diff options
| author | Jiri Kosina <jkosina@suse.cz> | 2011-04-26 10:22:15 +0200 | 
|---|---|---|
| committer | Jiri Kosina <jkosina@suse.cz> | 2011-04-26 10:22:59 +0200 | 
| commit | 07f9479a40cc778bc1462ada11f95b01360ae4ff (patch) | |
| tree | 0676cf38df3844004bb3ebfd99dfa67a4a8998f5 /lib | |
| parent | 9d5e6bdb3013acfb311ab407eeca0b6a6a3dedbf (diff) | |
| parent | cd2e49e90f1cae7726c9a2c54488d881d7f1cd1c (diff) | |
| download | olio-linux-3.10-07f9479a40cc778bc1462ada11f95b01360ae4ff.tar.xz olio-linux-3.10-07f9479a40cc778bc1462ada11f95b01360ae4ff.zip  | |
Merge branch 'master' into for-next
Fast-forwarded to current state of Linus' tree as there are patches to be
applied for files that didn't exist on the old branch.
Diffstat (limited to 'lib')
| -rw-r--r-- | lib/Kconfig | 42 | ||||
| -rw-r--r-- | lib/Kconfig.debug | 42 | ||||
| -rw-r--r-- | lib/Makefile | 4 | ||||
| -rw-r--r-- | lib/bch.c | 1368 | ||||
| -rw-r--r-- | lib/bitmap.c | 2 | ||||
| -rw-r--r-- | lib/btree.c | 4 | ||||
| -rw-r--r-- | lib/decompress_unxz.c | 2 | ||||
| -rw-r--r-- | lib/find_next_bit.c | 18 | ||||
| -rw-r--r-- | lib/kstrtox.c | 224 | ||||
| -rw-r--r-- | lib/parser.c | 2 | ||||
| -rw-r--r-- | lib/show_mem.c | 4 | ||||
| -rw-r--r-- | lib/test-kstrtox.c | 739 | ||||
| -rw-r--r-- | lib/timerqueue.c | 2 | ||||
| -rw-r--r-- | lib/vsprintf.c | 164 | ||||
| -rw-r--r-- | lib/zlib_deflate/deflate.c | 31 | ||||
| -rw-r--r-- | lib/zlib_deflate/defutil.h | 17 | 
16 files changed, 2483 insertions, 182 deletions
diff --git a/lib/Kconfig b/lib/Kconfig index 3a55a43c43e..9c10e38fc60 100644 --- a/lib/Kconfig +++ b/lib/Kconfig @@ -22,6 +22,9 @@ config GENERIC_FIND_FIRST_BIT  config GENERIC_FIND_NEXT_BIT  	bool +config GENERIC_FIND_BIT_LE +	bool +  config GENERIC_FIND_LAST_BIT  	bool  	default y @@ -155,6 +158,45 @@ config REED_SOLOMON_DEC16  	boolean  # +# BCH support is selected if needed +# +config BCH +	tristate + +config BCH_CONST_PARAMS +	boolean +	help +	  Drivers may select this option to force specific constant +	  values for parameters 'm' (Galois field order) and 't' +	  (error correction capability). Those specific values must +	  be set by declaring default values for symbols BCH_CONST_M +	  and BCH_CONST_T. +	  Doing so will enable extra compiler optimizations, +	  improving encoding and decoding performance up to 2x for +	  usual (m,t) values (typically such that m*t < 200). +	  When this option is selected, the BCH library supports +	  only a single (m,t) configuration. This is mainly useful +	  for NAND flash board drivers requiring known, fixed BCH +	  parameters. + +config BCH_CONST_M +	int +	range 5 15 +	help +	  Constant value for Galois field order 'm'. If 'k' is the +	  number of data bits to protect, 'm' should be chosen such +	  that (k + m*t) <= 2**m - 1. +	  Drivers should declare a default value for this symbol if +	  they select option BCH_CONST_PARAMS. + +config BCH_CONST_T +	int +	help +	  Constant value for error correction capability in bits 't'. +	  Drivers should declare a default value for this symbol if +	  they select option BCH_CONST_PARAMS. + +#  # Textsearch support is select'ed if needed  #  config TEXTSEARCH diff --git a/lib/Kconfig.debug b/lib/Kconfig.debug index b38cc34281b..a86bec1ffee 100644 --- a/lib/Kconfig.debug +++ b/lib/Kconfig.debug @@ -10,6 +10,17 @@ config PRINTK_TIME  	  in kernel startup.  Or add printk.time=1 at boot-time.  	  See Documentation/kernel-parameters.txt +config DEFAULT_MESSAGE_LOGLEVEL +	int "Default message log level (1-7)" +	range 1 7 +	default "4" +	help +	  Default log level for printk statements with no specified priority. + +	  This was hard-coded to KERN_WARNING since at least 2.6.10 but folks +	  that are auditing their logs closely may want to set it to a lower +	  priority. +  config ENABLE_WARN_DEPRECATED  	bool "Enable __deprecated logic"  	default y @@ -103,11 +114,6 @@ config HEADERS_CHECK  config DEBUG_SECTION_MISMATCH  	bool "Enable full Section mismatch analysis" -	depends on UNDEFINED || (BLACKFIN) -	default y -	# This option is on purpose disabled for now. -	# It will be enabled when we are down to a reasonable number -	# of section mismatch warnings (< 10 for an allyesconfig build)  	help  	  The section mismatch analysis checks if there are illegal  	  references from one section to another section. @@ -177,6 +183,23 @@ config HARDLOCKUP_DETECTOR  	def_bool LOCKUP_DETECTOR && PERF_EVENTS && HAVE_PERF_EVENTS_NMI && \  		 !ARCH_HAS_NMI_WATCHDOG +config BOOTPARAM_HARDLOCKUP_PANIC +	bool "Panic (Reboot) On Hard Lockups" +	depends on LOCKUP_DETECTOR +	help +	  Say Y here to enable the kernel to panic on "hard lockups", +	  which are bugs that cause the kernel to loop in kernel +	  mode with interrupts disabled for more than 60 seconds. + +	  Say N if unsure. + +config BOOTPARAM_HARDLOCKUP_PANIC_VALUE +	int +	depends on LOCKUP_DETECTOR +	range 0 1 +	default 0 if !BOOTPARAM_HARDLOCKUP_PANIC +	default 1 if BOOTPARAM_HARDLOCKUP_PANIC +  config BOOTPARAM_SOFTLOCKUP_PANIC  	bool "Panic (Reboot) On Soft Lockups"  	depends on LOCKUP_DETECTOR @@ -412,11 +435,9 @@ config DEBUG_KMEMLEAK_EARLY_LOG_SIZE  config DEBUG_KMEMLEAK_TEST  	tristate "Simple test for the kernel memory leak detector" -	depends on DEBUG_KMEMLEAK +	depends on DEBUG_KMEMLEAK && m  	help -	  Say Y or M here to build a test for the kernel memory leak -	  detector. This option enables a module that explicitly leaks -	  memory. +	  This option enables a module that explicitly leaks memory.  	  If unsure, say N. @@ -1228,3 +1249,6 @@ source "samples/Kconfig"  source "lib/Kconfig.kgdb"  source "lib/Kconfig.kmemcheck" + +config TEST_KSTRTOX +	tristate "Test kstrto*() family of functions at runtime" diff --git a/lib/Makefile b/lib/Makefile index ef7ed71a6ff..ef0f2857115 100644 --- a/lib/Makefile +++ b/lib/Makefile @@ -22,6 +22,8 @@ lib-y	+= kobject.o kref.o klist.o  obj-y += bcd.o div64.o sort.o parser.o halfmd4.o debug_locks.o random32.o \  	 bust_spinlocks.o hexdump.o kasprintf.o bitmap.o scatterlist.o \  	 string_helpers.o gcd.o lcm.o list_sort.o uuid.o flex_array.o +obj-y += kstrtox.o +obj-$(CONFIG_TEST_KSTRTOX) += test-kstrtox.o  ifeq ($(CONFIG_DEBUG_KOBJECT),y)  CFLAGS_kobject.o += -DDEBUG @@ -38,6 +40,7 @@ lib-$(CONFIG_RWSEM_GENERIC_SPINLOCK) += rwsem-spinlock.o  lib-$(CONFIG_RWSEM_XCHGADD_ALGORITHM) += rwsem.o  lib-$(CONFIG_GENERIC_FIND_FIRST_BIT) += find_next_bit.o  lib-$(CONFIG_GENERIC_FIND_NEXT_BIT) += find_next_bit.o +lib-$(CONFIG_GENERIC_FIND_BIT_LE) += find_next_bit.o  obj-$(CONFIG_GENERIC_FIND_LAST_BIT) += find_last_bit.o  CFLAGS_hweight.o = $(subst $(quote),,$(CONFIG_ARCH_HWEIGHT_CFLAGS)) @@ -66,6 +69,7 @@ obj-$(CONFIG_GENERIC_ALLOCATOR) += genalloc.o  obj-$(CONFIG_ZLIB_INFLATE) += zlib_inflate/  obj-$(CONFIG_ZLIB_DEFLATE) += zlib_deflate/  obj-$(CONFIG_REED_SOLOMON) += reed_solomon/ +obj-$(CONFIG_BCH) += bch.o  obj-$(CONFIG_LZO_COMPRESS) += lzo/  obj-$(CONFIG_LZO_DECOMPRESS) += lzo/  obj-$(CONFIG_XZ_DEC) += xz/ diff --git a/lib/bch.c b/lib/bch.c new file mode 100644 index 00000000000..bc89dfe4d1b --- /dev/null +++ b/lib/bch.c @@ -0,0 +1,1368 @@ +/* + * Generic binary BCH encoding/decoding library + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 51 + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Copyright © 2011 Parrot S.A. + * + * Author: Ivan Djelic <ivan.djelic@parrot.com> + * + * Description: + * + * This library provides runtime configurable encoding/decoding of binary + * Bose-Chaudhuri-Hocquenghem (BCH) codes. + * + * Call init_bch to get a pointer to a newly allocated bch_control structure for + * the given m (Galois field order), t (error correction capability) and + * (optional) primitive polynomial parameters. + * + * Call encode_bch to compute and store ecc parity bytes to a given buffer. + * Call decode_bch to detect and locate errors in received data. + * + * On systems supporting hw BCH features, intermediate results may be provided + * to decode_bch in order to skip certain steps. See decode_bch() documentation + * for details. + * + * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of + * parameters m and t; thus allowing extra compiler optimizations and providing + * better (up to 2x) encoding performance. Using this option makes sense when + * (m,t) are fixed and known in advance, e.g. when using BCH error correction + * on a particular NAND flash device. + * + * Algorithmic details: + * + * Encoding is performed by processing 32 input bits in parallel, using 4 + * remainder lookup tables. + * + * The final stage of decoding involves the following internal steps: + * a. Syndrome computation + * b. Error locator polynomial computation using Berlekamp-Massey algorithm + * c. Error locator root finding (by far the most expensive step) + * + * In this implementation, step c is not performed using the usual Chien search. + * Instead, an alternative approach described in [1] is used. It consists in + * factoring the error locator polynomial using