			{ +				loffset = nextoffset + adsize; +				aed->lengthAllocDescs = cpu_to_le32(0); +				sptr = (obh)->b_data + nextoffset; +				nextoffset = sizeof(struct allocExtDesc); + +				if (obh) +				{ +					aed = (struct allocExtDesc *)(obh)->b_data; +					aed->lengthAllocDescs = +						cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); +				} +				else +				{ +					UDF_I_LENALLOC(table) += adsize; +					mark_inode_dirty(table); +				} +			} +			if (UDF_SB_UDFREV(sb) >= 0x0200) +				udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, +					nbloc.logicalBlockNum, sizeof(tag)); +			else +				udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, +					nbloc.logicalBlockNum, sizeof(tag)); +			switch (UDF_I_ALLOCTYPE(table)) +			{ +				case ICBTAG_FLAG_AD_SHORT: +				{ +					sad = (short_ad *)sptr; +					sad->extLength = cpu_to_le32( +						EXT_NEXT_EXTENT_ALLOCDECS | +						sb->s_blocksize); +					sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum); +					break; +				} +				case ICBTAG_FLAG_AD_LONG: +				{ +					lad = (long_ad *)sptr; +					lad->extLength = cpu_to_le32( +						EXT_NEXT_EXTENT_ALLOCDECS | +						sb->s_blocksize); +					lad->extLocation = cpu_to_lelb(nbloc); +					break; +				} +			} +			if (obh) +			{ +				udf_update_tag(obh->b_data, loffset); +				mark_buffer_dirty(obh); +			} +			else +				mark_inode_dirty(table); +		} + +		if (elen) /* It's possible that stealing the block emptied the extent */ +		{ +			udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1); + +			if (!nbh) +			{ +				UDF_I_LENALLOC(table) += adsize; +				mark_inode_dirty(table); +			} +			else +			{ +				aed = (struct allocExtDesc *)nbh->b_data; +				aed->lengthAllocDescs = +					cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); +				udf_update_tag(nbh->b_data, nextoffset); +				mark_buffer_dirty(nbh); +			} +		} +	} + +	udf_release_data(nbh); +	udf_release_data(obh); + +error_return: +	sb->s_dirt = 1; +	up(&sbi->s_alloc_sem); +	return; +} + +static int udf_table_prealloc_blocks(struct super_block * sb, +	struct inode * inode, +	struct inode *table, uint16_t partition, uint32_t first_block, +	uint32_t block_count) +{ +	struct udf_sb_info *sbi = UDF_SB(sb); +	int alloc_count = 0; +	uint32_t extoffset, elen, adsize; +	kernel_lb_addr bloc, eloc; +	struct buffer_head *bh; +	int8_t etype = -1; + +	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) +		return 0; + +	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) +		adsize = sizeof(short_ad); +	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) +		adsize = sizeof(long_ad); +	else +		return 0; + +	down(&sbi->s_alloc_sem); +	extoffset = sizeof(struct unallocSpaceEntry); +	bloc = UDF_I_LOCATION(table); + +	bh = NULL; +	eloc.logicalBlockNum = 0xFFFFFFFF; + +	while (first_block != eloc.logicalBlockNum && (etype = +		udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1) +	{ +		udf_debug("eloc=%d, elen=%d, first_block=%d\n", +			eloc.logicalBlockNum, elen, first_block); +		; /* empty loop body */ +	} + +	if (first_block == eloc.logicalBlockNum) +	{ +		extoffset -= adsize; + +		alloc_count = (elen >> sb->s_blocksize_bits); +		if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count)) +			alloc_count = 0; +		else if (alloc_count > block_count) +		{ +			alloc_count = block_count; +			eloc.logicalBlockNum += alloc_count; +			elen -= (alloc_count << sb->s_blocksize_bits); +			udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1); +		} +		else +			udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh); +	} +	else +		alloc_count = 0; + +	udf_release_data(bh); + +	if (alloc_count && UDF_SB_LVIDBH(sb)) +	{ +		UDF_SB_LVID(sb)->freeSpaceTable[partition] = +			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); +		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); +		sb->s_dirt = 1; +	} +	up(&sbi->s_alloc_sem); +	return alloc_count; +} + +static int udf_table_new_block(struct super_block * sb, +	struct inode * inode, +	struct inode *table, uint16_t partition, uint32_t goal, int *err) +{ +	struct udf_sb_info *sbi = UDF_SB(sb); +	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; +	uint32_t newblock = 0, adsize; +	uint32_t extoffset, goal_extoffset, elen, goal_elen = 0; +	kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc; +	struct buffer_head *bh, *goal_bh; +	int8_t etype; + +	*err = -ENOSPC; + +	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) +		adsize = sizeof(short_ad); +	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) +		adsize = sizeof(long_ad); +	else +		return newblock; + +	down(&sbi->s_alloc_sem); +	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) +		goal = 0; + +	/* We search for the closest matching block to goal. If we find a exact hit, +	   we stop. Otherwise we keep going till we