diff options
Diffstat (limited to 'arch/arm/mach-omap/time.c')
| -rw-r--r-- | arch/arm/mach-omap/time.c | 384 | 
1 files changed, 384 insertions, 0 deletions
diff --git a/arch/arm/mach-omap/time.c b/arch/arm/mach-omap/time.c new file mode 100644 index 00000000000..4205fdcb632 --- /dev/null +++ b/arch/arm/mach-omap/time.c @@ -0,0 +1,384 @@ +/* + * linux/arch/arm/mach-omap/time.c + * + * OMAP Timers + * + * Copyright (C) 2004 Nokia Corporation + * Partial timer rewrite and additional VST timer support by + * Tony Lindgen <tony@atomide.com> and + * Tuukka Tikkanen <tuukka.tikkanen@elektrobit.com> + * + * MPU timer code based on the older MPU timer code for OMAP + * Copyright (C) 2000 RidgeRun, Inc. + * Author: Greg Lonnon <glonnon@ridgerun.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED + * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF + * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN + * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF + * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON + * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + * You should have received a copy of the  GNU General Public License along + * with this program; if not, write  to the Free Software Foundation, Inc., + * 675 Mass Ave, Cambridge, MA 02139, USA. + */ + +#include <linux/config.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/delay.h> +#include <linux/interrupt.h> +#include <linux/sched.h> +#include <linux/spinlock.h> + +#include <asm/system.h> +#include <asm/hardware.h> +#include <asm/io.h> +#include <asm/leds.h> +#include <asm/irq.h> +#include <asm/mach/irq.h> +#include <asm/mach/time.h> + +struct sys_timer omap_timer; + +#ifdef CONFIG_OMAP_MPU_TIMER + +/* + * --------------------------------------------------------------------------- + * MPU timer + * --------------------------------------------------------------------------- + */ +#define OMAP_MPU_TIMER1_BASE		(0xfffec500) +#define OMAP_MPU_TIMER2_BASE		(0xfffec600) +#define OMAP_MPU_TIMER3_BASE		(0xfffec700) +#define OMAP_MPU_TIMER_BASE		OMAP_MPU_TIMER1_BASE +#define OMAP_MPU_TIMER_OFFSET		0x100 + +#define MPU_TIMER_FREE			(1 << 6) +#define MPU_TIMER_CLOCK_ENABLE		(1 << 5) +#define MPU_TIMER_AR			(1 << 1) +#define MPU_TIMER_ST			(1 << 0) + +/* cycles to nsec conversions taken from arch/i386/kernel/timers/timer_tsc.c, + * converted to use kHz by Kevin Hilman */ +/* convert from cycles(64bits) => nanoseconds (64bits) + *  basic equation: + *		ns = cycles / (freq / ns_per_sec) + *		ns = cycles * (ns_per_sec / freq) + *		ns = cycles * (10^9 / (cpu_khz * 10^3)) + *		ns = cycles * (10^6 / cpu_khz) + * + *	Then we use scaling math (suggested by george at mvista.com) to get: + *		ns = cycles * (10^6 * SC / cpu_khz / SC + *		ns = cycles * cyc2ns_scale / SC + * + *	And since SC is a constant power of two, we can convert the div + *  into a shift. + *			-johnstul at us.ibm.com "math is hard, lets go shopping!" + */ +static unsigned long cyc2ns_scale; +#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */ + +static inline void set_cyc2ns_scale(unsigned long cpu_khz) +{ +	cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz; +} + +static inline unsigned long long cycles_2_ns(unsigned long long cyc) +{ +	return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR; +} + +/* + * MPU_TICKS_PER_SEC must be an even number, otherwise machinecycles_to_usecs + * will break. On P2, the timer count rate is 6.5 MHz after programming PTV + * with 0. This divides the 13MHz input by 2, and is undocumented. + */ +#ifdef CONFIG_MACH_OMAP_PERSEUS2 +/* REVISIT: This ifdef construct should be replaced by a query to clock + * framework to see if timer base frequency is 12.0, 13.0 or 19.2 MHz. + */ +#define MPU_TICKS_PER_SEC		(13000000 / 2) +#else +#define MPU_TICKS_PER_SEC		(12000000 / 2) +#endif + +#define MPU_TIMER_TICK_PERIOD		((MPU_TICKS_PER_SEC / HZ) - 1) + +typedef struct { +	u32 cntl;			/* CNTL_TIMER, R/W */ +	u32 load_tim;			/* LOAD_TIM,   W */ +	u32 read_tim;			/* READ_TIM,   R */ +} omap_mpu_timer_regs_t; + +#define omap_mpu_timer_base(n)						\ +((volatile omap_mpu_timer_regs_t*)IO_ADDRESS(OMAP_MPU_TIMER_BASE +	\ +				 (n)*OMAP_MPU_TIMER_OFFSET)) + +static inline unsigned long omap_mpu_timer_read(int nr) +{ +	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); +	return timer->read_tim; +} + +static inline void omap_mpu_timer_start(int nr, unsigned long load_val) +{ +	volatile omap_mpu_timer_regs_t* timer = omap_mpu_timer_base(nr); + +	timer->cntl = MPU_TIMER_CLOCK_ENABLE; +	udelay(1); +	timer->load_tim = load_val; +        udelay(1); +	timer->cntl = (MPU_TIMER_CLOCK_ENABLE | MPU_TIMER_AR | MPU_TIMER_ST); +} + +unsigned long omap_mpu_timer_ticks_to_usecs(unsigned long nr_ticks) +{ +	unsigned long long nsec; + +	nsec = cycles_2_ns((unsigned long long)nr_ticks); +	return (unsigned long)nsec / 1000; +} + +/* + * Last processed system timer interrupt + */ +static unsigned long omap_mpu_timer_last = 0; + +/* + * Returns elapsed usecs since last system timer interrupt + */ +static unsigned long omap_mpu_timer_gettimeoffset(void) +{ +	unsigned long now = 0 - omap_mpu_timer_read(0); +	unsigned long elapsed = now - omap_mpu_timer_last; + +	return omap_mpu_timer_ticks_to_usecs(elapsed); +} + +/* + * Elapsed time between interrupts is calculated using timer0. + * Latency during the interrupt is calculated using timer1. + * Both timer0 and timer1 are counting at 6MHz (P2 6.5MHz). + */ +static irqreturn_t omap_mpu_timer_interrupt(int irq, void *dev_id, +					struct pt_regs *regs) +{ +	unsigned long now, latency; + +	write_seqlock(&xtime_lock); +	now = 0 - omap_mpu_timer_read(0); +	latency = MPU_TICKS_PER_SEC / HZ - omap_mpu_timer_read(1); +	omap_mpu_timer_last = now - latency; +	timer_tick(regs); +	write_sequnlock(&xtime_lock); + +	return IRQ_HANDLED; +} + +static struct irqaction omap_mpu_timer_irq = { +	.name		= "mpu timer", +	.flags		= SA_INTERRUPT, +	.handler	= omap_mpu_timer_interrupt +}; + +static unsigned long omap_mpu_timer1_overflows; +static irqreturn_t omap_mpu_timer1_interrupt(int irq, void *dev_id, +					     struct pt_regs *regs) +{ +	omap_mpu_timer1_overflows++; +	return IRQ_HANDLED; +} + +static struct irqaction omap_mpu_timer1_irq = { +	.name		= "mpu timer1 overflow", +	.flags		= SA_INTERRUPT, +	.handler	= omap_mpu_timer1_interrupt +}; + +static __init void omap_init_mpu_timer(void) +{ +	set_cyc2ns_scale(MPU_TICKS_PER_SEC / 1000); +	omap_timer.offset = omap_mpu_timer_gettimeoffset; +	setup_irq(INT_TIMER1, &omap_mpu_timer1_irq); +	setup_irq(INT_TIMER2, &omap_mpu_timer_irq); +	omap_mpu_timer_start(0, 0xffffffff); +	omap_mpu_timer_start(1, MPU_TIMER_TICK_PERIOD); +} + +/* + * Scheduler clock - returns current time in nanosec units. + */ +unsigned long long sched_clock(void) +{ +	unsigned long ticks = 0 - omap_mpu_timer_read(0); +	unsigned long long ticks64; + +	ticks64 = omap_mpu_timer1_overflows; +	ticks64 <<= 32; +	ticks64 |= ticks; + +	return cycles_2_ns(ticks64); +} +#endif	/* CONFIG_OMAP_MPU_TIMER */ + +#ifdef CONFIG_OMAP_32K_TIMER + +#ifdef CONFIG_ARCH_OMAP1510 +#error OMAP 32KHz timer does not currently work on 1510! +#endif + +/* + * --------------------------------------------------------------------------- + * 32KHz OS timer + * + * This currently works only on 16xx, as 1510 does not have the continuous + * 32KHz synchronous timer. The 32KHz synchronous timer is used to keep track + * of time in addition to the 32KHz OS timer. Using only the 32KHz OS timer + * on 1510 would be possible, but the timer would not be as accurate as + * with the 32KHz synchronized