the Berlekamp Trace algorithm + * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial + * solving techniques [2] are used. The resulting algorithm, called BTZ, yields + * much better performance than Chien search for usual (m,t) values (typically + * m >= 13, t < 32, see [1]). + * + * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields + * of characteristic 2, in: Western European Workshop on Research in Cryptology + * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. + * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over + * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. + */ + +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/slab.h> +#include <linux/bitops.h> +#include <asm/byteorder.h> +#include <linux/bch.h> + +#if defined(CONFIG_BCH_CONST_PARAMS) +#define GF_M(_p)               (CONFIG_BCH_CONST_M) +#define GF_T(_p)               (CONFIG_BCH_CONST_T) +#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1) +#else +#define GF_M(_p)               ((_p)->m) +#define GF_T(_p)               ((_p)->t) +#define GF_N(_p)               ((_p)->n) +#endif + +#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) +#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) + +#ifndef dbg +#define dbg(_fmt, args...)     do {} while (0) +#endif + +/* + * represent a polynomial over GF(2^m) + */ +struct gf_poly { +	unsigned int deg;    /* polynomial degree */ +	unsigned int c[0];   /* polynomial terms */ +}; + +/* given its degree, compute a polynomial size in bytes */ +#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) + +/* polynomial of degree 1 */ +struct gf_poly_deg1 { +	struct gf_poly poly; +	unsigned int   c[2]; +}; + +/* + * same as encode_bch(), but process input data one byte at a time + */ +static void encode_bch_unaligned(struct bch_control *bch, +				 const unsigned char *data, unsigned int len, +				 uint32_t *ecc) +{ +	int i; +	const uint32_t *p; +	const int l = BCH_ECC_WORDS(bch)-1; + +	while (len--) { +		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); + +		for (i = 0; i < l; i++) +			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); + +		ecc[l] = (ecc[l] << 8)^(*p); +	} +} + +/* + * convert ecc bytes to aligned, zero-padded 32-bit ecc words + */ +static void load_ecc8(struct bch_control *bch, uint32_t *dst, +		      const uint8_t *src) +{ +	uint8_t pad[4] = {0, 0, 0, 0}; +	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; + +	for (i = 0; i < nwords; i++, src += 4) +		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; + +	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); +	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; +} + +/* + * convert 32-bit ecc words to ecc bytes + */ +static void store_ecc8(struct bch_control *bch, uint8_t *dst, +		       const uint32_t *src) +{ +	uint8_t pad[4]; +	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; + +	for (i = 0; i < nwords; i++) { +		*dst++ = (src[i] >> 24); +		*dst++ = (src[i] >> 16) & 0xff; +		*dst++ = (src[i] >>  8) & 0xff; +		*dst++ = (src[i] >>  0) & 0xff; +	} +	pad[0] = (src[nwords] >> 24); +	pad[1] = (src[nwords] >> 16) & 0xff; +	pad[2] = (src[nwords] >>  8) & 0xff; +	pad[3] = (src[nwords] >>  0) & 0xff; +	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); +} + +/** + * encode_bch - calculate BCH ecc parity of data + * @bch:   BCH control structure + * @data:  data to encode + * @len:   data length in bytes + * @ecc:   ecc parity data, must be initialized by caller + * + * The @ecc parity array is used both as input and output parameter, in order to + * allow incremental computations. It should be of the size indicated by member + * @ecc_bytes of @bch, and should be initialized to 0 before the first call. + * + * The exact number of computed ecc parity bits is given by member @ecc_bits of + * @bch; it may be less than m*t for large values of t. + */ +void encode_bch(struct bch_control *bch, const uint8_t *data, +		unsigned int len, uint8_t *ecc) +{ +	const unsigned int l = BCH_ECC_WORDS(bch)-1; +	unsigned int i, mlen; +	unsigned long m; +	uint32_t w, r[l+1]; +	const uint32_t * const tab0 = bch->mod8_tab; +	const uint32_t * const tab1 = tab0 + 256*(l+1); +	const uint32_t * const tab2 = tab1 + 256*(l+1); +	const uint32_t * const tab3 = tab2 + 256*(l+1); +	const uint32_t *pdata, *p0, *p1, *p2, *p3; + +	if (ecc) { +		/* load ecc parity bytes into internal 32-bit buffer */ +		load_ecc8(bch, bch->ecc_buf, ecc); +	} else { +		memset(bch->ecc_buf, 0, sizeof(r)); +	} + +	/* process first unaligned data bytes */ +	m = ((unsigned long)data) & 3; +	if (m) { +		mlen = (len < (4-m)) ? len : 4-m; +		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); +		data += mlen; +		len  -= mlen; +	} + +	/* process 32-bit aligned data words */ +	pdata = (uint32_t *)data; +	mlen  = len/4; +	data += 4*mlen; +	len  -= 4*mlen; +	memcpy(r, bch->ecc_buf, sizeof(r)); + +	/* +	 * split each 32-bit word into 4 polynomials of weight 8 as follows: +	 * +	 * 31 ...24  23 ...16  15 ... 8  7 ... 0 +	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt +	 *                               tttttttt  mod g = r0 (precomputed) +	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed) +	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed) +	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed) +	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3 +	 */ +	while (mlen--) { +		/* input data is read in big-endian format */ +		w = r[0]^cpu_to_be32(*pdata++); +		p0 = tab0 + (l+1)*((w >>  0) & 0xff); +		p1 = tab1 + (l+1)*((w >>  8) & 0xff); +		p2 = tab2 + (l+1)*((w >> 16) & 0xff); +		p3 = tab3 + (l+1)*((w >> 24) & 0xff); + +		for (i = 0; i < l; i++) +			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; + +		r[l] = p0[l]^p1[l]^p2[l]^p3[l]; +	} +	memcpy(bch->ecc_buf, r, sizeof(r)); + +	/* process last unaligned bytes */ +	if (len) +		encode_bch_unaligned(bch, data, len, bch->ecc_buf); + +	/* store ecc parity bytes into original parity buffer */ +	if (ecc) +		store_ecc8(bch, ecc, bch->ecc_buf); +} +EXPORT_SYMBOL_GPL(encode_bch); + +static inline int modulo(struct bch_control *bch, unsigned int v) +{ +	const unsigned int n = GF_N(bch); +	while (v >= n) { +		v -= n; +		v = (v & n) + (v >> GF_M(bch)); +	} +	return v; +} + +/* + * shorter and faster modulo function, only works when v < 2N. + */ +static inline int mod_s(struct bch_control *bch, unsigned int v) +{ +	const unsigned int n = GF_N(bch); +	return (v < n) ? v : v-n; +} + +static inline int deg(unsigned int poly) +{ +	/* polynomial degree is the most-significant bit index */ +	return fls(poly)-1; +} + +static inline int parity(unsigned int x) +{ +	/* +	 * public domain code snippet, lifted from +	 * http://www-graphics.stanford.edu/~seander/bithacks.html +	 */ +	x ^= x >> 1; +	x ^= x >> 2; +	x = (x & 0x11111111U) * 0x11111111U; +	return (x >> 28) & 1; +} + +/* Galois field basic operations: multiply, divide, inverse, etc. */ + +static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, +				  unsigned int b) +{ +	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ +					       bch->a_log_tab[b])] : 0; +} + +static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) +{ +	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; +} + +static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, +				  unsigned int b) +{ +	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ +					GF_N(bch)-bch->a_log_tab[b])] : 0; +} + +static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) +{ +	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; +} + +static inline unsigned int a_pow(struct bch_control *bch, int i) +{ +	return bch->a_pow_tab[modulo(bch, i)]; +} + +static inline int a_log(struct bch_control *bch, unsigned int x) +{ +	return bch->a_log_tab[x]; +} + +static inline int a_ilog(struct bch_control *bch, unsigned int x) +{ +	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); +} + +/* + * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t + */ +static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, +			      unsigned int *syn) +{ +	int i, j, s; +	unsigned int m; +	uint32_t poly; +	const int t = GF_T(bch); + +	s = bch->ecc_bits; + +	/* make sure extra bits in last ecc word are cleared */ +	m = ((unsigned int)s) & 31; +	if (m) +		ecc[s/32] &= ~((1u << (32-m))-1); +	memset(syn, 0, 2*t*sizeof(*syn)); + +	/* compute v(a^j) for j=1 .. 