diff options
Diffstat (limited to 'arch/sparc/kernel/smp_64.c')
| -rw-r--r-- | arch/sparc/kernel/smp_64.c | 1412 | 
1 files changed, 1412 insertions, 0 deletions
diff --git a/arch/sparc/kernel/smp_64.c b/arch/sparc/kernel/smp_64.c new file mode 100644 index 00000000000..b5225c81556 --- /dev/null +++ b/arch/sparc/kernel/smp_64.c @@ -0,0 +1,1412 @@ +/* smp.c: Sparc64 SMP support. + * + * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net) + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/sched.h> +#include <linux/mm.h> +#include <linux/pagemap.h> +#include <linux/threads.h> +#include <linux/smp.h> +#include <linux/interrupt.h> +#include <linux/kernel_stat.h> +#include <linux/delay.h> +#include <linux/init.h> +#include <linux/spinlock.h> +#include <linux/fs.h> +#include <linux/seq_file.h> +#include <linux/cache.h> +#include <linux/jiffies.h> +#include <linux/profile.h> +#include <linux/lmb.h> +#include <linux/cpu.h> + +#include <asm/head.h> +#include <asm/ptrace.h> +#include <asm/atomic.h> +#include <asm/tlbflush.h> +#include <asm/mmu_context.h> +#include <asm/cpudata.h> +#include <asm/hvtramp.h> +#include <asm/io.h> +#include <asm/timer.h> + +#include <asm/irq.h> +#include <asm/irq_regs.h> +#include <asm/page.h> +#include <asm/pgtable.h> +#include <asm/oplib.h> +#include <asm/uaccess.h> +#include <asm/starfire.h> +#include <asm/tlb.h> +#include <asm/sections.h> +#include <asm/prom.h> +#include <asm/mdesc.h> +#include <asm/ldc.h> +#include <asm/hypervisor.h> + +int sparc64_multi_core __read_mostly; + +cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE; +cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE; +DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE; +cpumask_t cpu_core_map[NR_CPUS] __read_mostly = +	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE }; + +EXPORT_SYMBOL(cpu_possible_map); +EXPORT_SYMBOL(cpu_online_map); +EXPORT_PER_CPU_SYMBOL(cpu_sibling_map); +EXPORT_SYMBOL(cpu_core_map); + +static cpumask_t smp_commenced_mask; + +void smp_info(struct seq_file *m) +{ +	int i; +	 +	seq_printf(m, "State:\n"); +	for_each_online_cpu(i) +		seq_printf(m, "CPU%d:\t\tonline\n", i); +} + +void smp_bogo(struct seq_file *m) +{ +	int i; +	 +	for_each_online_cpu(i) +		seq_printf(m, +			   "Cpu%dClkTck\t: %016lx\n", +			   i, cpu_data(i).clock_tick); +} + +extern void setup_sparc64_timer(void); + +static volatile unsigned long callin_flag = 0; + +void __cpuinit smp_callin(void) +{ +	int cpuid = hard_smp_processor_id(); + +	__local_per_cpu_offset = __per_cpu_offset(cpuid); + +	if (tlb_type == hypervisor) +		sun4v_ktsb_register(); + +	__flush_tlb_all(); + +	setup_sparc64_timer(); + +	if (cheetah_pcache_forced_on) +		cheetah_enable_pcache(); + +	local_irq_enable(); + +	callin_flag = 1; +	__asm__ __volatile__("membar #Sync\n\t" +			     "flush  %%g6" : : : "memory"); + +	/* Clear this or we will die instantly when we +	 * schedule back to this idler... +	 */ +	current_thread_info()->new_child = 0; + +	/* Attach to the address space of init_task. */ +	atomic_inc(&init_mm.mm_count); +	current->active_mm = &init_mm; + +	/* inform the notifiers about the new cpu */ +	notify_cpu_starting(cpuid); + +	while (!cpu_isset(cpuid, smp_commenced_mask)) +		rmb(); + +	ipi_call_lock(); +	cpu_set(cpuid, cpu_online_map); +	ipi_call_unlock(); + +	/* idle thread is expected to have preempt disabled */ +	preempt_disable(); +} + +void cpu_panic(void) +{ +	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id()); +	panic("SMP bolixed\n"); +} + +/* This tick register synchronization scheme is taken entirely from + * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit. + * + * The only change I've made is to rework it so that the master + * initiates the synchonization instead of the slave. -DaveM + */ + +#define MASTER	0 +#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long)) + +#define NUM_ROUNDS	64	/* magic value */ +#define NUM_ITERS	5	/* likewise */ + +static DEFINE_SPINLOCK(itc_sync_lock); +static unsigned long go[SLAVE + 1]; + +#define DEBUG_TICK_SYNC	0 + +static inline long get_delta (long *rt, long *master) +{ +	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0; +	unsigned long tcenter, t0, t1, tm; +	unsigned long i; + +	for (i = 0; i < NUM_ITERS; i++) { +		t0 = tick_ops->get_tick(); +		go[MASTER] = 1; +		membar_safe("#StoreLoad"); +		while (!