diff options
Diffstat (limited to 'drivers/crypto/tegra-aes.c')
| -rw-r--r-- | drivers/crypto/tegra-aes.c | 1096 | 
1 files changed, 1096 insertions, 0 deletions
diff --git a/drivers/crypto/tegra-aes.c b/drivers/crypto/tegra-aes.c new file mode 100644 index 00000000000..422a9766c7c --- /dev/null +++ b/drivers/crypto/tegra-aes.c @@ -0,0 +1,1096 @@ +/* + * drivers/crypto/tegra-aes.c + * + * Driver for NVIDIA Tegra AES hardware engine residing inside the + * Bit Stream Engine for Video (BSEV) hardware block. + * + * The programming sequence for this engine is with the help + * of commands which travel via a command queue residing between the + * CPU and the BSEV block. The BSEV engine has an internal RAM (VRAM) + * where the final input plaintext, keys and the IV have to be copied + * before starting the encrypt/decrypt operation. + * + * Copyright (c) 2010, NVIDIA Corporation. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, write to the Free Software Foundation, Inc., + * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA. + */ + +#include <linux/module.h> +#include <linux/init.h> +#include <linux/errno.h> +#include <linux/kernel.h> +#include <linux/clk.h> +#include <linux/platform_device.h> +#include <linux/scatterlist.h> +#include <linux/dma-mapping.h> +#include <linux/io.h> +#include <linux/mutex.h> +#include <linux/interrupt.h> +#include <linux/completion.h> +#include <linux/workqueue.h> + +#include <mach/clk.h> + +#include <crypto/scatterwalk.h> +#include <crypto/aes.h> +#include <crypto/internal/rng.h> + +#include "tegra-aes.h" + +#define FLAGS_MODE_MASK			0x00FF +#define FLAGS_ENCRYPT			BIT(0) +#define FLAGS_CBC			BIT(1) +#define FLAGS_GIV			BIT(2) +#define FLAGS_RNG			BIT(3) +#define FLAGS_OFB			BIT(4) +#define FLAGS_NEW_KEY			BIT(5) +#define FLAGS_NEW_IV			BIT(6) +#define FLAGS_INIT			BIT(7) +#define FLAGS_FAST			BIT(8) +#define FLAGS_BUSY			9 + +/* + * Defines AES engine Max process bytes size in one go, which takes 1 msec. + * AES engine spends about 176 cycles/16-bytes or 11 cycles/byte + * The duration CPU can use the BSE to 1 msec, then the number of available + * cycles of AVP/BSE is 216K. In this duration, AES can process 216/11 ~= 19KB + * Based on this AES_HW_DMA_BUFFER_SIZE_BYTES is configured to 16KB. + */ +#define AES_HW_DMA_BUFFER_SIZE_BYTES 0x4000 + +/* + * The key table length is 64 bytes + * (This includes first upto 32 bytes key + 16 bytes original initial vector + * and 16 bytes updated initial vector) + */ +#define AES_HW_KEY_TABLE_LENGTH_BYTES 64 + +/* + * The memory being used is divides as follows: + * 1. Key - 32 bytes + * 2. Original IV - 16 bytes + * 3. Updated IV - 16 bytes + * 4. Key schedule - 256 bytes + * + * 1+2+3 constitute the hw key table. + */ +#define AES_HW_IV_SIZE 16 +#define AES_HW_KEYSCHEDULE_LEN 256 +#define AES_IVKEY_SIZE (AES_HW_KEY_TABLE_LENGTH_BYTES + AES_HW_KEYSCHEDULE_LEN) + +/* Define commands required for AES operation */ +enum { +	CMD_BLKSTARTENGINE = 0x0E, +	CMD_DMASETUP = 0x10, +	CMD_DMACOMPLETE = 0x11, +	CMD_SETTABLE = 0x15, +	CMD_MEMDMAVD = 0x22, +}; + +/* Define sub-commands */ +enum { +	SUBCMD_VRAM_SEL = 0x1, +	SUBCMD_CRYPTO_TABLE_SEL = 0x3, +	SUBCMD_KEY_TABLE_SEL = 0x8, +}; + +/* memdma_vd command */ +#define MEMDMA_DIR_DTOVRAM		0 /* sdram -> vram */ +#define MEMDMA_DIR_VTODRAM		1 /* vram -> sdram */ +#define MEMDMA_DIR_SHIFT		25 +#define MEMDMA_NUM_WORDS_SHIFT		12 + +/* command queue bit shifts */ +enum { +	CMDQ_KEYTABLEADDR_SHIFT = 0, +	CMDQ_KEYTABLEID_SHIFT = 17, +	CMDQ_VRAMSEL_SHIFT = 23, +	CMDQ_TABLESEL_SHIFT = 24, +	CMDQ_OPCODE_SHIFT = 26, +}; + +/* + * The secure key slot contains a unique secure