2t-1 */ +	do { +		poly = *ecc++; +		s -= 32; +		while (poly) { +			i = deg(poly); +			for (j = 0; j < 2*t; j += 2) +				syn[j] ^= a_pow(bch, (j+1)*(i+s)); + +			poly ^= (1 << i); +		} +	} while (s > 0); + +	/* v(a^(2j)) = v(a^j)^2 */ +	for (j = 0; j < t; j++) +		syn[2*j+1] = gf_sqr(bch, syn[j]); +} + +static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) +{ +	memcpy(dst, src, GF_POLY_SZ(src->deg)); +} + +static int compute_error_locator_polynomial(struct bch_control *bch, +					    const unsigned int *syn) +{ +	const unsigned int t = GF_T(bch); +	const unsigned int n = GF_N(bch); +	unsigned int i, j, tmp, l, pd = 1, d = syn[0]; +	struct gf_poly *elp = bch->elp; +	struct gf_poly *pelp = bch->poly_2t[0]; +	struct gf_poly *elp_copy = bch->poly_2t[1]; +	int k, pp = -1; + +	memset(pelp, 0, GF_POLY_SZ(2*t)); +	memset(elp, 0, GF_POLY_SZ(2*t)); + +	pelp->deg = 0; +	pelp->c[0] = 1; +	elp->deg = 0; +	elp->c[0] = 1; + +	/* use simplified binary Berlekamp-Massey algorithm */ +	for (i = 0; (i < t) && (elp->deg <= t); i++) { +		if (d) { +			k = 2*i-pp; +			gf_poly_copy(elp_copy, elp); +			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ +			tmp = a_log(bch, d)+n-a_log(bch, pd); +			for (j = 0; j <= pelp->deg; j++) { +				if (pelp->c[j]) { +					l = a_log(bch, pelp->c[j]); +					elp->c[j+k] ^= a_pow(bch, tmp+l); +				} +			} +			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ +			tmp = pelp->deg+k; +			if (tmp > elp->deg) { +				elp->deg = tmp; +				gf_poly_copy(pelp, elp_copy); +				pd = d; +				pp = 2*i; +			} +		} +		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ +		if (i < t-1) { +			d = syn[2*i+2]; +			for (j = 1; j <= elp->deg; j++) +				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); +		} +	} +	dbg("elp=%s\n", gf_poly_str(elp)); +	return (elp->deg > t) ? -1 : (int)elp->deg; +} + +/* + * solve a m x m linear system in GF(2) with an expected number of solutions, + * and return the number of found solutions + */ +static int solve_linear_system(struct bch_control *bch, unsigned int *rows, +			       unsigned int *sol, int nsol) +{ +	const int m = GF_M(bch); +	unsigned int tmp, mask; +	int rem, c, r, p, k, param[m]; + +	k = 0; +	mask = 1 << m; + +	/* Gaussian elimination */ +	for (c = 0; c < m; c++) { +		rem = 0; +		p = c-k; +		/* find suitable row for elimination */ +		for (r = p; r < m; r++) { +			if (rows[r] & mask) { +				if (r != p) { +					tmp = rows[r]; +					rows[r] = rows[p]; +					rows[p] = tmp; +				} +				rem = r+1; +				break; +			} +		} +		if (rem) { +			/* perform elimination on remaining rows */ +			tmp = rows[p]; +			for (r = rem; r < m; r++) { +				if (rows[r] & mask) +					rows[r] ^= tmp; +			} +		} else { +			/* elimination not needed, store defective row index */ +			param[k++] = c; +		} +		mask >>= 1; +	} +	/* rewrite system, inserting fake parameter rows */ +	if (k > 0) { +		p = k; +		for (r = m-1; r >= 0; r--) { +			if ((r > m-1-k) && rows[r]) +				/* system has no solution */ +				return 0; + +			rows[r] = (p && (r == param[p-1])) ? +				p--, 1u << (m-r) : rows[r-p]; +		} +	} + +	if (nsol != (1 << k)) +		/* unexpected number of solutions */ +		return 0; + +	for (p = 0; p < nsol; p++) { +		/* set parameters for p-th solution */ +		for (c = 0; c < k; c++) +			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); + +		/* compute unique solution */ +		tmp = 0; +		for (r = m-1; r >= 0; r--) { +			mask = rows[r] & (tmp|1); +			tmp |= parity(mask) << (m-r); +		} +		sol[p] = tmp >> 1; +	} +	return nsol; +} + +/* + * this function builds and solves a linear system for finding roots of a degree + * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). + */ +static int find_affine4_roots(struct bch_control *bch, unsigned int a, +			      unsigned int b, unsigned int c, +			      unsigned int *roots) +{ +	int i, j, k; +	const int m = GF_M(bch); +	unsigned int mask = 0xff, t, rows[16] = {0,}; + +	j = a_log(bch, b); +	k = a_log(bch, a); +	rows[0] = c; + +	/* buid linear system to solve X^4+aX^2+bX+c = 0 */ +	for (i = 0; i < m; i++) { +		rows[i+1] = bch->a_pow_tab[4*i]^ +			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ +			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0); +		j++; +		k += 2; +	} +	/* +	 * transpose 16x16 matrix before passing it to linear solver +	 * warning: this code assumes m < 16 +	 */ +	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { +		for (k = 0; k < 16; k = (k+j+1) & ~j) { +			t = ((rows[k] >> j)^rows[k+j]) & mask; +			rows[k] ^= (t << j); +			rows[k+j] ^= t; +		} +	} +	return solve_linear_system(bch, rows, roots, 4); +} + +/* + * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) + */ +static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, +				unsigned int *roots) +{ +	int n = 0; + +	if (poly->c[0]) +		/* poly[X] = bX+c with c!=0, root=c/b */ +		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ +				   bch->a_log_tab[poly->c[1]]); +	return n; +} + +/* + * compute roots of a degree 2 polynomial over GF(2^m) + */ +static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, +				unsigned int *roots) +{ +	int n = 0, i, l0, l1, l2; +	unsigned int u, v, r; + +	if (poly->c[0] && poly->c[1]) { + +		l0 = bch->a_log_tab[poly->c[0]]; +		l1 = bch->a_log_tab[poly->c[1]]; +		l2 = bch->a_log_tab[poly->c[2]]; + +		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ +		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); +		/* +		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): +		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = +		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) +		 * i.e. r and r+1 are roots iff Tr(u)=0 +		 */ +		r = 0; +		v = u; +		while (v) { +			i = deg(v); +			r ^= bch->xi_tab[i]; +			v ^= (1 << i); +		} +		/* verify root */ +		if ((gf_sqr(bch, r)^r) == u) { +			/* reverse z=a/bX transformation and compute log(1/r) */ +			roots[n++] = modulo(bch, 2*GF_N(bch)-l1- +					    bch->a_log_tab[r]+l2); +			roots[n++] = modulo(bch, 2*GF_N(bch)-l1- +					    bch->a_log_tab[r^1]+l2); +		} +	} +	return n; +} + +/* + * compute roots of a degree 3 polynomial over GF(2^m) + */ +static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, +				unsigned int *roots) +{ +	int i, n = 0; +	unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; + +	if (poly->c[0]) { +		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ +		e3 = poly->c[3]; +		c2 = gf_div(bch, poly->c[0], e3); +		b2 = gf_div(bch, poly->c[1], e3); +		a2 = gf_div(bch, poly->c[2], e3); + +		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ +		c = gf_mul(bch, a2, c2);           /* c = a2c2      */ +		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */ +		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */ + +		/* find the 4 roots of this affine polynomial */ +		if (find_affine4_roots(bch, a, b, c, tmp) == 4) { +			/* remove a2 from final list of roots */ +			for (i = 0; i < 4; i++) { +				if (tmp[i] != a2) +					roots[n++] = a_ilog(bch, tmp[i]); +			} +		} +	} +	return n; +} + +/* + * compute roots of a degree 4 polynomial over GF(2^m) + */ +static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, +				unsigned int *roots) +{ +	int i, l, n = 0; +	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; + +	if (poly->c[0] == 0) +		return 0; + +	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ +	e4 = poly->c[4]; +	d = gf_div(bch, poly->c[0], e4); +	c = gf_div(bch, poly->c[1], e4); +	b = gf_div(bch, poly->c[2], e4); +	a = gf_div(bch, poly->c[3], e4); + +	/* use Y=1/X transformation to get an affine polynomial */ +	if (a) { +		/* first, eliminate cX by using z=X+e with ae^2+c=0 */ +		if (c) { +			/* compute e such that e^2 = c/a */ +			f = gf_div(bch, c, a); +			l = a_log(bch, f); +			l += (l & 1) ? GF_N(bch) : 0; +			e = a_pow(bch, l/2); +			/* +			 * use transformation z=X+e: +			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d +			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d +			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d +			 * z^4 + az^3 +     b'z^2 + d' +			 */ +			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; +			b = gf_mul(bch, a, e)^b; +		} +		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ +		if (d == 0) +			/* assume all roots have multiplicity 1 */ +			return 0; + +		c2 = gf_inv(bch, d); +		b2 = gf_div(bch, a, d); +		a2 = gf_div(bch, b, d); +	} else { +		/* polynomial is already affine */ +		c2 = d; +		b2 = c; +		a2 = b; +	} +	/* find the 4 roots of this affine polynomial */ +	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { +		for (i = 0; i < 4; i++) { +			/* post-process roots (reverse transformations) */ +			f = a ? gf_inv(bch, roots[i]) : roots[i]; +			roots[i] = a_ilog(bch, f^e); +		} +		n = 4; +	} +	return n; +} + +/* + * build monic, log-based representation of a polynomial + */ +static void gf_poly_logrep(struct bch_control *bch, +			   const struct gf_poly *a, int *rep) +{ +	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); + +	/* represent 0 values with -1; warning, rep[d] is not set to 1 */ +	for (i = 0; i < d; i++) +		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; +} + +/* + * compute polynomial Euclidean division remainder in GF(2^m)[X] + */ +static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, +			const struct gf_poly *b, int *rep) +{ +	int la, p, m; +	unsigned int i, j, *c = a->c; +	const unsigned int d = b->deg; + +	if (a->deg < d) +		return; + +	/* reuse or compute log representation of denominator */ +	if (!rep) { +		rep = bch->cache; +		gf_poly_logrep(bch, b, rep); +	} + +	for (j = a->deg; j >= d; j--) { +		if (c[j]) { +			la = a_log(bch, c[j]); +			p = j-d; +			for (i = 0; i < d; i++, p++) { +				m = rep[i]; +				if (m >= 0) +					c[p] ^= bch->a_pow_tab[mod_s(bch, +								     m+la)]; +			} +		} +	} +	a->deg = d-1; +	while (!c[a->deg] && a->deg) +		a->deg--; +} + +/* + * compute polynomial Euclidean division quotient in GF(2^m)[X] + */ +static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, +			const struct gf_poly *b, struct gf_poly *q) +{ +	if (a->deg >= b->deg) { +		q->deg = a->deg-b->deg; +		/* compute a mod b (modifies a) */ +		gf_poly_mod(bch, a, b, NULL); +		/* quotient is stored in upper part of polynomial a */ +		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); +	} else { +		q->deg = 0; +		q->c[0] = 0; +	} +} + +/* + * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] + */ +static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, +				   struct gf_poly *b) +{ +	struct gf_poly *tmp; + +	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); + +	if (a->deg < b->deg) { +		tmp = b; +		b = a; +		a = tmp; +	} + +	while (b->deg > 0) { +		gf_poly_mod(bch, a, b, NULL); +		tmp = b; +		b = a; +		a = tmp; +	} + +	dbg("%s\n", gf_poly_str(a)); + +	return a; +} + +/* + * Given a polynomial f and an integer k, compute Tr(a^kX) mod f + * This is used in Berlekamp Trace algorithm for splitting polynomials + */ +static void compute_trace_bk_mod(struct bch_control *bch, int k, +				 const struct gf_poly *f, struct gf_poly *z, +				 struct gf_poly *out) +{ +	const int m = GF_M(bch); +	int i, j; + +	/* z contains z^2j mod f */ +	z->deg = 1; +	z->c[0] = 0; +	z->c[1] = bch->a_pow_tab[k]; + +	out->deg = 0; +	memset(out, 0, GF_POLY_SZ(f->deg)); + +	/* compute f log representation only once */ +	gf_poly_logrep(bch, f, bch->cache); + +	for (i = 0; i < m; i++) { +		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ +		for (j = z->deg; j >= 0; j--) { +			out->c[j] ^= z->c[j]; +			z->c[2*j] = gf_sqr(bch, z->c[j]); +			z->c[2*j+1] = 0; +		} +		if (z->deg > out->deg) +			out->deg = z->deg; + +		if (i < m-1) { +			z->deg *= 2; +			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ +			gf_poly_mod(bch, z, f, bch->cache); +		} +	} +	while (!out->c[out->deg] && out->deg) +		out->deg--; + +	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); +} + +/* + * factor a polynomial using Berlekamp Trace algorithm (BTA) + */ +static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, +			      struct gf_poly **g, struct gf_poly **h) +{ +	struct gf_poly *f2 = bch->poly_2t[0]; +	struct gf_poly *q  = bch->poly_2t[1]; +	struct gf_poly *tk = bch->poly_2t[2]; +	struct gf_poly *z  = bch->poly_2t[3]; +	struct gf_poly *gcd; + +	dbg("factoring %s...\n", gf_poly_str(f)); + +	*g = f; +	*h = NULL; + +	/* tk = Tr(a^k.X) mod f */ +	compute_trace_bk_mod(bch, k, f, z, tk); + +	if (tk->deg > 0) { +		/* compute g = gcd(f, tk) (destructive operation) */ +		gf_poly_copy(f2, f); +		gcd = gf_poly_gcd(bch, f2, tk); +		if (gcd->deg < f->deg) { +			/* compute h=f/gcd(f,tk); this will modify f and q */ +			gf_poly_div(bch, f, gcd, q); +			/* store g and h in-place (clobbering f) */ +			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; +			gf_poly_copy(*g, gcd); +			gf_poly_copy(*h, q); +		} +	} +} + +/* + * find roots of a polynomial, using BTZ algorithm; see the beginning of this + * file for details + */ +static int find_poly_roots(struct bch_control *bch, unsigned int k, +			   struct gf_poly *poly, unsigned int *roots) +{ +	int cnt; +	struct gf_poly *f1, *f2; + +	switch (poly->deg) { +		/* handle low degree polynomials with ad hoc techniques */ +	case 1: +		cnt = find_poly_deg1_roots(bch, poly, roots); +		break; +	case 2: +		cnt = find_poly_deg2_roots(bch, poly, roots); +		break; +	case 3: +		cnt = find_poly_deg3_roots(bch, poly, roots); +		break; +	case 4: +		cnt = find_poly_deg4_roots(bch, poly, roots); +		break; +	default: +		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */ +		cnt = 0; +		if (poly->deg && (k <= GF_M(bch))) { +			factor_polynomial(bch, k, poly, &f1, &f2); +			if (f1) +				cnt += find_poly_roots(bch, k+1, f1, roots); +			if (f2) +				cnt += find_poly_roots(bch, k+1, f2, roots+cnt); +		} +		break; +	} +	return cnt; +} + +#if defined(USE_CHIEN_SEARCH) +/* + * exhaustive root search (Chien) implementation - not used, included only for + * reference/comparison tests + */ +static int chien_search(struct bch_control *bch, unsigned int len, +			struct gf_poly *p, unsigned int *roots) +{ +	int m; +	unsigned int i, j, syn, syn0, count = 0; +	const unsigned int k = 8*len+bch->ecc_bits; + +	/* use a log-based representation of polynomial */ +	gf_poly_logrep(bch, p, bch->cache); +	bch->cache[p->deg] = 0; +	syn0 = gf_div(bch, p->c[0], p->c[p->deg]); + +	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { +		/* compute elp(a^i) */ +		for (j = 1, syn = syn0; j <= p->deg; j++) { +			m = bch->cache[j]; +			if (m >= 0) +				syn ^= a_pow(bch, m+j*i); +		} +		if (syn == 0) { +			roots[count++] = GF_N(bch)-i; +			if (count == p->deg) +				break; +		} +	} +	return (count == p->deg) ? count : 0; +} +#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) +#endif /* USE_CHIEN_SEARCH */ + +/** + * decode_bch - decode received codeword and find bit error locations + * @bch:      BCH control structure + * @data:     received data, ignored if @calc_ecc is provided + * @len:      data length in bytes, must always be provided + * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc + * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data + * @syn:      hw computed syndrome data (if NULL, syndrome is calculated) + * @errloc:   output array of error locations + * + * Returns: + *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if + *  invalid parameters were provided + * + * Depending on the available hw BCH support and the need to compute @calc_ecc + * separately (using encode_bch()), this function should be called with one of + * the following parameter configurations - + * + * by providing @data and @recv_ecc only: + *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) + * + * by providing @recv_ecc and @calc_ecc: + *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) + * + * by providing ecc = recv_ecc XOR calc_ecc: + *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) + * + * by providing syndrome results @syn: + *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) + * + * Once decode_bch() has successfully returned with a positive value, error + * locations returned in array @errloc should be interpreted as follows - + * + * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for + * data correction) + * + * if (errloc[n] < 8*len), then n-th error is located in data and can be + * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); + * + * Note that this function does not perform any data correction by itself, it + * merely indicates error locations. + */ +int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, +	       const uint8_t *recv_ecc, const uint8_t *calc_ecc, +	       const unsigned int *syn, unsigned int *errloc) +{ +	const unsigned int ecc_words = BCH_ECC_WORDS(bch); +	unsigned int nbits; +	int i, err, nroots; +	uint32_t sum; + +	/* sanity check: make sure data length can be handled */ +	if (8*len > (bch->n-bch->ecc_bits)) +		return -EINVAL; + +	/* if caller does not provide syndromes, compute them */ +	if (!syn) { +		if (!calc_ecc) { +			/* compute received data ecc into an internal buffer */ +			if (!data || !recv_ecc) +				return -EINVAL; +			encode_bch(bch, data, len, NULL); +		} else { +			/* load provided calculated ecc */ +			load_ecc8(bch, bch->ecc_buf, calc_ecc); +		} +		/* load received ecc or assume it was XORed in calc_ecc */ +		if (recv_ecc) { +			load_ecc8(bch, bch->ecc_buf2, recv_ecc); +			/* XOR received and calculated ecc */ +			for (i = 0, sum = 0; i < (int)ecc_words; i++) { +				bch->ecc_buf[i] ^= bch->ecc_buf2[i]; +				sum |= bch->ecc_buf[i]; +			} +			if (!sum) +				/* no error found */ +				return 0; +		} +		compute_syndromes(bch, bch->ecc_buf, bch->syn); +		syn = bch->syn; +	} + +	err = compute_error_locator_polynomial(bch, syn); +	if (err > 0) { +		nroots = find_poly_roots(bch, 1, bch->elp, errloc); +		if (err != nroots) +			err = -1; +	} +	if (err > 0) { +		/* post-process raw error locations for easier correction */ +		nbits = (len*8)+bch->ecc_bits; +		for (i = 0; i < err; i++) { +			if (errloc[i] >= nbits) { +				err = -1; +				break; +			} +			errloc[i] = nbits-1-errloc[i]; +			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); +		} +	} +	return (err >= 0) ? err : -EBADMSG; +} +EXPORT_SYMBOL_GPL(decode_bch); + +/* + * generate Galois field lookup tables + */ +static int build_gf_tables(struct bch_control *bch, unsigned int poly) +{ +	unsigned int i, x = 1; +	const unsigned int k = 1 << deg(poly); + +	/* primitive polynomial must be of degree m */ +	if (k != (1u << GF_M(bch))) +		return -1; + +	for (i = 0; i < GF_N(bch); i++) { +		