(tm = go[SLAVE])) +			rmb(); +		go[SLAVE] = 0; +		wmb(); +		t1 = tick_ops->get_tick(); + +		if (t1 - t0 < best_t1 - best_t0) +			best_t0 = t0, best_t1 = t1, best_tm = tm; +	} + +	*rt = best_t1 - best_t0; +	*master = best_tm - best_t0; + +	/* average best_t0 and best_t1 without overflow: */ +	tcenter = (best_t0/2 + best_t1/2); +	if (best_t0 % 2 + best_t1 % 2 == 2) +		tcenter++; +	return tcenter - best_tm; +} + +void smp_synchronize_tick_client(void) +{ +	long i, delta, adj, adjust_latency = 0, done = 0; +	unsigned long flags, rt, master_time_stamp, bound; +#if DEBUG_TICK_SYNC +	struct { +		long rt;	/* roundtrip time */ +		long master;	/* master's timestamp */ +		long diff;	/* difference between midpoint and master's timestamp */ +		long lat;	/* estimate of itc adjustment latency */ +	} t[NUM_ROUNDS]; +#endif + +	go[MASTER] = 1; + +	while (go[MASTER]) +		rmb(); + +	local_irq_save(flags); +	{ +		for (i = 0; i < NUM_ROUNDS; i++) { +			delta = get_delta(&rt, &master_time_stamp); +			if (delta == 0) { +				done = 1;	/* let's lock on to this... */ +				bound = rt; +			} + +			if (!done) { +				if (i > 0) { +					adjust_latency += -delta; +					adj = -delta + adjust_latency/4; +				} else +					adj = -delta; + +				tick_ops->add_tick(adj); +			} +#if DEBUG_TICK_SYNC +			t[i].rt = rt; +			t[i].master = master_time_stamp; +			t[i].diff = delta; +			t[i].lat = adjust_latency/4; +#endif +		} +	} +	local_irq_restore(flags); + +#if DEBUG_TICK_SYNC +	for (i = 0; i < NUM_ROUNDS; i++) +		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n", +		       t[i].rt, t[i].master, t[i].diff, t[i].lat); +#endif + +	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU " +	       "(last diff %ld cycles, maxerr %lu cycles)\n", +	       smp_processor_id(), delta, rt); +} + +static void smp_start_sync_tick_client(int cpu); + +static void smp_synchronize_one_tick(int cpu) +{ +	unsigned long flags, i; + +	go[MASTER] = 0; + +	smp_start_sync_tick_client(cpu); + +	/* wait for client to be ready */ +	while (!go[MASTER]) +		rmb(); + +	/* now let the client proceed into his loop */ +	go[MASTER] = 0; +	membar_safe("#StoreLoad"); + +	spin_lock_irqsave(&itc_sync_lock, flags); +	{ +		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) { +			while (!go[MASTER]) +				rmb(); +			go[MASTER] = 0; +			wmb(); +			go[SLAVE] = tick_ops->get_tick(); +			membar_safe("#StoreLoad"); +		} +	} +	spin_unlock_irqrestore(&itc_sync_lock, flags); +} + +#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) +/* XXX Put this in some common place. XXX */ +static unsigned long kimage_addr_to_ra(void *p) +{ +	unsigned long val = (unsigned long) p; + +	return kern_base + (val - KERNBASE); +} + +static void __cpuinit ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg) +{ +	extern unsigned long sparc64_ttable_tl0; +	extern unsigned long kern_locked_tte_data; +	struct hvtramp_descr *hdesc; +	unsigned long trampoline_ra; +	struct trap_per_cpu *tb; +	u64 tte_vaddr, tte_data; +	unsigned long hv_err; +	int i; + +	hdesc = kzalloc(sizeof(*hdesc) + +			(sizeof(struct hvtramp_mapping) * +			 num_kernel_image_mappings - 1), +			GFP_KERNEL); +	if (!hdesc) { +		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate " +		       "hvtramp_descr.\n"); +		return; +	} + +	hdesc->cpu = cpu; +	hdesc->num_mappings = num_kernel_image_mappings; + +	tb = &trap_block[cpu]; +	tb->hdesc = hdesc; + +	hdesc->fault_info_va = (unsigned long) &tb->fault_info; +	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info); + +	hdesc->thread_reg = thread_reg; + +	tte_vaddr = (unsigned long) KERNBASE; +	tte_data = kern_locked_tte_data; + +	for (i = 0; i < hdesc->num_mappings; i++) { +		hdesc->maps[i].vaddr = tte_vaddr; +		hdesc->maps[i].tte   = tte_data; +		tte_vaddr += 0x400000; +		tte_data  += 0x400000; +	} + +	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup); + +	hv_err = sun4v_cpu_start(cpu, trampoline_ra, +				 kimage_addr_to_ra(&sparc64_ttable_tl0), +				 __pa(hdesc)); +	if (hv_err) +		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() " +		       "gives error %lu\n", hv_err); +} +#endif + +extern unsigned long sparc64_cpu_startup; + +/* The OBP cpu startup callback truncates the 3rd arg cookie to + * 32-bits (I think) so to be safe we have it read the pointer + * contained here so we work on >4GB machines. -DaveM + */ +static struct thread_info *cpu_new_thread = NULL; + +static int __cpuinit smp_boot_one_cpu(unsigned int cpu) +{ +	struct trap_per_cpu *tb = &trap_block[cpu]; +	unsigned long entry = +		(unsigned long)(&sparc64_cpu_startup); +	unsigned long cookie = +		(unsigned long)(&cpu_new_thread); +	struct task_struct *p; +	int timeout, ret; + +	p = fork_idle(cpu); +	if (IS_ERR(p)) +		return PTR_ERR(p); +	callin_flag = 0; +	cpu_new_thread = task_thread_info(p); + +	if (tlb_type == hypervisor) { +#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU) +		if (ldom_domaining_enabled) +			ldom_startcpu_cpuid(cpu, +					    (unsigned long) cpu_new_thread); +		else +#endif +			prom_startcpu_cpuid(cpu, entry, cookie); +	} else { +		struct device_node *dp = of_find_node_by_cpuid(cpu); + +		prom_startcpu(dp->node, entry, cookie); +	} + +	for (timeout = 0; timeout < 50000; timeout++) { +		if (callin_flag) +			break; +		udelay(100); +	} + +	if (callin_flag) { +		ret = 0; +	} else { +		printk("Processor %d is stuck.\n", cpu); +		ret = -ENODEV; +	} +	cpu_new_thread = NULL; + +	if (tb->hdesc) { +		kfree(tb->hdesc); +		tb->hdesc = NULL; +	} + +	return ret; +} + +static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu) +{ +	u64 result, target; +	int stuck, tmp; + +	if (this_is_starfire) { +		/* map to real upaid */ +		cpu = (((cpu & 0x3c) << 1) | +			((cpu & 0x40) >> 4) | +			(cpu & 0x3)); +	} + +	target = (cpu << 14) | 0x70; +again: +	/* Ok, this is the real Spitfire Errata #54. +	 * One must read back from a UDB internal register +	 * after writes to the UDB interrupt dispatch, but +	 * before the membar Sync for that write. +	 * So we use the high UDB control register (ASI 0x7f, +	 * ADDR 0x20) for the dummy read. -DaveM +	 */ +	tmp = 0x40; +	__asm__ __volatile__( +	"wrpr	%1, %2, %%pstate\n\t" +	"stxa	%4, [%0] %3\n\t" +	"stxa	%5, [%0+%8] %3\n\t" +	"add	%0, %8, %0\n\t" +	"stxa	%6, [%0+%8] %3\n\t" +	"membar	#Sync\n\t" +	"stxa	%%g0, [%7] %3\n\t" +	"membar	#Sync\n\t" +	"mov	0x20, %%g1\n\t" +	"ldxa	[%%g1] 0x7f, %%g0\n\t" +	"membar	#Sync" +	: "=r" (tmp) +	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W), +	  "r" (data0), "r" (data1), "r" (data2), "r" (target), +	  "r" (0x10), "0" (tmp) +        : "g1"); + +	/* NOTE: PSTATE_IE is still clear. */ +	stuck = 100000; +	do { +		__asm__ __volatile__("ldxa [%%g0] %1, %0" +			: "=r" (result) +			: "i" (ASI_INTR_DISPATCH_STAT)); +		if (result == 0) { +			__asm__ __volatile__("wrpr %0, 0x0, %%pstate" +					     : : "r" (pstate)); +			return; +		} +		stuck -= 1; +		if (stuck == 0) +			break; +	} while (result & 0x1); +	__asm__ __volatile__("wrpr %0, 0x0, %%pstate" +			     : : "r" (pstate)); +	if (stuck == 0) { +		printk("CPU[%d]: mondo stuckage result[%016lx]\n", +		       smp_processor_id(), result); +	} else { +		udelay(2); +		goto again; +	} +} + +static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt) +{ +	u64 *mondo, data0, data1, data2; +	u16 *cpu_list; +	u64 pstate; +	int i; + +	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); +	cpu_list = __va(tb->cpu_list_pa); +	mondo = __va(tb->cpu_mondo_block_pa); +	data0 = mondo[0]; +	data1 = mondo[1]; +	data2 = mondo[2]; +	for (i = 0; i < cnt; i++) +		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]); +} + +/* Cheetah now allows to send the whole 64-bytes of data in the interrupt + * packet, but we have no use for that.  However we do take advantage of + * the new pipelining feature (ie. dispatch to multiple cpus simultaneously). + */ +static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt) +{ +	int nack_busy_id, is_jbus, need_more; +	u64 *mondo, pstate, ver, busy_mask; +	u16 *cpu_list; + +	cpu_list = __va(tb->cpu_list_pa); +	mondo = __va(tb->cpu_mondo_block_pa); + +	/* Unfortunately, someone at Sun had the brilliant idea to make the +	 * busy/nack fields hard-coded by ITID number for this Ultra-III +	 * derivative processor. +	 */ +	__asm__ ("rdpr %%ver, %0" : "=r" (ver)); +	is_jbus = ((ver >> 32) == __JALAPENO_ID || +		   (ver >> 32) == __SERRANO_ID); + +	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate)); + +retry: +	need_more = 0; +	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t" +			     : : "r" (pstate), "i" (PSTATE_IE)); + +	/* Setup the dispatch data registers. */ +	__asm__ __volatile__("stxa	%0, [%3] %6\n\t" +			     "stxa	%1, [%4] %6\n\t" +			     "stxa	%2, [%5] %6\n\t" +			     "membar	#Sync\n\t" +			     : /* no outputs */ +			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]), +			       "r" (0x40), "r" (0x50), "r" (0x60), +			       "i" (ASI_INTR_W)); + +	nack_busy_id = 0; +	busy_mask = 0; +	{ +		int i; + +		for (i = 0; i < cnt; i++) { +			u64 target, nr; + +			nr = cpu_list[i]; +			if (nr == 0xffff) +				continue; + +			target = (nr << 14) | 0x70; +			if (is_jbus) { +				busy_mask |= (0x1UL << (nr * 2)); +			} else { +				target |= (nack_busy_id << 24); +				busy_mask |= (0x1UL << +					      (nack_busy_id * 2)); +			} +			__asm__ __volatile__( +				"stxa	%%g0, [%0] %1\n\t" +				"membar	#Sync\n\t" +				: /* no outputs */ +				: "r" (target), "i" (ASI_INTR_W)); +			nack_busy_id++; +			if (nack_busy_id == 32) { +				need_more = 1; +				break; +			} +		} +	} + +	/* Now, poll for completion. */ +	{ +		u64 dispatch_stat, nack_mask; +		long stuck; + +		stuck = 100000 * nack_busy_id; +		nack_mask = busy_mask << 1; +		do { +			__asm__ __volatile__("ldxa	[%%g0] %1, %0" +					     : "=r" (dispatch_stat) +					     : "i" (ASI_INTR_DISPATCH_STAT)); +			if (!(dispatch_stat & (busy_mask | nack_mask))) { +				__asm__ __volatile__("wrpr %0, 0x0, %%pstate" +						     : : "r" (pstate)); +				if (unlikely(need_more)) { +					int i, this_cnt = 0; +					for (i = 0; i < cnt; i++) { +						if (cpu_list[i] == 0xffff) +							continue; +						cpu_list[i] = 0xffff; +						this_cnt++; +						if (this_cnt == 32) +							break; +					} +					goto retry; +				} +				return; +			} +			if (!--stuck) +				break; +		} while (dispatch_stat & busy_mask); + +		__asm__ __volatile__("wrpr %0, 0x0, %%pstate" +				     : : "r" (pstate)); + +		if (dispatch_stat & busy_mask) { +			/* Busy bits will not clear, continue instead +			 * of freezing up on this cpu. +			 */ +			printk("CPU[%d]: mondo stuckage result[%016lx]\n", +			       smp_processor_id(), dispatch_stat); +		} else { +			int i, this_busy_nack = 0; + +			/* Delay some random time with interrupts enabled +			 * to prevent deadlock. +			 */ +			udelay(2 * nack_busy_id); + +			/* Clear out the mask bits for cpus which did not +			 * NACK us. +			 */ +			for (i = 0; i < cnt; i++) { +				u64 check_mask, nr; + +				nr = cpu_list[i]; +				if (nr == 0xffff) +					continue; + +				if (is_jbus) +					check_mask = (0x2UL << (2*nr)); +				else +					check_mask = (0x2UL << +						      this_busy_nack); +				if ((dispatch_stat & check_mask) == 0) +					cpu_list[i] = 0xffff; +				this_busy_nack += 2; +				if (this_busy_nack == 64) +					break; +			} + +			goto retry; +		} +	} +} + +/* Multi-cpu list version.  */ +static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt) +{ +	int retries, this_cpu, prev_sent, i, saw_cpu_error; +	unsigned long status; +	u16 *cpu_list; + +	this_cpu = smp_processor_id(); + +	cpu_list = __va(tb->cpu_list_pa); + +	saw_cpu_error = 0; +	retries = 0; +	prev_sent = 0; +	do { +		int forward_progress, n_sent; + +		status = sun4v_cpu_mondo_send(cnt, +					      tb->cpu_list_pa, +					      tb->cpu_mondo_block_pa); + +		/* HV_EOK means all cpus received the xcall, we're done.  */ +		if (likely(status == HV_EOK)) +			break; + +		/* First, see if we made any forward progress. +		 * +		 * The hypervisor indicates successful sends by setting +		 * cpu list entries to the value 0xffff. +		 */ +		n_sent = 0; +		for (i = 0; i < cnt; i++) { +			if (likely(cpu_list[i] == 0xffff)) +				n_sent++; +		} + +		forward_progress = 0; +		if (n_sent > prev_sent) +			forward_progress = 1; + +		prev_sent = n_sent; + +		/* If we get a HV_ECPUERROR, then one or more of the cpus +		 * in the list are in error state.  Use the cpu_state() +		 * hypervisor call to find out which cpus are in error state. +		 */ +		if (unlikely(status == HV_ECPUERROR)) { +			for (i = 0; i < cnt; i++) { +				long err; +				u16 cpu; + +				cpu = cpu_list[i]; +				if (cpu == 0xffff) +					continue; + +				err = sun4v_cpu_state(cpu); +				if (err == HV_CPU_STATE_ERROR) { +					saw_cpu_error = (cpu + 1); +					cpu_list[i] = 0xffff; +				} +			} +		} else if (unlikely(status != HV_EWOULDBLOCK)) +			goto fatal_mondo_error; + +		/* Don't bother rewriting the CPU list, just leave the +		 * 0xffff and non-0xffff entries in there and the +		 * hypervisor will do the right thing. +		 * +		 * Only advance timeout state if we didn't make any +		 * forward progress. +		 */ +		if (unlikely(!forward_progress)) { +			if (unlikely(++retries > 10000)) +				goto fatal_mondo_timeout; + +			/* Delay a little bit to let other cpus catch up +			 * on their cpu mondo queue work. +			 */ +			udelay(2 * cnt); +		} +	} while (1); + +	if (unlikely(saw_cpu_error)) +		goto fatal_mondo_cpu_error; + +	return; + +fatal_mondo_cpu_error: +	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus " +	       "(including %d) were in error state\n", +	       this_cpu, saw_cpu_error - 1); +	return; + +fatal_mondo_timeout: +	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward " +	       " progress after %d retries.