key generated + * and loaded by the bootloader. This slot is marked as non-accessible + * to the kernel. + */ +#define SSK_SLOT_NUM		4 + +#define AES_NR_KEYSLOTS		8 +#define TEGRA_AES_QUEUE_LENGTH	50 +#define DEFAULT_RNG_BLK_SZ	16 + +/* The command queue depth */ +#define AES_HW_MAX_ICQ_LENGTH	5 + +struct tegra_aes_slot { +	struct list_head node; +	int slot_num; +}; + +static struct tegra_aes_slot ssk = { +	.slot_num = SSK_SLOT_NUM, +}; + +struct tegra_aes_reqctx { +	unsigned long mode; +}; + +struct tegra_aes_dev { +	struct device *dev; +	void __iomem *io_base; +	dma_addr_t ivkey_phys_base; +	void __iomem *ivkey_base; +	struct clk *aes_clk; +	struct tegra_aes_ctx *ctx; +	int irq; +	unsigned long flags; +	struct completion op_complete; +	u32 *buf_in; +	dma_addr_t dma_buf_in; +	u32 *buf_out; +	dma_addr_t dma_buf_out; +	u8 *iv; +	u8 dt[DEFAULT_RNG_BLK_SZ]; +	int ivlen; +	u64 ctr; +	spinlock_t lock; +	struct crypto_queue queue; +	struct tegra_aes_slot *slots; +	struct ablkcipher_request *req; +	size_t total; +	struct scatterlist *in_sg; +	size_t in_offset; +	struct scatterlist *out_sg; +	size_t out_offset; +}; + +static struct tegra_aes_dev *aes_dev; + +struct tegra_aes_ctx { +	struct tegra_aes_dev *dd; +	unsigned long flags; +	struct tegra_aes_slot *slot; +	u8 key[AES_MAX_KEY_SIZE]; +	size_t keylen; +}; + +static struct tegra_aes_ctx rng_ctx = { +	.flags = FLAGS_NEW_KEY, +	.keylen = AES_KEYSIZE_128, +}; + +/* keep registered devices data here */ +static struct list_head dev_list; +static DEFINE_SPINLOCK(list_lock); +static DEFINE_MUTEX(aes_lock); + +static void aes_workqueue_handler(struct work_struct *work); +static DECLARE_WORK(aes_work, aes_workqueue_handler); +static struct workqueue_struct *aes_wq; + +extern unsigned long long tegra_chip_uid(void); + +static inline u32 aes_readl(struct tegra_aes_dev *dd, u32 offset) +{ +	return readl(dd->io_base + offset); +} + +static inline void aes_writel(struct tegra_aes_dev *dd, u32 val, u32 offset) +{ +	writel(val, dd->io_base + offset); +} + +static int aes_start_crypt(struct tegra_aes_dev *dd, u32 in_addr, u32 out_addr, +	int nblocks, int mode, bool upd_iv) +{ +	u32 cmdq[AES_HW_MAX_ICQ_LENGTH]; +	int i, eng_busy, icq_empty, ret; +	u32 value; + +	/* reset all the interrupt bits */ +	aes_writel(dd, 0xFFFFFFFF, TEGRA_AES_INTR_STATUS); + +	/* enable error, dma xfer complete interrupts */ +	aes_writel(dd, 0x33, TEGRA_AES_INT_ENB); + +	cmdq[0] = CMD_DMASETUP << CMDQ_OPCODE_SHIFT; +	cmdq[1] = in_addr; +	cmdq[2] = CMD_BLKSTARTENGINE << CMDQ_OPCODE_SHIFT | (nblocks-1); +	cmdq[3] = CMD_DMACOMPLETE << CMDQ_OPCODE_SHIFT; + +	value = aes_readl(dd, TEGRA_AES_CMDQUE_CONTROL); +	/* access SDRAM through AHB */ +	value &= ~TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD; +	value &= ~TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD; +	value |= TEGRA_AES_CMDQ_CTRL_SRC_STM_SEL_FIELD | +		 TEGRA_AES_CMDQ_CTRL_DST_STM_SEL_FIELD | +		 TEGRA_AES_CMDQ_CTRL_ICMDQEN_FIELD; +	aes_writel(dd, value, TEGRA_AES_CMDQUE_CONTROL); +	dev_dbg(dd->dev, "cmd_q_ctrl=0x%x", value); + +	value = (0x1 << TEGRA_AES_SECURE_INPUT_ALG_SEL_SHIFT) | +		((dd->ctx->keylen * 8) << +			TEGRA_AES_SECURE_INPUT_KEY_LEN_SHIFT) | +		((u32)upd_iv << TEGRA_AES_SECURE_IV_SELECT_SHIFT); + +	if (mode & FLAGS_CBC) { +		value |= ((((mode & FLAGS_ENCRYPT) ? 2 : 3) +				<< TEGRA_AES_SECURE_XOR_POS_SHIFT) | +			(((mode & FLAGS_ENCRYPT) ? 2 : 3) +				<< TEGRA_AES_SECURE_VCTRAM_SEL_SHIFT) | +			((mode & FLAGS_ENCRYPT) ? 