timer. + * --------------------------------------------------------------------------- + */ +#define OMAP_32K_TIMER_BASE		0xfffb9000 +#define OMAP_32K_TIMER_CR		0x08 +#define OMAP_32K_TIMER_TVR		0x00 +#define OMAP_32K_TIMER_TCR		0x04 + +#define OMAP_32K_TICKS_PER_HZ		(32768 / HZ) + +/* + * TRM says 1 / HZ = ( TVR + 1) / 32768, so TRV = (32768 / HZ) - 1 + * so with HZ = 100, TVR = 327.68. + */ +#define OMAP_32K_TIMER_TICK_PERIOD	((32768 / HZ) - 1) +#define MAX_SKIP_JIFFIES		25 +#define TIMER_32K_SYNCHRONIZED		0xfffbc410 + +#define JIFFIES_TO_HW_TICKS(nr_jiffies, clock_rate)			\ +				(((nr_jiffies) * (clock_rate)) / HZ) + +static inline void omap_32k_timer_write(int val, int reg) +{ +	omap_writew(val, reg + OMAP_32K_TIMER_BASE); +} + +static inline unsigned long omap_32k_timer_read(int reg) +{ +	return omap_readl(reg + OMAP_32K_TIMER_BASE) & 0xffffff; +} + +/* + * The 32KHz synchronized timer is an additional timer on 16xx. + * It is always running. + */ +static inline unsigned long omap_32k_sync_timer_read(void) +{ +	return omap_readl(TIMER_32K_SYNCHRONIZED); +} + +static inline void omap_32k_timer_start(unsigned long load_val) +{ +	omap_32k_timer_write(load_val, OMAP_32K_TIMER_TVR); +	omap_32k_timer_write(0x0f, OMAP_32K_TIMER_CR); +} + +static inline void omap_32k_timer_stop(void) +{ +	omap_32k_timer_write(0x0, OMAP_32K_TIMER_CR); +} + +/* + * Rounds down to nearest usec + */ +static inline unsigned long omap_32k_ticks_to_usecs(unsigned long ticks_32k) +{ +	return (ticks_32k * 5*5*5*5*5*5) >> 9; +} + +static unsigned long omap_32k_last_tick = 0; + +/* + * Returns elapsed usecs since last 32k timer interrupt + */ +static unsigned long omap_32k_timer_gettimeoffset(void) +{ +	unsigned long now = omap_32k_sync_timer_read(); +	return omap_32k_ticks_to_usecs(now - omap_32k_last_tick); +} + +/* + * Timer interrupt for 32KHz timer. When dynamic tick is enabled, this + * function is also called from other interrupts to remove latency + * issues with dynamic tick. In the dynamic tick case, we need to lock + * with irqsave. + */ +static irqreturn_t omap_32k_timer_interrupt(int irq, void *dev_id, +					    struct pt_regs *regs) +{ +	unsigned long flags; +	unsigned long now; + +	write_seqlock_irqsave(&xtime_lock, flags); +	now = omap_32k_sync_timer_read(); + +	while (now - omap_32k_last_tick >= OMAP_32K_TICKS_PER_HZ) { +		omap_32k_last_tick += OMAP_32K_TICKS_PER_HZ; +		timer_tick(regs); +	} + +	/* Restart timer so we don't drift off due to modulo or dynamic tick. +	 * By default we program the next timer to be continuous to avoid +	 * latencies during high system load. During dynamic tick operation the +	 * continuous timer can be overridden from pm_idle to be longer. +	 */ +	omap_32k_timer_start(omap_32k_last_tick + OMAP_32K_TICKS_PER_HZ - now); +	write_sequnlock_irqrestore(&xtime_lock, flags); + +	return IRQ_HANDLED; +} + +static struct irqaction omap_32k_timer_irq = { +	.name		= "32KHz timer", +	.flags		= SA_INTERRUPT, +	.handler	= omap_32k_timer_interrupt +}; + +static __init void omap_init_32k_timer(void) +{ +	setup_irq(INT_OS_TIMER, &omap_32k_timer_irq); +	omap_timer.offset  = omap_32k_timer_gettimeoffset; +	omap_32k_last_tick = omap_32k_sync_timer_read(); +	omap_32k_timer_start(OMAP_32K_TIMER_TICK_PERIOD); +} +#endif	/* CONFIG_OMAP_32K_TIMER */ + +/* + * --------------------------------------------------------------------------- + * Timer initialization + * --------------------------------------------------------------------------- + */ +void __init omap_timer_init(void) +{ +#if defined(CONFIG_OMAP_MPU_TIMER) +	omap_init_mpu_timer(); +#elif defined(CONFIG_OMAP_32K_TIMER) +	omap_init_32k_timer(); +#else +#error No system timer selected in Kconfig! +#endif +} + +struct sys_timer omap_timer = { +	.init		= omap_timer_init, +	.offset		= NULL,		/* Initialized later */ +};  |