\n", +	       this_cpu, retries); +	goto dump_cpu_list_and_out; + +fatal_mondo_error: +	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n", +	       this_cpu, status); +	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) " +	       "mondo_block_pa(%lx)\n", +	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa); + +dump_cpu_list_and_out: +	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu); +	for (i = 0; i < cnt; i++) +		printk("%u ", cpu_list[i]); +	printk("]\n"); +} + +static void (*xcall_deliver_impl)(struct trap_per_cpu *, int); + +static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask) +{ +	struct trap_per_cpu *tb; +	int this_cpu, i, cnt; +	unsigned long flags; +	u16 *cpu_list; +	u64 *mondo; + +	/* We have to do this whole thing with interrupts fully disabled. +	 * Otherwise if we send an xcall from interrupt context it will +	 * corrupt both our mondo block and cpu list state. +	 * +	 * One consequence of this is that we cannot use timeout mechanisms +	 * that depend upon interrupts being delivered locally.  So, for +	 * example, we cannot sample jiffies and expect it to advance. +	 * +	 * Fortunately, udelay() uses %stick/%tick so we can use that. +	 */ +	local_irq_save(flags); + +	this_cpu = smp_processor_id(); +	tb = &trap_block[this_cpu]; + +	mondo = __va(tb->cpu_mondo_block_pa); +	mondo[0] = data0; +	mondo[1] = data1; +	mondo[2] = data2; +	wmb(); + +	cpu_list = __va(tb->cpu_list_pa); + +	/* Setup the initial cpu list.  */ +	cnt = 0; +	for_each_cpu_mask_nr(i, *mask) { +		if (i == this_cpu || !cpu_online(i)) +			continue; +		cpu_list[cnt++] = i; +	} + +	if (cnt) +		xcall_deliver_impl(tb, cnt); + +	local_irq_restore(flags); +} + +/* Send cross call to all processors mentioned in MASK_P + * except self.  Really, there are only two cases currently, + * "&cpu_online_map" and "&mm->cpu_vm_mask". + */ +static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask) +{ +	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff)); + +	xcall_deliver(data0, data1, data2, mask); +} + +/* Send cross call to all processors except self. */ +static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2) +{ +	smp_cross_call_masked(func, ctx, data1, data2, &cpu_online_map); +} + +extern unsigned long xcall_sync_tick; + +static void smp_start_sync_tick_client(int cpu) +{ +	xcall_deliver((u64) &xcall_sync_tick, 0, 0, +		      &cpumask_of_cpu(cpu)); +} + +extern unsigned long xcall_call_function; + +void arch_send_call_function_ipi(cpumask_t mask) +{ +	xcall_deliver((u64) &xcall_call_function, 0, 0, &mask); +} + +extern unsigned long xcall_call_function_single; + +void arch_send_call_function_single_ipi(int cpu) +{ +	xcall_deliver((u64) &xcall_call_function_single, 0, 0, +		      &cpumask_of_cpu(cpu)); +} + +void smp_call_function_client(int irq, struct pt_regs *regs) +{ +	clear_softint(1 << irq); +	generic_smp_call_function_interrupt(); +} + +void smp_call_function_single_client(int irq, struct pt_regs *regs) +{ +	clear_softint(1 << irq); +	generic_smp_call_function_single_interrupt(); +} + +static void tsb_sync(void *info) +{ +	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()]; +	struct mm_struct *mm = info; + +	/* It is not valid to test "currrent->active_mm == mm" here. +	 * +	 * The value of "current" is not changed atomically with +	 * switch_mm().  