1 : 0) +				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT); +	} else if (mode & FLAGS_OFB) { +		value |= ((TEGRA_AES_SECURE_XOR_POS_FIELD) | +			(2 << TEGRA_AES_SECURE_INPUT_SEL_SHIFT) | +			(TEGRA_AES_SECURE_CORE_SEL_FIELD)); +	} else if (mode & FLAGS_RNG) { +		value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0) +				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT | +			  TEGRA_AES_SECURE_RNG_ENB_FIELD); +	} else { +		value |= (((mode & FLAGS_ENCRYPT) ? 1 : 0) +				<< TEGRA_AES_SECURE_CORE_SEL_SHIFT); +	} + +	dev_dbg(dd->dev, "secure_in_sel=0x%x", value); +	aes_writel(dd, value, TEGRA_AES_SECURE_INPUT_SELECT); + +	aes_writel(dd, out_addr, TEGRA_AES_SECURE_DEST_ADDR); +	INIT_COMPLETION(dd->op_complete); + +	for (i = 0; i < AES_HW_MAX_ICQ_LENGTH - 1; i++) { +		do { +			value = aes_readl(dd, TEGRA_AES_INTR_STATUS); +			eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; +			icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; +		} while (eng_busy & (!icq_empty)); +		aes_writel(dd, cmdq[i], TEGRA_AES_ICMDQUE_WR); +	} + +	ret = wait_for_completion_timeout(&dd->op_complete, +					  msecs_to_jiffies(150)); +	if (ret == 0) { +		dev_err(dd->dev, "timed out (0x%x)\n", +			aes_readl(dd, TEGRA_AES_INTR_STATUS)); +		return -ETIMEDOUT; +	} + +	aes_writel(dd, cmdq[AES_HW_MAX_ICQ_LENGTH - 1], TEGRA_AES_ICMDQUE_WR); +	return 0; +} + +static void aes_release_key_slot(struct tegra_aes_slot *slot) +{ +	if (slot->slot_num == SSK_SLOT_NUM) +		return; + +	spin_lock(&list_lock); +	list_add_tail(&slot->node, &dev_list); +	slot = NULL; +	spin_unlock(&list_lock); +} + +static struct tegra_aes_slot *aes_find_key_slot(void) +{ +	struct tegra_aes_slot *slot = NULL; +	struct list_head *new_head; +	int empty; + +	spin_lock(&list_lock); +	empty = list_empty(&dev_list); +	if (!empty) { +		slot = list_entry(&dev_list, struct tegra_aes_slot, node); +		new_head = dev_list.next; +		list_del(&dev_list); +		dev_list.next = new_head->next; +		dev_list.prev = NULL; +	} +	spin_unlock(&list_lock); + +	return slot; +} + +static int aes_set_key(struct tegra_aes_dev *dd) +{ +	u32 value, cmdq[2]; +	struct tegra_aes_ctx *ctx = dd->ctx; +	int eng_busy, icq_empty, dma_busy; +	bool use_ssk = false; + +	/* use ssk? */ +	if (!dd->ctx->slot) { +		dev_dbg(dd->dev, "using ssk"); +		dd->ctx->slot = &ssk; +		use_ssk = true; +	} + +	/* enable key schedule generation in hardware */ +	value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG_EXT); +	value &= ~TEGRA_AES_SECURE_KEY_SCH_DIS_FIELD; +	aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG_EXT); + +	/* select the key slot */ +	value = aes_readl(dd, TEGRA_AES_SECURE_CONFIG); +	value &= ~TEGRA_AES_SECURE_KEY_INDEX_FIELD; +	value |= (ctx->slot->slot_num << TEGRA_AES_SECURE_KEY_INDEX_SHIFT); +	aes_writel(dd, value, TEGRA_AES_SECURE_CONFIG); + +	if (use_ssk) +		return 0; + +	/* copy the key table from sdram to vram */ +	cmdq[0] = CMD_MEMDMAVD << CMDQ_OPCODE_SHIFT | +		MEMDMA_DIR_DTOVRAM << MEMDMA_DIR_SHIFT | +		AES_HW_KEY_TABLE_LENGTH_BYTES / sizeof(u32) << +			MEMDMA_NUM_WORDS_SHIFT; +	cmdq[1] = (u32)dd->ivkey_phys_base; + +	aes_writel(dd, cmdq[0], TEGRA_AES_ICMDQUE_WR); +	aes_writel(dd, cmdq[1], TEGRA_AES_ICMDQUE_WR); + +	do { +		value = aes_readl(dd, TEGRA_AES_INTR_STATUS); +		eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; +		icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; +		dma_busy = value & TEGRA_AES_DMA_BUSY_FIELD; +	} while (eng_busy & (!icq_empty) & dma_busy); + +	/* settable command to get key into internal registers */ +	value = CMD_SETTABLE << CMDQ_OPCODE_SHIFT | +		SUBCMD_CRYPTO_TABLE_SEL << CMDQ_TABLESEL_SHIFT | +		SUBCMD_VRAM_SEL << CMDQ_VRAMSEL_SHIFT | +		(SUBCMD_KEY_TABLE_SEL | ctx->slot->slot_num) << +			CMDQ_KEYTABLEID_SHIFT; +	aes_writel(dd, value, TEGRA_AES_ICMDQUE_WR); + +	