bch->a_pow_tab[i] = x; +		bch->a_log_tab[x] = i; +		if (i && (x == 1)) +			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ +			return -1; +		x <<= 1; +		if (x & k) +			x ^= poly; +	} +	bch->a_pow_tab[GF_N(bch)] = 1; +	bch->a_log_tab[0] = 0; + +	return 0; +} + +/* + * compute generator polynomial remainder tables for fast encoding + */ +static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) +{ +	int i, j, b, d; +	uint32_t data, hi, lo, *tab; +	const int l = BCH_ECC_WORDS(bch); +	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); +	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); + +	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); + +	for (i = 0; i < 256; i++) { +		/* p(X)=i is a small polynomial of weight <= 8 */ +		for (b = 0; b < 4; b++) { +			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ +			tab = bch->mod8_tab + (b*256+i)*l; +			data = i << (8*b); +			while (data) { +				d = deg(data); +				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ +				data ^= g[0] >> (31-d); +				for (j = 0; j < ecclen; j++) { +					hi = (d < 31) ? g[j] << (d+1) : 0; +					lo = (j+1 < plen) ? +						g[j+1] >> (31-d) : 0; +					tab[j] ^= hi|lo; +				} +			} +		} +	} +} + +/* + * build a base for factoring degree 2 polynomials + */ +static int build_deg2_base(struct bch_control *bch) +{ +	const int m = GF_M(bch); +	int i, j, r; +	unsigned int sum, x, y, remaining, ak = 0, xi[m]; + +	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ +	for (i = 0; i < m; i++) { +		for (j = 0, sum = 0; j < m; j++) +			sum ^= a_pow(bch, i*(1 << j)); + +		if (sum) { +			ak = bch->a_pow_tab[i]; +			break; +		} +	} +	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ +	remaining = m; +	memset(xi, 0, sizeof(xi)); + +	for (x = 0; (x <= GF_N(bch)) && remaining; x++) { +		y = gf_sqr(bch, x)^x; +		for (i = 0; i < 2; i++) { +			r = a_log(bch, y); +			if (y && (r < m) && !xi[r]) { +				bch->xi_tab[r] = x; +				xi[r] = 1; +				remaining--; +				dbg("x%d = %x\n", r, x); +				break; +			} +			y ^= ak; +		} +	} +	/* should not happen but check anyway */ +	return remaining ? -1 : 0; +} + +static void *bch_alloc(size_t size, int *err) +{ +	void *ptr; + +	ptr = kmalloc(size, GFP_KERNEL); +	if (ptr == NULL) +		*err = 1; +	return ptr; +} + +/* + * compute generator polynomial for given (m,t) parameters. + */ +static uint32_t *compute_generator_polynomial(struct bch_control *bch) +{ +	const unsigned int m = GF_M(bch); +	const unsigned int t = GF_T(bch); +	int n, err = 0; +	unsigned int i, j, nbits, r, word, *roots; +	struct gf_poly *g; +	uint32_t *genpoly; + +	g = bch_alloc(GF_POLY_SZ(m*t), &err); +	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); +	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); + +	if (err) { +		kfree(genpoly); +		genpoly = NULL; +		goto finish; +	} + +	/* enumerate all roots of g(X) */ +	memset(roots , 0, (bch->n+1)*sizeof(*roots)); +	for (i = 0; i < t; i++) { +		for (j = 0, r = 2*i+1; j < m; j++) { +			roots[r] = 1; +			r = mod_s(bch, 2*r); +		} +	} +	/* build generator polynomial g(X) */ +	g->deg = 0; +	g->c[0] = 1; +	for (i = 0; i < GF_N(bch); i++) { +		if (roots[i]) { +			/* multiply g(X) by (X+root) */ +			r = bch->a_pow_tab[i]; +			g->c[g->deg+1] = 1; +			for (j = g->deg; j > 0; j--) +				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; + +			g->c[0] = gf_mul(bch, g->c[0], r); +			g->deg++; +		} +	} +	/* store left-justified binary representation of g(X) */ +	n = g->deg+1; +	i = 0; + +	while (n > 0) { +		nbits = (n > 32) ? 32 : n; +		for (j = 0, word = 0; j < nbits; j++) { +			if (g->c[n-1-j]) +				word |= 1u << (31-j); +		} +		genpoly[i++] = word; +		n -= nbits; +	} +	bch->ecc_bits = g->deg; + +finish: +	kfree(g); +	kfree(roots); + +	return genpoly; +} + +/** + * init_bch - initialize a BCH encoder/decoder + * @m:          Galois field order, should be in the range 5-15 + * @t:          maximum error correction capability, in bits + * @prim_poly:  user-provided primitive polynomial (or 0 to use default) + * + * Returns: + *  a newly allocated BCH control structure if successful, NULL otherwise + * + * This initialization can take some time, as lookup tables are built for fast + * encoding/decoding; make sure not to call this function from a time critical + * path. Usually, init_bch() should be called on module/driver init and + * free_bch() should be called to release memory on exit. + * + * You may provide your own primitive polynomial of degree @m in argument + * @prim_poly, or let init_bch() use its default polynomial. + * + * Once init_bch() has successfully returned a pointer to a newly allocated + * BCH control structure, ecc length in bytes is given by member @ecc_bytes of + * the structure. + */ +struct bch_control *init_bch(int m, int t, unsigned int prim_poly) +{ +	int err = 0; +	unsigned int i, words; +	uint32_t *genpoly; +	struct bch_control *bch = NULL; + +	const int min_m = 5; +	const int max_m = 15; + +	/* default primitive polynomials */ +	static const unsigned int prim_poly_tab[] = { +		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, +		0x402b, 0x8003, +	}; + +#if defined(CONFIG_BCH_CONST_PARAMS) +	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { +		printk(KERN_ERR "bch encoder/decoder was configured to support " +		       "parameters m=%d, t=%d only!\n", +		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); +		goto fail; +	} +#endif +	if ((m < min_m) || (m > max_m)) +		/* +		 * values of m greater than 15 are not currently supported; +		 * supporting m > 15 would require changing table base type +		 * (uint16_t) and a small patch in matrix transposition +		 */ +		goto fail; + +	/* sanity checks */ +	if ((t < 1) || (m*t >= ((1 << m)-1))) +		/* invalid t value */ +		goto fail; + +	/* select a primitive polynomial for generating GF(2^m) */ +	if (prim_poly == 0) +		prim_poly = prim_poly_tab[m-min_m]; + +	bch = kzalloc(sizeof(*bch), GFP_KERNEL); +	if (bch == NULL) +		goto fail; + +	bch->m = m; +	bch->t = t; +	bch->n = (1 << m)-1; +	words  = DIV_ROUND_UP(m*t, 32); +	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); +	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); +	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); +	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); +	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err); +	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); +	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err); +	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err); +	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err); +	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); + +	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) +		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); + +	if (err) +		goto fail; + +	err = build_gf_tables(bch, prim_poly); +	if (err) +		goto fail; + +	/* use generator polynomial for computing encoding tables */ +	genpoly = compute_generator_polynomial(bch); +	if (genpoly == NULL) +		goto fail; + +	build_mod8_tables(bch, genpoly); +	kfree(genpoly); + +	err = build_deg2_base(bch); +	if (err) +		goto fail; + +	return bch; + +fail: +	free_bch(bch); +	return NULL; +} +EXPORT_SYMBOL_GPL(init_bch); + +/** + *  free_bch - free the BCH control structure + *  @bch:    BCH control structure to release + */ +void free_bch(struct bch_control *bch) +{ +	unsigned int i; + +	if (bch) { +		kfree(bch->a_pow_tab); +		kfree(bch->a_log_tab); +		kfree(bch->mod8_tab); +		kfree(bch->ecc_buf); +		kfree(bch->ecc_buf2); +		kfree(bch->xi_tab); +		kfree(bch->syn); +		kfree(bch->cache); +		kfree(bch->elp); + +		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) +			kfree(bch->poly_2t[i]); + +		kfree(bch); +	} +} +EXPORT_SYMBOL_GPL(free_bch); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); +MODULE_DESCRIPTION("Binary BCH encoder/decoder"); diff --git a/lib/bitmap.c b/lib/bitmap.c index 741fae905ae..91e0ccfdb42 100644 --- a/lib/bitmap.c +++ b/lib/bitmap.c @@ -830,7 +830,7 @@ EXPORT_SYMBOL(bitmap_bitremap);   *  @orig (i.e. bits 3, 5, 7 and 9) were also set.   *   *  When bit 11 is set in @orig, it means turn on the bit in - *  @dst corresponding to whatever is the twelth bit that is + *  @dst corresponding to whatever is the twelfth bit that is   *  turned on in @relmap.  In the above example, there were   *  only ten bits turned on in @relmap (30..39), so that bit   *  11 was set in @orig had no affect on @dst. diff --git a/lib/btree.c b/lib/btree.c index c9c6f035152..2a34392bcec 100644 --- a/lib/btree.c +++ b/lib/btree.c @@ -11,7 +11,7 @@   * see http://programming.kicks-ass.net/kernel-patches/vma_lookup/btree.patch   *   * A relatively simple B+Tree implementation.  I have written it as a learning - * excercise to understand how B+Trees work.  Turned out to be useful as well. + * exercise to understand how B+Trees work.  Turned out to be useful as well.   *   * B+Trees can be used similar to Linux radix trees (which don't have anything   * in common with textbook radix trees, beware).  