But that's OK, we just need to check the +	 * current cpu's trap block PGD physical address. +	 */ +	if (tp->pgd_paddr == __pa(mm->pgd)) +		tsb_context_switch(mm); +} + +void smp_tsb_sync(struct mm_struct *mm) +{ +	smp_call_function_mask(mm->cpu_vm_mask, tsb_sync, mm, 1); +} + +extern unsigned long xcall_flush_tlb_mm; +extern unsigned long xcall_flush_tlb_pending; +extern unsigned long xcall_flush_tlb_kernel_range; +extern unsigned long xcall_fetch_glob_regs; +extern unsigned long xcall_receive_signal; +extern unsigned long xcall_new_mmu_context_version; +#ifdef CONFIG_KGDB +extern unsigned long xcall_kgdb_capture; +#endif + +#ifdef DCACHE_ALIASING_POSSIBLE +extern unsigned long xcall_flush_dcache_page_cheetah; +#endif +extern unsigned long xcall_flush_dcache_page_spitfire; + +#ifdef CONFIG_DEBUG_DCFLUSH +extern atomic_t dcpage_flushes; +extern atomic_t dcpage_flushes_xcall; +#endif + +static inline void __local_flush_dcache_page(struct page *page) +{ +#ifdef DCACHE_ALIASING_POSSIBLE +	__flush_dcache_page(page_address(page), +			    ((tlb_type == spitfire) && +			     page_mapping(page) != NULL)); +#else +	if (page_mapping(page) != NULL && +	    tlb_type == spitfire) +		__flush_icache_page(__pa(page_address(page))); +#endif +} + +void smp_flush_dcache_page_impl(struct page *page, int cpu) +{ +	int this_cpu; + +	if (tlb_type == hypervisor) +		return; + +#ifdef CONFIG_DEBUG_DCFLUSH +	atomic_inc(&dcpage_flushes); +#endif + +	this_cpu = get_cpu(); + +	if (cpu == this_cpu) { +		__local_flush_dcache_page(page); +	} else if (cpu_online(cpu)) { +		void *pg_addr = page_address(page); +		u64 data0 = 0; + +		if (tlb_type == spitfire) { +			data0 = ((u64)&xcall_flush_dcache_page_spitfire); +			if (page_mapping(page) != NULL) +				data0 |= ((u64)1 << 32); +		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { +#ifdef DCACHE_ALIASING_POSSIBLE +			data0 =	((u64)&xcall_flush_dcache_page_cheetah); +#endif +		} +		if (data0) { +			xcall_deliver(data0, __pa(pg_addr), +				      (u64) pg_addr, &cpumask_of_cpu(cpu)); +#ifdef CONFIG_DEBUG_DCFLUSH +			atomic_inc(&dcpage_flushes_xcall); +#endif +		} +	} + +	put_cpu(); +} + +void flush_dcache_page_all(struct mm_struct *mm, struct page *page) +{ +	void *pg_addr; +	int this_cpu; +	u64 data0; + +	if (tlb_type == hypervisor) +		return; + +	this_cpu = get_cpu(); + +#ifdef CONFIG_DEBUG_DCFLUSH +	atomic_inc(&dcpage_flushes); +#endif +	data0 = 0; +	pg_addr = page_address(page); +	if (tlb_type == spitfire) { +		data0 = ((u64)&xcall_flush_dcache_page_spitfire); +		if (page_mapping(page) != NULL) +			data0 |= ((u64)1 << 32); +	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) { +#ifdef DCACHE_ALIASING_POSSIBLE +		data0 = ((u64)&xcall_flush_dcache_page_cheetah); +#endif +	} +	if (data0) { +		xcall_deliver(data0, __pa(pg_addr), +			      (u64) pg_addr, &cpu_online_map); +#ifdef CONFIG_DEBUG_DCFLUSH +		atomic_inc(&dcpage_flushes_xcall); +#endif +	} +	__local_flush_dcache_page(page); + +	put_cpu(); +} + +void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs) +{ +	struct mm_struct *mm; +	unsigned long flags; + +	clear_softint(1 << irq); + +	/* See if we need to allocate a new TLB context because +	 * the version of the one we are using is now out of date. +	 */ +	mm = current->active_mm; +	if (unlikely(!mm || (mm == &init_mm))) +		return; + +	spin_lock_irqsave(&mm->context.lock, flags); + +	if (unlikely(!CTX_VALID(mm->context))) +		get_new_mmu_context(mm); + +	spin_unlock_irqrestore(&mm->context.lock, flags); + +	load_secondary_context(mm); +	__flush_tlb_mm(CTX_HWBITS(mm->context), +		       SECONDARY_CONTEXT); +} + +void smp_new_mmu_context_version(void) +{ +	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0); +} + +#ifdef CONFIG_KGDB +void kgdb_roundup_cpus(unsigned long flags) +{ +	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0); +} +#endif + +void smp_fetch_global_regs(void) +{ +	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0); +} + +/* We know that the window frames of the user have been flushed + * to the stack before we get here because all callers of us + * are flush_tlb_*() routines, and these run after flush_cache_*() + * which performs the flushw. + * + * The SMP TLB coherency scheme we use works as follows: + * + * 1) mm->cpu_vm_mask is a bit mask of which cpus an address + *    space has (potentially) executed on, this is the heuristic + *    we use to avoid doing cross calls. + * + *    Also, for flushing from kswapd and also for clones, we + *    use cpu_vm_mask as the list of cpus to make run the TLB. + * + * 2) TLB context numbers are shared globally across all processors + *    in the system, this allows us to play several games to avoid + *    cross calls. + * + *    One invariant is that when a cpu switches to a process, and + *    that processes tsk->active_mm->cpu_vm_mask does not have the + *    current cpu's bit set, that tlb context is flushed locally. + * + *    If the address space is non-shared (ie. mm->count == 1) we avoid + *    cross calls when we want to flush the currently running process's + *    tlb state.  