do { +		value = aes_readl(dd, TEGRA_AES_INTR_STATUS); +		eng_busy = value & TEGRA_AES_ENGINE_BUSY_FIELD; +		icq_empty = value & TEGRA_AES_ICQ_EMPTY_FIELD; +	} while (eng_busy & (!icq_empty)); + +	return 0; +} + +static int tegra_aes_handle_req(struct tegra_aes_dev *dd) +{ +	struct crypto_async_request *async_req, *backlog; +	struct crypto_ablkcipher *tfm; +	struct tegra_aes_ctx *ctx; +	struct tegra_aes_reqctx *rctx; +	struct ablkcipher_request *req; +	unsigned long flags; +	int dma_max = AES_HW_DMA_BUFFER_SIZE_BYTES; +	int ret = 0, nblocks, total; +	int count = 0; +	dma_addr_t addr_in, addr_out; +	struct scatterlist *in_sg, *out_sg; + +	if (!dd) +		return -EINVAL; + +	spin_lock_irqsave(&dd->lock, flags); +	backlog = crypto_get_backlog(&dd->queue); +	async_req = crypto_dequeue_request(&dd->queue); +	if (!async_req) +		clear_bit(FLAGS_BUSY, &dd->flags); +	spin_unlock_irqrestore(&dd->lock, flags); + +	if (!async_req) +		return -ENODATA; + +	if (backlog) +		backlog->complete(backlog, -EINPROGRESS); + +	req = ablkcipher_request_cast(async_req); + +	dev_dbg(dd->dev, "%s: get new req\n", __func__); + +	if (!req->src || !req->dst) +		return -EINVAL; + +	/* take mutex to access the aes hw */ +	mutex_lock(&aes_lock); + +	/* assign new request to device */ +	dd->req = req; +	dd->total = req->nbytes; +	dd->in_offset = 0; +	dd->in_sg = req->src; +	dd->out_offset = 0; +	dd->out_sg = req->dst; + +	in_sg = dd->in_sg; +	out_sg = dd->out_sg; + +	total = dd->total; + +	tfm = crypto_ablkcipher_reqtfm(req); +	rctx = ablkcipher_request_ctx(req); +	ctx = crypto_ablkcipher_ctx(tfm); +	rctx->mode &= FLAGS_MODE_MASK; +	dd->flags = (dd->flags & ~FLAGS_MODE_MASK) | rctx->mode; + +	dd->iv = (u8 *)req->info; +	dd->ivlen = crypto_ablkcipher_ivsize(tfm); + +	/* assign new context to device */ +	ctx->dd = dd; +	dd->ctx = ctx; + +	if (ctx->flags & FLAGS_NEW_KEY) { +		/* copy the key */ +		memcpy(dd->ivkey_base, ctx->key, ctx->keylen); +		memset(dd->ivkey_base + ctx->keylen, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - ctx->keylen); +		aes_set_key(dd); +		ctx->flags &= ~FLAGS_NEW_KEY; +	} + +	if (((dd->flags & FLAGS_CBC) || (dd->flags & FLAGS_OFB)) && dd->iv) { +		/* set iv to the aes hw slot +		 * Hw generates updated iv only after iv is set in slot. +		 * So key and iv is passed asynchronously. +		 */ +		memcpy(dd->buf_in, dd->iv, dd->ivlen); + +		ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, +				      dd->dma_buf_out, 1, FLAGS_CBC, false); +		if (ret < 0) { +			dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); +			goto out; +		} +	} + +	while (total) { +		dev_dbg(dd->dev, "remain: %d\n", total); +		ret = dma_map_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); +		if (!ret) { +			dev_err(dd->dev, "dma_map_sg() error\n"); +			goto out; +		} + +		ret = dma_map_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); +		if (!ret) { +			dev_err(dd->dev, "dma_map_sg() error\n"); +			dma_unmap_sg(dd->dev, dd->in_sg, +				1, DMA_TO_DEVICE); +			goto out; +		} + +		addr_in = sg_dma_address(in_sg); +		addr_out = sg_dma_address(out_sg); +		dd->flags |= FLAGS_FAST; +		count = min_t(int, sg_dma_len(in_sg), dma_max); +		WARN_ON(sg_dma_len(in_sg) != sg_dma_len(out_sg)); +		nblocks = DIV_ROUND_UP(count, AES_BLOCK_SIZE); + +		ret = aes_start_crypt(dd, addr_in, addr_out, nblocks, +			dd->flags, true); + +		dma_unmap_sg(dd->dev, out_sg, 1, DMA_FROM_DEVICE); +		dma_unmap_sg(dd->dev, in_sg, 1, DMA_TO_DEVICE); + +		if (ret < 0) { +			dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); +			goto out; +		} +		dd->flags &= ~FLAGS_FAST; + +		dev_dbg(dd->dev, "out: copied %d\n", count); +		total -= count; +		in_sg = sg_next(in_sg); +		out_sg = sg_next(out_sg); +		WARN_ON(((total != 0) && (!in_sg || !out_sg))); +	} + +out: +	mutex_unlock(&aes_lock); + +	dd->total = total; + +	if (dd->req->base.complete) +		dd->req->base.complete(&dd->req->base, ret); + +	dev_dbg(dd->dev, "%s: exit\n", __func__); +	return ret; +} + +static int tegra_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, +			    unsigned int keylen) +{ +	struct tegra_aes_ctx *ctx = crypto_ablkcipher_ctx(tfm); +	struct tegra_aes_dev *dd = aes_dev; +	struct tegra_aes_slot *key_slot; + +	if ((keylen != AES_KEYSIZE_128) && (keylen != AES_KEYSIZE_192) && +		(keylen != AES_KEYSIZE_256)) { +		dev_err(dd->dev, "unsupported key size\n"); +		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); +		return -EINVAL; +	} + +	dev_dbg(dd->dev, "keylen: %d\n", keylen); + +	ctx->dd = dd; + +	if (key) { +		if (!ctx->slot) { +			key_slot = aes_find_key_slot(); +			if (!key_slot) { +				dev_err(dd->dev, "no empty slot\n"); +				return -ENOMEM; +			} + +			ctx->slot = key_slot; +		} + +		memcpy(ctx->key, key, keylen); +		ctx->keylen = keylen; +	} + +	ctx->flags |= FLAGS_NEW_KEY; +	dev_dbg(dd->dev, "done\n"); +	return 0; +} + +static void aes_workqueue_handler(struct work_struct *work) +{ +	struct tegra_aes_dev *dd = aes_dev; +	int ret; + +	ret = clk_enable(dd->aes_clk); +	if (ret) +		BUG_ON("clock enable failed"); + +	/* empty the crypto queue and then return */ +	do { +		ret = tegra_aes_handle_req(dd); +	} while (!ret); + +	clk_disable(dd->aes_clk); +} + +static irqreturn_t aes_irq(int irq, void *dev_id) +{ +	struct tegra_aes_dev *dd = (struct tegra_aes_dev *)dev_id; +	u32 value = aes_readl(dd, TEGRA_AES_INTR_STATUS); +	int busy = test_bit(FLAGS_BUSY, &dd->flags); + +	if (!busy) { +		dev_dbg(dd->dev, "spurious interrupt\n"); +		return IRQ_NONE; +	} + +	dev_dbg(dd->dev, "irq_stat: 0x%x\n", value); +	if (value & TEGRA_AES_INT_ERROR_MASK) +		aes_writel(dd, TEGRA_AES_INT_ERROR_MASK, TEGRA_AES_INTR_STATUS); + +	if (!(value & TEGRA_AES_ENGINE_BUSY_FIELD)) +		complete(&dd->op_complete); +	else +		return IRQ_NONE; + +	return IRQ_HANDLED; +} + +static int tegra_aes_crypt(struct ablkcipher_request *req, unsigned long mode) +{ +	struct tegra_aes_reqctx *rctx = ablkcipher_request_ctx(req); +	struct tegra_aes_dev *dd = aes_dev; +	unsigned long flags; +	int err = 0; +	int busy; + +	dev_dbg(dd->dev, "nbytes: %d, enc: %d, cbc: %d, ofb: %d\n", +		req->nbytes, !!(mode & FLAGS_ENCRYPT), +		!!(mode & FLAGS_CBC), !!(mode & FLAGS_OFB)); + +	rctx->mode = mode; + +	spin_lock_irqsave(&dd->lock, flags); +	err = ablkcipher_enqueue_request(&dd->queue, req); +	busy = test_and_set_bit(FLAGS_BUSY, &dd->flags); +	spin_unlock_irqrestore(&dd->lock, flags); + +	if (!busy) +		queue_work(aes_wq, &aes_work); + +	return err; +} + +static int tegra_aes_ecb_encrypt(struct ablkcipher_request *req) +{ +	return tegra_aes_crypt(req, FLAGS_ENCRYPT); +} + +static int tegra_aes_ecb_decrypt(struct ablkcipher_request *req) +{ +	return tegra_aes_crypt(req, 0); +} + +static int tegra_aes_cbc_encrypt(struct ablkcipher_request *req) +{ +	return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_CBC); +} + +static int tegra_aes_cbc_decrypt(struct ablkcipher_request *req) +{ +	return tegra_aes_crypt(req, FLAGS_CBC); +} + +static int tegra_aes_ofb_encrypt(struct ablkcipher_request *req) +{ +	return tegra_aes_crypt(req, FLAGS_ENCRYPT | FLAGS_OFB); +} + +static int tegra_aes_ofb_decrypt(struct ablkcipher_request *req) +{ +	return tegra_aes_crypt(req, FLAGS_OFB); +} + +static int tegra_aes_get_random(struct crypto_rng *tfm, u8 *rdata, +				unsigned int dlen) +{ +	struct