Prerequisite for them working @@ -541,7 +541,7 @@ static void rebalance(struct btree_head *head, struct btree_geo *geo,  	int i, no_left, no_right;  	if (fill == 0) { -		/* Because we don't steal entries from a neigbour, this case +		/* Because we don't steal entries from a neighbour, this case  		 * can happen.  Parent node contains a single child, this  		 * node, so merging with a sibling never happens.  		 */ diff --git a/lib/decompress_unxz.c b/lib/decompress_unxz.c index cecd23df2b9..9f34eb56854 100644 --- a/lib/decompress_unxz.c +++ b/lib/decompress_unxz.c @@ -83,7 +83,7 @@   *    safety_margin = 128 + uncompressed_size * 8 / 32768 + 65536   *                  = 128 + (uncompressed_size >> 12) + 65536   * - * For comparision, according to arch/x86/boot/compressed/misc.c, the + * For comparison, according to arch/x86/boot/compressed/misc.c, the   * equivalent formula for Deflate is this:   *   *    safety_margin = 18 + (uncompressed_size >> 12) + 32768 diff --git a/lib/find_next_bit.c b/lib/find_next_bit.c index 24c59ded47a..b0a8767282b 100644 --- a/lib/find_next_bit.c +++ b/lib/find_next_bit.c @@ -160,6 +160,7 @@ EXPORT_SYMBOL(find_first_zero_bit);  #endif /* CONFIG_GENERIC_FIND_FIRST_BIT */  #ifdef __BIG_ENDIAN +#ifdef CONFIG_GENERIC_FIND_BIT_LE  /* include/linux/byteorder does not support "unsigned long" type */  static inline unsigned long ext2_swabp(const unsigned long * x) @@ -185,15 +186,16 @@ static inline unsigned long ext2_swab(const unsigned long y)  #endif  } -unsigned long generic_find_next_zero_le_bit(const unsigned long *addr, unsigned +unsigned long find_next_zero_bit_le(const void *addr, unsigned  		long size, unsigned long offset)  { -	const unsigned long *p = addr + BITOP_WORD(offset); +	const unsigned long *p = addr;  	unsigned long result = offset & ~(BITS_PER_LONG - 1);  	unsigned long tmp;  	if (offset >= size)  		return size; +	p += BITOP_WORD(offset);  	size -= result;  	offset &= (BITS_PER_LONG - 1UL);  	if (offset) { @@ -226,18 +228,18 @@ found_middle:  found_middle_swap:  	return result + ffz(ext2_swab(tmp));  } +EXPORT_SYMBOL(find_next_zero_bit_le); -EXPORT_SYMBOL(generic_find_next_zero_le_bit); - -unsigned long generic_find_next_le_bit(const unsigned long *addr, unsigned +unsigned long find_next_bit_le(const void *addr, unsigned  		long size, unsigned long offset)  { -	const unsigned long *p = addr + BITOP_WORD(offset); +	const unsigned long *p = addr;  	unsigned long result = offset & ~(BITS_PER_LONG - 1);  	unsigned long tmp;  	if (offset >= size)  		return size; +	p += BITOP_WORD(offset);  	size -= result;  	offset &= (BITS_PER_LONG - 1UL);  	if (offset) { @@ -271,5 +273,7 @@ found_middle:  found_middle_swap:  	return result + __ffs(ext2_swab(tmp));  } -EXPORT_SYMBOL(generic_find_next_le_bit); +EXPORT_SYMBOL(find_next_bit_le); + +#endif /* CONFIG_GENERIC_FIND_BIT_LE */  #endif /* __BIG_ENDIAN */ diff --git a/lib/kstrtox.c b/lib/kstrtox.c new file mode 100644 index 00000000000..a235f3cc471 --- /dev/null +++ b/lib/kstrtox.c @@ -0,0 +1,224 @@ +/* + * Convert integer string representation to an integer. + * If an integer doesn't fit into specified type, -E is returned. + * + * Integer starts with optional sign. + * kstrtou*() functions do not accept sign "-". + * + * Radix 0 means autodetection: leading "0x" implies radix 16, + * leading "0" implies radix 8, otherwise radix is 10. + * Autodetection hints work after optional sign, but not before. + * + * If -E is returned, result is not touched. + */ +#include <linux/ctype.h> +#include <linux/errno.h> +#include <linux/kernel.h> +#include <linux/math64.h> +#include <linux/module.h> +#include <linux/types.h> + +static inline char _tolower(const char c) +{ +	return c | 0x20; +} + +static int _kstrtoull(const char *s, unsigned int base, unsigned long long *res) +{ +	unsigned long long acc; +	int ok; + +	if (base == 0) { +		if (s[0] == '0') { +			if (_tolower(s[1]) == 'x' && isxdigit(s[2])) +				base = 16; +			else +				base = 8; +		} else +			base = 10; +	} +	if (base == 16 && s[0] == '0' && _tolower(s[1]) == 'x') +		s += 2; + +	acc = 0; +	ok = 0; +	while (*s) { +		unsigned int val; + +		if ('0' <= *s && *s <= '9') +			val = *s - '0'; +		else if ('a' <= _tolower(*s) && _tolower(*s) <= 'f') +			val = _tolower(*s) - 'a' + 10; +		else if (*s == '\n' && *(s + 1) == '\0') +			break; +		else +			return -EINVAL; + +		if (val >= base) +			return -EINVAL; +		if (acc > div_u64(ULLONG_MAX - val, base)) +			return -ERANGE; +		acc = acc * base + val; +		ok = 1; + +		s++; +	} +	if (!ok) +		return -EINVAL; +	*res = acc; +	return 0; +} + +int kstrtoull(const char *s, unsigned int base, unsigned long long *res) +{ +	if (s[0] == '+') +		s++; +	return _kstrtoull(s, base, res); +} +EXPORT_SYMBOL(kstrtoull); + +int kstrtoll(const char *s, unsigned int base, long long *res) +{ +	unsigned long long tmp; +	int rv; + +	if (s[0] == '-') { +		rv = _kstrtoull(s + 1, base, &tmp); +		if (rv < 0) +			return rv; +		if ((long long)(-tmp) >= 0) +			return -ERANGE; +		*res = -tmp; +	} else { +		rv = kstrtoull(s, base, &tmp); +		if (rv < 0) +			return rv; +		if ((long long)tmp < 0) +			return -ERANGE; +		*res = tmp; +	} +	return 0; +} +EXPORT_SYMBOL(kstrtoll); + +/* Internal, do not use. */ +int _kstrtoul(const char *s, unsigned int base, unsigned long *res) +{ +	unsigned long long tmp; +	int rv; + +	rv = kstrtoull(s, base, &tmp); +	if (rv < 0) +		return rv; +	if (tmp != (unsigned long long)(unsigned long)tmp) +		return -ERANGE; +	*res = tmp; +	return 0; +} +EXPORT_SYMBOL(_kstrtoul); + +/* Internal, do not use. */ +int _kstrtol(const char *s, unsigned int base, long *res) +{ +	long long tmp; +	int rv; + +	rv = kstrtoll(s, base, &tmp); +	if (rv < 0) +		return rv; +	if (tmp != (long long)(long)tmp) +		return -ERANGE; +	*res = tmp; +	return 0; +} +EXPORT_SYMBOL(_kstrtol); + +int kstrtouint(const char *s, unsigned int base, unsigned int *res) +{ +	unsigned long long tmp; +	int rv; + +	rv = kstrtoull(s, base, &tmp); +	if (rv < 0) +		return rv; +	if (tmp != (unsigned long long)(unsigned int)tmp) +		return -ERANGE; +	*res = tmp; +	return 0; +} +EXPORT_SYMBOL(kstrtouint); + +int kstrtoint(const char *s, unsigned int base, int *res) +{ +	long long tmp; +	int rv; + +	rv = kstrtoll(s, base, &tmp); +	if (rv < 0) +		return rv; +	if (tmp != (long long)(int)tmp) +		return -ERANGE; +	*res = tmp; +	return 0; +} +EXPORT_SYMBOL(kstrtoint); + +int kstrtou16(const char *s, unsigned int base, u16 *res) +{ +	unsigned long long tmp; +	int rv; + +	rv = kstrtoull(s, base, &tmp); +	if (rv < 0) +		return rv; +	if (tmp != (unsigned long long)(u16)tmp) +		return -ERANGE; +	*res = tmp; +	return 0; +} +EXPORT_SYMBOL(kstrtou16); + +int kstrtos16(const char *s, unsigned int base, s16 *res) +{ +	long long tmp; +	int rv; + +	rv = kstrtoll(s, base, &tmp); +	if (rv < 0) +		return rv; +	if (tmp != (long long)(s16)tmp) +		return -ERANGE; +	*res = tmp; +	return 0; +} +EXPORT_SYMBOL(kstrtos16); + +int kstrtou8(const char *s, unsigned int base, u8 *res) +{ +	unsigned long long tmp; +	int rv; + +	rv = kstrtoull(s, base, &tmp); +	if (rv < 0) +		return rv; +	if (tmp != (unsigned long long)(u8)tmp) +		return -ERANGE; +	*res = tmp; +	return 0; +} +EXPORT_SYMBOL(kstrtou8); + +int kstrtos8(const char *s, unsigned int base, s8 *res) +{ +	long long tmp; +	int rv; + +	rv = kstrtoll(s, base, &tmp); +	if (rv < 0) +		return rv; +	if (tmp != (long long)(s8)tmp) +		return -ERANGE; +	*res = tmp; +	return 0; +} +EXPORT_SYMBOL(kstrtos8); diff --git a/lib/parser.c b/lib/parser.c index 6e89eca5cca..dcbaaef6cf1 100644 --- a/lib/parser.c +++ b/lib/parser.c @@ -13,7 +13,7 @@  /**   * match_one: - Determines if a string matches a simple pattern - * @s: the string to examine for presense of the pattern + * @s: the string to examine for presence of the pattern   * @p: the string containing the pattern   * @args: array of %MAX_OPT_ARGS &substring_t elements. Used to return match   * locations. diff --git a/lib/show_mem.c b/lib/show_mem.c index fdc77c82f92..90cbe4bb596 100644 --- a/lib/show_mem.c +++ b/lib/show_mem.c @@ -9,14 +9,14 @@  #include <linux/nmi.h>  #include <linux/quicklist.h> -void show_mem(void) +void show_mem(unsigned int filter)  {  	pg_data_t *pgdat;  	unsigned long total = 0, reserved = 0, shared = 0,  		nonshared = 0, highmem = 0;  	printk("Mem-Info:\n"); -	show_free_areas(); +	__show_free_areas(filter);  	for_each_online_pgdat(pgdat) {  		unsigned long i, flags; diff --git a/lib/test-kstrtox.c b/lib/test-kstrtox.c new file mode 100644 index 00000000000..d55769d63cb --- /dev/null +++ b/lib/test-kstrtox.c @@ -0,0 +1,739 @@ +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/module.h> + +#define for_each_test(i, test)	\ +	for (i = 0; i < sizeof(test) / sizeof(test[0]); i++) + +struct test_fail { +	const char *str; +	unsigned int base; +}; + +#define DEFINE_TEST_FAIL(test)	\ +	const struct test_fail test[] __initdata + +#define