This is done by clearing all cpu bits except the current + *    processor's in current->active_mm->cpu_vm_mask and performing the + *    flush locally only.  This will force any subsequent cpus which run + *    this task to flush the context from the local tlb if the process + *    migrates to another cpu (again). + * + * 3) For shared address spaces (threads) and swapping we bite the + *    bullet for most cases and perform the cross call (but only to + *    the cpus listed in cpu_vm_mask). + * + *    The performance gain from "optimizing" away the cross call for threads is + *    questionable (in theory the big win for threads is the massive sharing of + *    address space state across processors). + */ + +/* This currently is only used by the hugetlb arch pre-fault + * hook on UltraSPARC-III+ and later when changing the pagesize + * bits of the context register for an address space. + */ +void smp_flush_tlb_mm(struct mm_struct *mm) +{ +	u32 ctx = CTX_HWBITS(mm->context); +	int cpu = get_cpu(); + +	if (atomic_read(&mm->mm_users) == 1) { +		mm->cpu_vm_mask = cpumask_of_cpu(cpu); +		goto local_flush_and_out; +	} + +	smp_cross_call_masked(&xcall_flush_tlb_mm, +			      ctx, 0, 0, +			      &mm->cpu_vm_mask); + +local_flush_and_out: +	__flush_tlb_mm(ctx, SECONDARY_CONTEXT); + +	put_cpu(); +} + +void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs) +{ +	u32 ctx = CTX_HWBITS(mm->context); +	int cpu = get_cpu(); + +	if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1) +		mm->cpu_vm_mask = cpumask_of_cpu(cpu); +	else +		smp_cross_call_masked(&xcall_flush_tlb_pending, +				      ctx, nr, (unsigned long) vaddrs, +				      &mm->cpu_vm_mask); + +	__flush_tlb_pending(ctx, nr, vaddrs); + +	put_cpu(); +} + +void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end) +{ +	start &= PAGE_MASK; +	end    = PAGE_ALIGN(end); +	if (start != end) { +		smp_cross_call(&xcall_flush_tlb_kernel_range, +			       0, start, end); + +		__flush_tlb_kernel_range(start, end); +	} +} + +/* CPU capture. */ +/* #define CAPTURE_DEBUG */ +extern unsigned long xcall_capture; + +static atomic_t smp_capture_depth = ATOMIC_INIT(0); +static atomic_t smp_capture_registry = ATOMIC_INIT(0); +static unsigned long penguins_are_doing_time; + +void smp_capture(void) +{ +	int result = atomic_add_ret(1, &smp_capture_depth); + +	if (result == 1) { +		int ncpus = num_online_cpus(); + +#ifdef CAPTURE_DEBUG +		printk("CPU[%d]: Sending penguins to jail...", +		       smp_processor_id()); +#endif +		penguins_are_doing_time = 1; +		atomic_inc(&smp_capture_registry); +		smp_cross_call(&xcall_capture, 0, 0, 0); +		while (atomic_read(&smp_capture_registry) != ncpus) +			rmb(); +#ifdef CAPTURE_DEBUG +		printk("done\n"); +#endif +	} +} + +void smp_release(void) +{ +	if (atomic_dec_and_test(&smp_capture_depth)) { +#ifdef CAPTURE_DEBUG +		printk("CPU[%d]: Giving pardon to " +		       "imprisoned penguins\n", +		       smp_processor_id()); +#endif +		penguins_are_doing_time = 0; +		membar_safe("#StoreLoad"); +		atomic_dec(&smp_capture_registry); +	} +} + +/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE + * set, so they can service tlb flush xcalls... + */ +extern void prom_world(int); + +void smp_penguin_jailcell(int irq, struct pt_regs *regs) +{ +	clear_softint(1 << irq); + +	preempt_disable(); + +	__asm__ __volatile__("flushw"); +	prom_world(1); +	atomic_inc(&smp_capture_registry); +	membar_safe("#StoreLoad"); +	while (penguins_are_doing_time) +		rmb(); +	atomic_dec(&smp_capture_registry); +	prom_world(0); + +	preempt_enable(); +} + +/* /proc/profile writes can call this, don't __init it please. */ +int setup_profiling_timer(unsigned int multiplier) +{ +	return -EINVAL; +} + +void __init smp_prepare_cpus(unsigned int max_cpus) +{ +} + +void __devinit smp_prepare_boot_cpu(void) +{ +} + +void __init smp_setup_processor_id(void) +{ +	if (tlb_type == spitfire) +		xcall_deliver_impl = spitfire_xcall_deliver; +	else if (tlb_type == cheetah || tlb_type == cheetah_plus) +		xcall_deliver_impl = cheetah_xcall_deliver; +	else +		xcall_deliver_impl = hypervisor_xcall_deliver; +} + +void __devinit smp_fill_in_sib_core_maps(void) +{ +	unsigned int i; + +	for_each_present_cpu(i) { +		unsigned int j; + +		cpus_clear(cpu_core_map[i]); +		if (cpu_data(i).core_id == 0) { +			cpu_set(i, cpu_core_map[i]); +			continue; +		} + +		for_each_present_cpu(j) { +			if (cpu_data(i).core_id == +			    cpu_data(j).core_id) +				cpu_set(j, cpu_core_map[i]); +		} +	} + +	for_each_present_cpu(i) { +		unsigned int j; + +		cpus_clear(per_cpu(cpu_sibling_map, i)); +		if (cpu_data(i).proc_id == -1) { +			cpu_set(i, per_cpu(cpu_sibling_map, i)); +			continue; +		} + +		for_each_present_cpu(j) { +			if (cpu_data(i).proc_id == +			    cpu_data(j).proc_id) +				cpu_set(j, per_cpu(cpu_sibling_map, i)); +		} +	} +} + +int __cpuinit __cpu_up(unsigned int cpu) +{ +	int ret = smp_boot_one_cpu(cpu); + +	if (!ret) { +		cpu_set(cpu, smp_commenced_mask); +		while (!cpu_isset(cpu, cpu_online_map)) +			mb(); +		if (!cpu_isset(cpu, cpu_online_map)) { +			ret = -ENODEV; +		} else { +			/* On SUN4V, writes to %tick and %stick are +			 * not allowed. +			 */ +			if (tlb_type != hypervisor) +				smp_synchronize_one_tick(cpu); +		} +	} +	return ret; +} + +#ifdef CONFIG_HOTPLUG_CPU +void cpu_play_dead(void) +{ +	int cpu = smp_processor_id(); +	unsigned long pstate; + +	idle_task_exit(); + +	if (tlb_type == hypervisor) { +		struct trap_per_cpu *tb = &trap_block[cpu]; + +		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO, +				tb->cpu_mondo_pa, 0); +		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO, +				tb->dev_mondo_pa, 0); +		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR, +				tb->resum_mondo_pa, 0); +		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR, +				tb->nonresum_mondo_pa, 0); +	} + +	cpu_clear(cpu, smp_commenced_mask); +	membar_safe("#Sync"); + +	local_irq_disable(); + +	__asm__ __volatile__( +		"rdpr	%%pstate, %0\n\t" +		"wrpr	%0, %1, %%pstate" +		: "=r" (pstate) +		: "i" (PSTATE_IE)); + +	while (1) +		barrier(); +} + +int __cpu_disable(void) +{ +	int cpu = smp_processor_id(); +	cpuinfo_sparc *c; +	int i; + +	for_each_cpu_mask(i, cpu_core_map[cpu]) +		cpu_clear(cpu, cpu_core_map[i]); +	cpus_clear(cpu_core_map[cpu]); + +	for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu)) +		cpu_clear(cpu, per_cpu(cpu_sibling_map, i)); +	cpus_clear(per_cpu(cpu_sibling_map, cpu)); + +	c = &cpu_data(cpu); + +	c->core_id = 0; +	c->proc_id = -1; + +	smp_wmb(); + +	/* Make sure no interrupts point to this cpu.  */ +	fixup_irqs(); + +	local_irq_enable(); +	mdelay(1); +	local_irq_disable(); + +	ipi_call_lock(); +	cpu_clear(cpu, cpu_online_map); +	ipi_call_unlock(); + +	return 0; +} + +void __cpu_die(unsigned int cpu) +{ +	int i; + +	for (i = 0; i < 100; i++) { +		smp_rmb(); +		if (!cpu_isset(cpu, smp_commenced_mask)) +			break; +		msleep(100); +	} +	if (cpu_isset(cpu, smp_commenced_mask)) { +		printk(KERN_ERR "CPU %u didn't die...\n", cpu); +	} else { +#if defined(CONFIG_SUN_LDOMS) +		unsigned long hv_err; +		int limit = 100; + +		do { +			hv_err = sun4v_cpu_stop(cpu); +			if (hv_err == HV_EOK) { +				cpu_clear(cpu, cpu_present_map); +				break; +			} +		} while (--limit > 0); +		if (limit <= 0) { +			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n", +			       hv_err); +		} +#endif +	} +} +#endif + +void __init smp_cpus_done(unsigned int max_cpus) +{ +} + +void smp_send_reschedule(int cpu) +{ +	xcall_deliver((u64) &xcall_receive_signal, 0, 0, +		      &cpumask_of_cpu(cpu)); +} + +void smp_receive_signal_client(int irq, struct pt_regs *regs) +{ +	clear_softint(1 << irq); +} + +/* This is a nop because we capture all other cpus + * anyways when making the PROM active. + */ +void smp_send_stop(void) +{ +} + +unsigned long __per_cpu_base __read_mostly; +unsigned long __per_cpu_shift __read_mostly; + +EXPORT_SYMBOL(__per_cpu_base); +EXPORT_SYMBOL(__per_cpu_shift); + +void __init real_setup_per_cpu_areas(void) +{ +	unsigned long paddr, goal, size, i; +	char *ptr; + +	/* Copy section for each CPU (we discard the original) */ +	goal = PERCPU_ENOUGH_ROOM; + +	__per_cpu_shift = PAGE_SHIFT; +	for (size = PAGE_SIZE; size < goal; size <<= 1UL) +		__per_cpu_shift++; + +	paddr = lmb_alloc(size * NR_CPUS, PAGE_SIZE); +	if (!paddr) { +		prom_printf("Cannot allocate per-cpu memory.\n"); +		prom_halt(); +	} + +	ptr = __va(paddr); +	__per_cpu_base = ptr - __per_cpu_start; + +	for (i = 0; i < NR_CPUS; i++, ptr += size) +		memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start); + +	/* Setup %g5 for the boot cpu.  */ +	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id()); +}  |