tegra_aes_dev *dd = aes_dev; +	struct tegra_aes_ctx *ctx = &rng_ctx; +	int ret, i; +	u8 *dest = rdata, *dt = dd->dt; + +	/* take mutex to access the aes hw */ +	mutex_lock(&aes_lock); + +	ret = clk_enable(dd->aes_clk); +	if (ret) +		return ret; + +	ctx->dd = dd; +	dd->ctx = ctx; +	dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; + +	memcpy(dd->buf_in, dt, DEFAULT_RNG_BLK_SZ); + +	ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, +			      (u32)dd->dma_buf_out, 1, dd->flags, true); +	if (ret < 0) { +		dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); +		dlen = ret; +		goto out; +	} +	memcpy(dest, dd->buf_out, dlen); + +	/* update the DT */ +	for (i = DEFAULT_RNG_BLK_SZ - 1; i >= 0; i--) { +		dt[i] += 1; +		if (dt[i] != 0) +			break; +	} + +out: +	clk_disable(dd->aes_clk); +	mutex_unlock(&aes_lock); + +	dev_dbg(dd->dev, "%s: done\n", __func__); +	return dlen; +} + +static int tegra_aes_rng_reset(struct crypto_rng *tfm, u8 *seed, +			       unsigned int slen) +{ +	struct tegra_aes_dev *dd = aes_dev; +	struct tegra_aes_ctx *ctx = &rng_ctx; +	struct tegra_aes_slot *key_slot; +	struct timespec ts; +	int ret = 0; +	u64 nsec, tmp[2]; +	u8 *dt; + +	if (!ctx || !dd) { +		dev_err(dd->dev, "ctx=0x%x, dd=0x%x\n", +			(unsigned int)ctx, (unsigned int)dd); +		return -EINVAL; +	} + +	if (slen < (DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { +		dev_err(dd->dev, "seed size invalid"); +		return -ENOMEM; +	} + +	/* take mutex to access the aes hw */ +	mutex_lock(&aes_lock); + +	if (!ctx->slot) { +		key_slot = aes_find_key_slot(); +		if (!key_slot) { +			dev_err(dd->dev, "no empty slot\n"); +			mutex_unlock(&aes_lock); +			return -ENOMEM; +		} +		ctx->slot = key_slot; +	} + +	ctx->dd = dd; +	dd->ctx = ctx; +	dd->ctr = 0; + +	ctx->keylen = AES_KEYSIZE_128; +	ctx->flags |= FLAGS_NEW_KEY; + +	/* copy the key to the key slot */ +	memcpy(dd->ivkey_base, seed + DEFAULT_RNG_BLK_SZ, AES_KEYSIZE_128); +	memset(dd->ivkey_base + AES_KEYSIZE_128, 0, AES_HW_KEY_TABLE_LENGTH_BYTES - AES_KEYSIZE_128); + +	dd->iv = seed; +	dd->ivlen = slen; + +	dd->flags = FLAGS_ENCRYPT | FLAGS_RNG; + +	ret = clk_enable(dd->aes_clk); +	if (ret) +		return ret; + +	aes_set_key(dd); + +	/* set seed to the aes hw slot */ +	memcpy(dd->buf_in, dd->iv, DEFAULT_RNG_BLK_SZ); +	ret = aes_start_crypt(dd, (u32)dd->dma_buf_in, +			      dd->dma_buf_out, 1, FLAGS_CBC, false); +	if (ret < 0) { +		dev_err(dd->dev, "aes_start_crypt fail(%d)\n", ret); +		goto out; +	} + +	if (dd->ivlen >= (2 * DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128)) { +		dt = dd->iv + DEFAULT_RNG_BLK_SZ + AES_KEYSIZE_128; +	} else { +		getnstimeofday(&ts); +		nsec = timespec_to_ns(&ts); +		do_div(nsec, 1000); +		nsec ^= dd->ctr << 56; +		dd->ctr++; +		tmp[0] = nsec; +		tmp[1] = tegra_chip_uid(); +		dt = (u8 *)tmp; +	} +	memcpy(dd->dt, dt, DEFAULT_RNG_BLK_SZ); + +out: +	clk_disable(dd->aes_clk); +	mutex_unlock(&aes_lock); + +	dev_dbg(dd->dev, "%s: done\n", __func__); +	return ret; +} + +static int tegra_aes_cra_init(struct crypto_tfm *tfm) +{ +	tfm->crt_ablkcipher.reqsize = sizeof(struct tegra_aes_reqctx); + +	return 0; +} + +void tegra_aes_cra_exit(struct crypto_tfm *tfm) +{ +	struct tegra_aes_ctx *ctx = +		crypto_ablkcipher_ctx((struct crypto_ablkcipher *)tfm); + +	if (ctx && ctx->slot) +		aes_release_key_slot(ctx->slot); +} + +static struct crypto_alg algs[] = { +	{ +		.cra_name = "ecb(aes)", +		.cra_driver_name = "ecb-aes-tegra", +		.cra_priority = 300, +		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, +		.cra_blocksize = AES_BLOCK_SIZE, +		.cra_alignmask = 3, +		.cra_type = &crypto_ablkcipher_type, +		.cra_u.ablkcipher = { +			