DECLARE_TEST_OK(type, test_type)	\ +	test_type {				\ +		const char *str;		\ +		unsigned int base;		\ +		type expected_res;		\ +	} + +#define DEFINE_TEST_OK(type, test)	\ +	const type test[] __initdata + +#define TEST_FAIL(fn, type, fmt, test)					\ +{									\ +	unsigned int i;							\ +									\ +	for_each_test(i, test) {					\ +		const struct test_fail *t = &test[i];			\ +		type tmp;						\ +		int rv;							\ +									\ +		tmp = 0;						\ +		rv = fn(t->str, t->base, &tmp);				\ +		if (rv >= 0) {						\ +			WARN(1, "str '%s', base %u, expected -E, got %d/" fmt "\n",	\ +				t->str, t->base, rv, tmp);		\ +			continue;					\ +		}							\ +	}								\ +} + +#define TEST_OK(fn, type, fmt, test)					\ +{									\ +	unsigned int i;							\ +									\ +	for_each_test(i, test) {					\ +		const typeof(test[0]) *t = &test[i];			\ +		type res;						\ +		int rv;							\ +									\ +		rv = fn(t->str, t->base, &res);				\ +		if (rv != 0) {						\ +			WARN(1, "str '%s', base %u, expected 0/" fmt ", got %d\n",	\ +				t->str, t->base, t->expected_res, rv);	\ +			continue;					\ +		}							\ +		if (res != t->expected_res) {				\ +			WARN(1, "str '%s', base %u, expected " fmt ", got " fmt "\n",	\ +				t->str, t->base, t->expected_res, res);	\ +			continue;					\ +		}							\ +	}								\ +} + +static void __init test_kstrtoull_ok(void) +{ +	DECLARE_TEST_OK(unsigned long long, struct test_ull); +	static DEFINE_TEST_OK(struct test_ull, test_ull_ok) = { +		{"0",	10,	0ULL}, +		{"1",	10,	1ULL}, +		{"127",	10,	127ULL}, +		{"128",	10,	128ULL}, +		{"129",	10,	129ULL}, +		{"255",	10,	255ULL}, +		{"256",	10,	256ULL}, +		{"257",	10,	257ULL}, +		{"32767",	10,	32767ULL}, +		{"32768",	10,	32768ULL}, +		{"32769",	10,	32769ULL}, +		{"65535",	10,	65535ULL}, +		{"65536",	10,	65536ULL}, +		{"65537",	10,	65537ULL}, +		{"2147483647",	10,	2147483647ULL}, +		{"2147483648",	10,	2147483648ULL}, +		{"2147483649",	10,	2147483649ULL}, +		{"4294967295",	10,	4294967295ULL}, +		{"4294967296",	10,	4294967296ULL}, +		{"4294967297",	10,	4294967297ULL}, +		{"9223372036854775807",	10,	9223372036854775807ULL}, +		{"9223372036854775808",	10,	9223372036854775808ULL}, +		{"9223372036854775809",	10,	9223372036854775809ULL}, +		{"18446744073709551614",	10,	18446744073709551614ULL}, +		{"18446744073709551615",	10,	18446744073709551615ULL}, + +		{"00",		8,	00ULL}, +		{"01",		8,	01ULL}, +		{"0177",	8,	0177ULL}, +		{"0200",	8,	0200ULL}, +		{"0201",	8,	0201ULL}, +		{"0377",	8,	0377ULL}, +		{"0400",	8,	0400ULL}, +		{"0401",	8,	0401ULL}, +		{"077777",	8,	077777ULL}, +		{"0100000",	8,	0100000ULL}, +		{"0100001",	8,	0100001ULL}, +		{"0177777",	8,	0177777ULL}, +		{"0200000",	8,	0200000ULL}, +		{"0200001",	8,	0200001ULL}, +		{"017777777777",	8,	017777777777ULL}, +		{"020000000000",	8,	020000000000ULL}, +		{"020000000001",	8,	020000000001ULL}, +		{"037777777777",	8,	037777777777ULL}, +		{"040000000000",	8,	040000000000ULL}, +		{"040000000001",	8,	040000000001ULL}, +		{"0777777777777777777777",	8,	0777777777777777777777ULL}, +		{"01000000000000000000000",	8,	01000000000000000000000ULL}, +		{"01000000000000000000001",	8,	01000000000000000000001ULL}, +		{"01777777777777777777776",	8,	01777777777777777777776ULL}, +		{"01777777777777777777777",	8,	01777777777777777777777ULL}, + +		{"0x0",		16,	0x0ULL}, +		{"0x1",		16,	0x1ULL}, +		{"0x7f",	16,	0x7fULL}, +		{"0x80",	16,	0x80ULL}, +		{"0x81",	16,	0x81ULL}, +		{"0xff",	16,	0xffULL}, +		{"0x100",	16,	0x100ULL}, +		{"0x101",	16,	0x101ULL}, +		{"0x7fff",	16,	0x7fffULL}, +		{"0x8000",	16,	0x8000ULL}, +		{"0x8001",	16,	0x8001ULL}, +		{"0xffff",	16,	0xffffULL}, +		{"0x10000",	16,	0x10000ULL}, +		{"0x10001",	16,	0x10001ULL}, +		{"0x7fffffff",	16,	0x7fffffffULL}, +		{"0x80000000",	16,	0x80000000ULL}, +		{"0x80000001",	16,	0x80000001ULL}, +		{"0xffffffff",	16,	0xffffffffULL}, +		{"0x100000000",	16,	0x100000000ULL}, +		{"0x100000001",	16,	0x100000001ULL}, +		{"0x7fffffffffffffff",	16,	0x7fffffffffffffffULL}, +		{"0x8000000000000000",	16,	0x8000000000000000ULL}, +		{"0x8000000000000001",	16,	0x8000000000000001ULL}, +		{"0xfffffffffffffffe",	16,	0xfffffffffffffffeULL}, +		{"0xffffffffffffffff",	16,	0xffffffffffffffffULL}, + +		{"0\n",	0,	0ULL}, +	}; +	TEST_OK(kstrtoull, unsigned long long, "%llu", test_ull_ok); +} + +static void __init test_kstrtoull_fail(void) +{ +	static DEFINE_TEST_FAIL(test_ull_fail) = { +		{"",	0}, +		{"",	8}, +		{"",	10}, +		{"",	16}, +		{"\n",	0}, +		{"\n",	8}, +		{"\n",	10}, +		{"\n",	16}, +		{"\n0",	0}, +		{"\n0",	8}, +		{"\n0",	10}, +		{"\n0",	16}, +		{"+",	0}, +		{"+",	8}, +		{"+",	10}, +		{"+",	16}, +		{"-",	0}, +		{"-",	8}, +		{"-",	10}, +		{"-",	16}, +		{"0x",	0}, +		{"0x",	16}, +		{"0X",	0}, +		{"0X",	16}, +		{"0 ",	0}, +		{"1+",	0}, +		{"1-",	0}, +		{" 2",	0}, +		/* base autodetection */ +		{"0x0z",	0}, +		{"0z",		0}, +		{"a",		0}, +		/* digit >= base */ +		{"2",	2}, +		{"8",	8}, +		{"a",	10}, +		{"A",	10}, +		{"g",	16}, +		{"G",	16}, +		/* overflow */ +		{"10000000000000000000000000000000000000000000000000000000000000000",	2}, +		{"2000000000000000000000",	8}, +		{"18446744073709551616",	10}, +		{"10000000000000000",	16}, +		/* negative */ +		{"-0", 0}, +		{"-0", 8}, +		{"-0", 10}, +		{"-0", 16}, +		{"-1", 0}, +		{"-1", 8}, +		{"-1", 10}, +		{"-1", 16}, +		/* sign is first character if any */ +		{"-+1", 0}, +		{"-+1", 8}, +		{"-+1", 10}, +		{"-+1", 16}, +		/* nothing after \n */ +		{"0\n0", 0}, +		{"0\n0", 8}, +		{"0\n0", 10}, +		{"0\n0", 16}, +		{"0\n+", 0}, +		{"0\n+", 8}, +		{"0\n+", 10}, +		{"0\n+", 16}, +		{"0\n-", 0}, +		{"0\n-", 8}, +		{"0\n-", 10}, +		{"0\n-", 16}, +		{"0\n ", 0}, +		{"0\n ", 8}, +		{"0\n ", 10}, +		{"0\n ", 16}, +	}; +	TEST_FAIL(kstrtoull, unsigned long long, "%llu", test_ull_fail); +} + +static void __init test_kstrtoll_ok(void) +{ +	DECLARE_TEST_OK(long long, struct test_ll); +	static DEFINE_TEST_OK(struct test_ll, test_ll_ok) = { +		{"0",	10,	0LL}, +		{"1",	10,	1LL}, +		{"127",	10,	127LL}, +		{"128",	10,	128LL}, +		{"129",	10,	129LL}, +		{"255",	10,	255LL}, +		{"256",	10,	256LL}, +		{"257",	10,	257LL}, +		{"32767",	10,	32767LL}, +		{"32768",	10,	32768LL}, +		{"32769",	10,	32769LL}, +		{"65535",	10,	65535LL}, +		{"65536",	10,	65536LL}, +		{"65537",	10,	65537LL}, +		{"2147483647",	10,	2147483647LL}, +		{"2147483648",	10,	2147483648LL}, +		{"2147483649",	10,	2147483649LL}, +		{"4294967295",	10,	4294967295LL}, +		{"4294967296",	10,	4294967296LL}, +		{"4294967297",	10,	4294967297LL}, +		{"9223372036854775807",	10,	9223372036854775807LL}, + +		{"-1",	10,	-1LL}, +		{"-2",	10,	-2LL}, +		{"-9223372036854775808",	10,	LLONG_MIN}, +	}; +	TEST_OK(kstrtoll, long long, "%lld", test_ll_ok); +} + +static void __init test_kstrtoll_fail(void) +{ +	static DEFINE_TEST_FAIL(test_ll_fail) = { +		{"9223372036854775808",	10}, +		{"9223372036854775809",	10}, +		{"18446744073709551614",	10}, +		{"18446744073709551615",	10}, +		{"-9223372036854775809",	10}, +		{"-18446744073709551614",	10}, +		{"-18446744073709551615",	10}, +		/* negative zero isn't an integer in Linux */ +		{"-0",	0}, +		{"-0",	8}, +		{"-0",	10}, +		{"-0",	16}, +		/* sign is first character if any */ +		{"-+1", 0}, +		{"-+1", 8}, +		{"-+1", 10}, +		{"-+1", 16}, +	}; +	TEST_FAIL(kstrtoll, long long, "%lld", test_ll_fail); +} + +static void __init test_kstrtou64_ok(void) +{ +	DECLARE_TEST_OK(u64, struct test_u64); +	static DEFINE_TEST_OK(struct test_u64, test_u64_ok) = { +		{"0",	10,	0}, +		{"1",	10,	1}, +		{"126",	10,	126}, +		{"127",	10,	127}, +		{"128",	10,	128}, +		{"129",	10,	129}, +		{"254",	10,	254}, +		{"255",	10,	255}, +		{"256",	10,	256}, +		{"257",	10,	257}, +		{"32766",	10,	32766}, +		{"32767",	10,	32767}, +		{"32768",	10,	32768}, +		{"32769",	10,	32769}, +		{"65534",	10,	65534}, +		{"65535",	10,	65535}, +		{"65536",	10,	65536}, +		{"65537",	10,	65537}, +		{"2147483646",	10,	2147483646}, +		{"2147483647",	10,	2147483647}, +		{"2147483648",	10,	2147483648ULL}, +		{"2147483649",	10,	2147483649ULL}, +		{"4294967294",	10,	4294967294ULL}, +		{"4294967295",	10,	4294967295ULL}, +		{"4294967296",	10,	4294967296ULL}, +		{"4294967297",	10,	4294967297ULL}, +		{"9223372036854775806",	10,	9223372036854775806ULL}, +		{"9223372036854775807",	10,	9223372036854775807ULL}, +		{"9223372036854775808",	10,	9223372036854775808ULL}, +		{"9223372036854775809",	10,	9223372036854775809ULL}, +		{"18446744073709551614",	10,	18446744073709551614ULL}, +		{"18446744073709551615",	10,	18446744073709551615ULL}, +	}; +	TEST_OK(kstrtou64, u64, "%llu", test_u64_ok); +} + +static void __init test_kstrtou64_fail(void) +{ +	static DEFINE_TEST_FAIL(test_u64_fail) = { +		{"-2",	10}, +		{"-1",	10}, +		{"18446744073709551616",	10}, +		{"18446744073709551617",	10}, +	}; +	TEST_FAIL(kstrtou64, u64, "%llu", test_u64_fail); +} + +static void __init test_kstrtos64_ok(void) +{ +	DECLARE_TEST_OK(s64, struct test_s64); +	static DEFINE_TEST_OK(struct test_s64, test_s64_ok) = { +		{"-128",	10,	-128}, +		{"-127",	10,	-127}, +		{"-1",	10,	-1}, +		{"0",	10,	0}, +		