run out of extents. +	   We store the buffer_head, bloc, and extoffset of the current closest +	   match and use that when we are done. +	*/ + +	extoffset = sizeof(struct unallocSpaceEntry); +	bloc = UDF_I_LOCATION(table); + +	goal_bh = bh = NULL; + +	while (spread && (etype = +		udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1) +	{ +		if (goal >= eloc.logicalBlockNum) +		{ +			if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) +				nspread = 0; +			else +				nspread = goal - eloc.logicalBlockNum - +					(elen >> sb->s_blocksize_bits); +		} +		else +			nspread = eloc.logicalBlockNum - goal; + +		if (nspread < spread) +		{ +			spread = nspread; +			if (goal_bh != bh) +			{ +				udf_release_data(goal_bh); +				goal_bh = bh; +				atomic_inc(&goal_bh->b_count); +			} +			goal_bloc = bloc; +			goal_extoffset = extoffset - adsize; +			goal_eloc = eloc; +			goal_elen = (etype << 30) | elen; +		} +	} + +	udf_release_data(bh); + +	if (spread == 0xFFFFFFFF) +	{ +		udf_release_data(goal_bh); +		up(&sbi->s_alloc_sem); +		return 0; +	} + +	/* Only allocate blocks from the beginning of the extent. +	   That way, we only delete (empty) extents, never have to insert an +	   extent because of splitting */ +	/* This works, but very poorly.... */ + +	newblock = goal_eloc.logicalBlockNum; +	goal_eloc.logicalBlockNum ++; +	goal_elen -= sb->s_blocksize; + +	if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) +	{ +		udf_release_data(goal_bh); +		up(&sbi->s_alloc_sem); +		*err = -EDQUOT; +		return 0; +	} + +	if (goal_elen) +		udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1); +	else +		udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh); +	udf_release_data(goal_bh); + +	if (UDF_SB_LVIDBH(sb)) +	{ +		UDF_SB_LVID(sb)->freeSpaceTable[partition] = +			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); +		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); +	} + +	sb->s_dirt = 1; +	up(&sbi->s_alloc_sem); +	*err = 0; +	return newblock; +} + +inline void udf_free_blocks(struct super_block * sb, +	struct inode * inode, +	kernel_lb_addr bloc, uint32_t offset, uint32_t count) +{ +	uint16_t partition = bloc.partitionReferenceNum; + +	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) +	{ +		return udf_bitmap_free_blocks(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, +			bloc, offset, count); +	} +	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) +	{ +		return udf_table_free_blocks(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, +			bloc, offset, count); +	} +	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) +	{ +		return udf_bitmap_free_blocks(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, +			bloc, offset, count); +	} +	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) +	{ +		return udf_table_free_blocks(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, +			bloc, offset, count); +	} +	else +		return; +} + +inline int udf_prealloc_blocks(struct super_block * sb, +	struct inode * inode, +	uint16_t partition, uint32_t first_block, uint32_t block_count) +{ +	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) +	{ +		return udf_bitmap_prealloc_blocks(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, +			partition, first_block, block_count); +	} +	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) +	{ +		return udf_table_prealloc_blocks(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, +			partition, first_block, block_count); +	} +	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) +	{ +		return udf_bitmap_prealloc_blocks(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, +			partition, first_block, block_count); +	} +	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) +	{ +		return udf_table_prealloc_blocks(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, +			partition, first_block, block_count); +	} +	else +		return 0; +} + +inline int udf_new_block(struct super_block * sb, +	struct inode * inode, +	uint16_t partition, uint32_t goal, int *err) +{ +	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) +	{ +		return udf_bitmap_new_block(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, +			partition, goal, err); +	} +	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) +	{ +		return udf_table_new_block(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, +			partition, goal, err); +	} +	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) +	{ +		return udf_bitmap_new_block(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, +			partition, goal, err); +	} +	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) +	{ +		return udf_table_new_block(sb, inode, +			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, +			partition, goal, err); +	} +	else +	{ +		*err = -EIO; +		return 0; +	} +}  |