.min_keysize = AES_MIN_KEY_SIZE, +			.max_keysize = AES_MAX_KEY_SIZE, +			.setkey = tegra_aes_setkey, +			.encrypt = tegra_aes_ecb_encrypt, +			.decrypt = tegra_aes_ecb_decrypt, +		}, +	}, { +		.cra_name = "cbc(aes)", +		.cra_driver_name = "cbc-aes-tegra", +		.cra_priority = 300, +		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, +		.cra_blocksize = AES_BLOCK_SIZE, +		.cra_alignmask = 3, +		.cra_type = &crypto_ablkcipher_type, +		.cra_u.ablkcipher = { +			.min_keysize = AES_MIN_KEY_SIZE, +			.max_keysize = AES_MAX_KEY_SIZE, +			.ivsize = AES_MIN_KEY_SIZE, +			.setkey = tegra_aes_setkey, +			.encrypt = tegra_aes_cbc_encrypt, +			.decrypt = tegra_aes_cbc_decrypt, +		} +	}, { +		.cra_name = "ofb(aes)", +		.cra_driver_name = "ofb-aes-tegra", +		.cra_priority = 300, +		.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, +		.cra_blocksize = AES_BLOCK_SIZE, +		.cra_alignmask = 3, +		.cra_type = &crypto_ablkcipher_type, +		.cra_u.ablkcipher = { +			.min_keysize = AES_MIN_KEY_SIZE, +			.max_keysize = AES_MAX_KEY_SIZE, +			.ivsize = AES_MIN_KEY_SIZE, +			.setkey = tegra_aes_setkey, +			.encrypt = tegra_aes_ofb_encrypt, +			.decrypt = tegra_aes_ofb_decrypt, +		} +	}, { +		.cra_name = "ansi_cprng", +		.cra_driver_name = "rng-aes-tegra", +		.cra_flags = CRYPTO_ALG_TYPE_RNG, +		.cra_ctxsize = sizeof(struct tegra_aes_ctx), +		.cra_type = &crypto_rng_type, +		.cra_u.rng = { +			.rng_make_random = tegra_aes_get_random, +			.rng_reset = tegra_aes_rng_reset, +			.seedsize = AES_KEYSIZE_128 + (2 * DEFAULT_RNG_BLK_SZ), +		} +	} +}; + +static int tegra_aes_probe(struct platform_device *pdev) +{ +	struct device *dev = &pdev->dev; +	struct tegra_aes_dev *dd; +	struct resource *res; +	int err = -ENOMEM, i = 0, j; + +	dd = devm_kzalloc(dev, sizeof(struct tegra_aes_dev), GFP_KERNEL); +	if (dd == NULL) { +		dev_err(dev, "unable to alloc data struct.\n"); +		return err; +	} + +	dd->dev = dev; +	platform_set_drvdata(pdev, dd); + +	dd->slots = devm_kzalloc(dev, sizeof(struct tegra_aes_slot) * +				 AES_NR_KEYSLOTS, GFP_KERNEL); +	if (dd->slots == NULL) { +		dev_err(dev, "unable to alloc slot struct.\n"); +		goto out; +	} + +	spin_lock_init(&dd->lock); +	crypto_init_queue(&dd->queue, TEGRA_AES_QUEUE_LENGTH); + +	/* Get the module base address */ +	res = platform_get_resource(pdev, IORESOURCE_MEM, 0); +	if (!res) { +		dev_err(dev, "invalid resource type: base\n"); +		err = -ENODEV; +		goto out; +	} + +	if (!devm_request_mem_region(&pdev->dev, res->start, +				     resource_size(res), +				     dev_name(&pdev->dev))) { +		dev_err(&pdev->dev, "Couldn't request MEM resource\n"); +		return -ENODEV; +	} + +	dd->io_base = devm_ioremap(dev, res->start, resource_size(res)); +	if (!dd->io_base) { +		dev_err(dev, "can't ioremap register space\n"); +		err = -ENOMEM; +		goto out; +	} + +	/* Initialize the vde clock */ +	dd->aes_clk = clk_get(dev, "vde"); +	if (IS_ERR(dd->aes_clk)) { +		dev_err(dev, "iclock intialization failed.\n"); +		err = -ENODEV; +		goto out; +	} + +	err = clk_set_rate(dd->aes_clk, ULONG_MAX); +	if (err) { +		dev_err(dd->dev, "iclk set_rate fail(%d)\n", err); +		goto out; +	} + +	/* +	 * the foll contiguous memory is allocated as follows - +	 * - hardware key table +	 * - key schedule +	 */ +	dd->ivkey_base = dma_alloc_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, +					    &dd->ivkey_phys_base, +		GFP_KERNEL); +	if (!dd->ivkey_base) { +		dev_err(dev, "can not allocate iv/key buffer\n"); +		err = -ENOMEM; +		goto out; +	} + +	dd->buf_in = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, +					&dd->dma_buf_in, GFP_KERNEL); +	if (!dd->buf_in) { +		dev_err(dev, "can not allocate dma-in buffer\n"); +		err = -ENOMEM; +		goto out; +	} + +	dd->buf_out = dma_alloc_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, +					 &dd->dma_buf_out, GFP_KERNEL); +	if (!dd->buf_out) { +		dev_err(dev, "can not allocate dma-out buffer\n"); +		err = -ENOMEM; +		goto out; +	} + +	init_completion(&dd->op_complete); +	aes_wq = alloc_workqueue("tegra_aes_wq", WQ_HIGHPRI | WQ_UNBOUND, 1); +	if (!aes_wq) { +		dev_err(dev, "alloc_workqueue failed\n"); +		goto out; +	} + +	/* get the irq */ +	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); +	if (!res) { +		dev_err(dev, "invalid resource type: base\n"); +		err = -ENODEV; +		goto out; +	} +	dd->irq = res->start; + +	err = devm_request_irq(dev, dd->irq, aes_irq, IRQF_TRIGGER_HIGH | +				IRQF_SHARED, "tegra-aes", dd); +	if (err) { +		dev_err(dev, "request_irq failed\n"); +		goto out; +	} + +	mutex_init(&aes_lock); +	INIT_LIST_HEAD(&dev_list); + +	spin_lock_init(&list_lock); +	spin_lock(&list_lock); +	for (i = 0; i < AES_NR_KEYSLOTS; i++) { +		if (i == SSK_SLOT_NUM) +			continue; +		dd->slots[i].slot_num = i; +		INIT_LIST_HEAD(&dd->slots[i].node); +		list_add_tail(&dd->slots[i].node, &dev_list); +	} +	spin_unlock(&list_lock); + +	aes_dev = dd; +	for (i = 0; i < ARRAY_SIZE(algs); i++) { +		INIT_LIST_HEAD(&algs[i].cra_list); + +		algs[i].cra_priority = 300; +		algs[i].cra_ctxsize = sizeof(struct tegra_aes_ctx); +		algs[i].cra_module = THIS_MODULE; +		algs[i].cra_init = tegra_aes_cra_init; +		algs[i].cra_exit = tegra_aes_cra_exit; + +		err = crypto_register_alg(&algs[i]); +		if (err) +			goto out; +	} + +	dev_info(dev, "registered"); +	return 0; + +out: +	for (j = 0; j < i; j++) +		crypto_unregister_alg(&algs[j]); +	if (dd->ivkey_base) +		dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, +			dd->ivkey_base, dd->ivkey_phys_base); +	if (dd->buf_in) +		dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, +			dd->buf_in, dd->dma_buf_in); +	if (dd->buf_out) +		dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, +			dd->buf_out, dd->dma_buf_out); +	if (IS_ERR(dd->aes_clk)) +		clk_put(dd->aes_clk); +	if (aes_wq) +		destroy_workqueue(aes_wq); +	spin_lock(&list_lock); +	list_del(&dev_list); +	spin_unlock(&list_lock); + +	aes_dev = NULL; + +	dev_err(dev, "%s: initialization failed.\n", __func__); +	return err; +} + +static int __devexit tegra_aes_remove(struct platform_device *pdev) +{ +	struct device *dev = &pdev->dev; +	struct tegra_aes_dev *dd = platform_get_drvdata(pdev); +	int i; + +	for (i = 0; i < ARRAY_SIZE(algs); i++) +		crypto_unregister_alg(&algs[i]); + +	cancel_work_sync(&aes_work); +	destroy_workqueue(aes_wq); +	spin_lock(&list_lock); +	list_del(&dev_list); +	spin_unlock(&list_lock); + +	dma_free_coherent(dev, AES_HW_KEY_TABLE_LENGTH_BYTES, +			  dd->ivkey_base, dd->ivkey_phys_base); +	dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, +			  dd->buf_in, dd->dma_buf_in); +	dma_free_coherent(dev, AES_HW_DMA_BUFFER_SIZE_BYTES, +			  dd->buf_out, dd->dma_buf_out); +	clk_put(dd->aes_clk); +	aes_dev = NULL; + +	return 0; +} + +static struct of_device_id tegra_aes_of_match[] __devinitdata = { +	{ .compatible = "nvidia,tegra20-aes", }, +	{ .compatible = "nvidia,tegra30-aes", }, +	{ }, +}; + +static struct platform_driver tegra_aes_driver = { +	.probe  = tegra_aes_probe, +	.remove = __devexit_p(tegra_aes_remove), +	.driver = { +		.name   = "tegra-aes", +		.owner  = THIS_MODULE, +		.of_match_table = tegra_aes_of_match, +	}, +}; + +module_platform_driver(tegra_aes_driver); + +MODULE_DESCRIPTION("Tegra AES/OFB/CPRNG hw acceleration support."); +MODULE_AUTHOR("NVIDIA Corporation"); +MODULE_LICENSE("GPL v2");  |