{"1",	10,	1}, +		{"126",	10,	126}, +		{"127",	10,	127}, +		{"128",	10,	128}, +		{"129",	10,	129}, +		{"254",	10,	254}, +		{"255",	10,	255}, +		{"256",	10,	256}, +		{"257",	10,	257}, +		{"32766",	10,	32766}, +		{"32767",	10,	32767}, +		{"32768",	10,	32768}, +		{"32769",	10,	32769}, +		{"65534",	10,	65534}, +		{"65535",	10,	65535}, +		{"65536",	10,	65536}, +		{"65537",	10,	65537}, +		{"2147483646",	10,	2147483646}, +		{"2147483647",	10,	2147483647}, +		{"2147483648",	10,	2147483648LL}, +		{"2147483649",	10,	2147483649LL}, +		{"4294967294",	10,	4294967294LL}, +		{"4294967295",	10,	4294967295LL}, +		{"4294967296",	10,	4294967296LL}, +		{"4294967297",	10,	4294967297LL}, +		{"9223372036854775806",	10,	9223372036854775806LL}, +		{"9223372036854775807",	10,	9223372036854775807LL}, +	}; +	TEST_OK(kstrtos64, s64, "%lld", test_s64_ok); +} + +static void __init test_kstrtos64_fail(void) +{ +	static DEFINE_TEST_FAIL(test_s64_fail) = { +		{"9223372036854775808",	10}, +		{"9223372036854775809",	10}, +		{"18446744073709551614",	10}, +		{"18446744073709551615",	10}, +		{"18446744073709551616",	10}, +		{"18446744073709551617",	10}, +	}; +	TEST_FAIL(kstrtos64, s64, "%lld", test_s64_fail); +} + +static void __init test_kstrtou32_ok(void) +{ +	DECLARE_TEST_OK(u32, struct test_u32); +	static DEFINE_TEST_OK(struct test_u32, test_u32_ok) = { +		{"0",	10,	0}, +		{"1",	10,	1}, +		{"126",	10,	126}, +		{"127",	10,	127}, +		{"128",	10,	128}, +		{"129",	10,	129}, +		{"254",	10,	254}, +		{"255",	10,	255}, +		{"256",	10,	256}, +		{"257",	10,	257}, +		{"32766",	10,	32766}, +		{"32767",	10,	32767}, +		{"32768",	10,	32768}, +		{"32769",	10,	32769}, +		{"65534",	10,	65534}, +		{"65535",	10,	65535}, +		{"65536",	10,	65536}, +		{"65537",	10,	65537}, +		{"2147483646",	10,	2147483646}, +		{"2147483647",	10,	2147483647}, +		{"2147483648",	10,	2147483648U}, +		{"2147483649",	10,	2147483649U}, +		{"4294967294",	10,	4294967294U}, +		{"4294967295",	10,	4294967295U}, +	}; +	TEST_OK(kstrtou32, u32, "%u", test_u32_ok); +} + +static void __init test_kstrtou32_fail(void) +{ +	static DEFINE_TEST_FAIL(test_u32_fail) = { +		{"-2",	10}, +		{"-1",	10}, +		{"4294967296",	10}, +		{"4294967297",	10}, +		{"9223372036854775806",	10}, +		{"9223372036854775807",	10}, +		{"9223372036854775808",	10}, +		{"9223372036854775809",	10}, +		{"18446744073709551614",	10}, +		{"18446744073709551615",	10}, +		{"18446744073709551616",	10}, +		{"18446744073709551617",	10}, +	}; +	TEST_FAIL(kstrtou32, u32, "%u", test_u32_fail); +} + +static void __init test_kstrtos32_ok(void) +{ +	DECLARE_TEST_OK(s32, struct test_s32); +	static DEFINE_TEST_OK(struct test_s32, test_s32_ok) = { +		{"-128",	10,	-128}, +		{"-127",	10,	-127}, +		{"-1",	10,	-1}, +		{"0",	10,	0}, +		{"1",	10,	1}, +		{"126",	10,	126}, +		{"127",	10,	127}, +		{"128",	10,	128}, +		{"129",	10,	129}, +		{"254",	10,	254}, +		{"255",	10,	255}, +		{"256",	10,	256}, +		{"257",	10,	257}, +		{"32766",	10,	32766}, +		{"32767",	10,	32767}, +		{"32768",	10,	32768}, +		{"32769",	10,	32769}, +		{"65534",	10,	65534}, +		{"65535",	10,	65535}, +		{"65536",	10,	65536}, +		{"65537",	10,	65537}, +		{"2147483646",	10,	2147483646}, +		{"2147483647",	10,	2147483647}, +	}; +	TEST_OK(kstrtos32, s32, "%d", test_s32_ok); +} + +static void __init test_kstrtos32_fail(void) +{ +	static DEFINE_TEST_FAIL(test_s32_fail) = { +		{"2147483648",	10}, +		{"2147483649",	10}, +		{"4294967294",	10}, +		{"4294967295",	10}, +		{"4294967296",	10}, +		{"4294967297",	10}, +		{"9223372036854775806",	10}, +		{"9223372036854775807",	10}, +		{"9223372036854775808",	10}, +		{"9223372036854775809",	10}, +		{"18446744073709551614",	10}, +		{"18446744073709551615",	10}, +		{"18446744073709551616",	10}, +		{"18446744073709551617",	10}, +	}; +	TEST_FAIL(kstrtos32, s32, "%d", test_s32_fail); +} + +static void __init test_kstrtou16_ok(void) +{ +	DECLARE_TEST_OK(u16, struct test_u16); +	static DEFINE_TEST_OK(struct test_u16, test_u16_ok) = { +		{"0",	10,	0}, +		{"1",	10,	1}, +		{"126",	10,	126}, +		{"127",	10,	127}, +		{"128",	10,	128}, +		{"129",	10,	129}, +		{"254",	10,	254}, +		{"255",	10,	255}, +		{"256",	10,	256}, +		{"257",	10,	257}, +		{"32766",	10,	32766}, +		{"32767",	10,	32767}, +		{"32768",	10,	32768}, +		{"32769",	10,	32769}, +		{"65534",	10,	65534}, +		{"65535",	10,	65535}, +	}; +	TEST_OK(kstrtou16, u16, "%hu", test_u16_ok); +} + +static void __init test_kstrtou16_fail(void) +{ +	static DEFINE_TEST_FAIL(test_u16_fail) = { +		{"-2",	10}, +		{"-1",	10}, +		{"65536",	10}, +		{"65537",	10}, +		{"2147483646",	10}, +		{"2147483647",	10}, +		{"2147483648",	10}, +		{"2147483649",	10}, +		{"4294967294",	10}, +		{"4294967295",	10}, +		{"4294967296",	10}, +		{"4294967297",	10}, +		{"9223372036854775806",	10}, +		{"9223372036854775807",	10}, +		{"9223372036854775808",	10}, +		{"9223372036854775809",	10}, +		{"18446744073709551614",	10}, +		{"18446744073709551615",	10}, +		{"18446744073709551616",	10}, +		{"18446744073709551617",	10}, +	}; +	TEST_FAIL(kstrtou16, u16, "%hu", test_u16_fail); +} + +static void __init test_kstrtos16_ok(void) +{ +	DECLARE_TEST_OK(s16, struct test_s16); +	static DEFINE_TEST_OK(struct test_s16, test_s16_ok) = { +		{"-130",	10,	-130}, +		{"-129",	10,	-129}, +		{"-128",	10,	-128}, +		{"-127",	10,	-127}, +		{"-1",	10,	-1}, +		{"0",	10,	0}, +		{"1",	10,	1}, +		{"126",	10,	126}, +		{"127",	10,	127}, +		{"128",	10,	128}, +		{"129",	10,	129}, +		{"254",	10,	254}, +		{"255",	10,	255}, +		{"256",	10,	256}, +		{"257",	10,	257}, +		{"32766",	10,	32766}, +		{"32767",	10,	32767}, +	}; +	TEST_OK(kstrtos16, s16, "%hd", test_s16_ok); +} + +static void __init test_kstrtos16_fail(void) +{ +	static DEFINE_TEST_FAIL(test_s16_fail) = { +		{"32768",	10}, +		{"32769",	10}, +		{"65534",	10}, +		{"65535",	10}, +		{"65536",	10}, +		{"65537",	10}, +		{"2147483646",	10}, +		{"2147483647",	10}, +		{"2147483648",	10}, +		{"2147483649",	10}, +		{"4294967294",	10}, +		{"4294967295",	10}, +		{"4294967296",	10}, +		{"4294967297",	10}, +		{"9223372036854775806",	10}, +		{"9223372036854775807",	10}, +		{"9223372036854775808",	10}, +		{"9223372036854775809",	10}, +		{"18446744073709551614",	10}, +		{"18446744073709551615",	10}, +		{"18446744073709551616",	10}, +		{"18446744073709551617",	10}, +	}; +	TEST_FAIL(kstrtos16, s16, "%hd", test_s16_fail); +} + +static void __init test_kstrtou8_ok(void) +{ +	DECLARE_TEST_OK(u8, struct test_u8); +	static DEFINE_TEST_OK(struct test_u8, test_u8_ok) = { +		{"0",	10,	0}, +		{"1",	10,	1}, +		{"126",	10,	126}, +		{"127",	10,	127}, +		{"128",	10,	128}, +		{"129",	10,	129}, +		{"254",	10,	254}, +		{"255",	10,	255}, +	}; +	TEST_OK(kstrtou8, u8, "%hhu", test_u8_ok); +} + +static void __init test_kstrtou8_fail(void) +{ +	static DEFINE_TEST_FAIL(test_u8_fail) = { +		{"-2",	10}, +		{"-1",	10}, +		{"256",	10}, +		{"257",	10}, +		{"32766",	10}, +		{"32767",	10}, +		{"32768",	10}, +		{"32769",	10}, +		{"65534",	10}, +		{"65535",	10}, +		{"65536",	10}, +		{"65537",	10}, +		{"2147483646",	10}, +		{"2147483647",	10}, +		{"2147483648",	10}, +		{"2147483649",	10}, +		{"4294967294",	10}, +		{"4294967295",	10}, +		{"4294967296",	10}, +		{"4294967297",	10}, +		{"9223372036854775806",	10}, +		{"9223372036854775807",	10}, +		{"9223372036854775808",	10}, +		{"9223372036854775809",	10}, +		{"18446744073709551614",	10}, +		{"18446744073709551615",	10}, +		{"18446744073709551616",	10}, +		{"18446744073709551617",	10}, +	}; +	TEST_FAIL(kstrtou8, u8, "%hhu", test_u8_fail); +} + +static void __init test_kstrtos8_ok(void) +{ +	DECLARE_TEST_OK(s8, struct test_s8); +	static DEFINE_TEST_OK(struct test_s8, test_s8_ok) = { +		{"-128",	10,	-128}, +		{"-127",	10,	-127}, +		{"-1",	10,	-1}, +		{"0",	10,	0}, +		{"1",	10,	1}, +		{"126",	10,	126}, +		{"127",	10,	127}, +	}; +	TEST_OK(kstrtos8, s8, "%hhd", test_s8_ok); +} + +static void __init test_kstrtos8_fail(void) +{ +	static DEFINE_TEST_FAIL(test_s8_fail) = { +		{"-130",	10}, +		{"-129",	10}, +		{"128",	10}, +		{"129",	10}, +		{"254",	10}, +		{"255",	10}, +		{"256",	10}, +		{"257",	10}, +		{"32766",	10}, +		{"32767",	10}, +		{"32768",	10}, +		{"32769",	10}, +		{"65534",	10}, +		{"65535",	10}, +		{"65536",	10}, +		{"65537",	10}, +		{"2147483646",	10}, +		{"2147483647",	10}, +		{"2147483648",	10}, +		{"2147483649",	10}, +		{"4294967294",	10}, +		{"4294967295",	10}, +		{"4294967296",	10}, +		{"4294967297",	10}, +		{"9223372036854775806",	10}, +		{"9223372036854775807",	10}, +		{"9223372036854775808",	10}, +		{"9223372036854775809",	10}, +		{"18446744073709551614",	10}, +		{"18446744073709551615",	10}, +		{"18446744073709551616",	10}, +		{"18446744073709551617",	10}, +	}; +	TEST_FAIL(kstrtos8, s8, "%hhd", test_s8_fail); +} + +static int __init test_kstrtox_init(void) +{ +	test_kstrtoull_ok(); +	test_kstrtoull_fail(); +	test_kstrtoll_ok(); +	test_kstrtoll_fail(); + +	test_kstrtou64_ok(); +	test_kstrtou64_fail(); +	test_kstrtos64_ok(); +	test_kstrtos64_fail(); + +	test_kstrtou32_ok(); +	test_kstrtou32_fail(); +	test_kstrtos32_ok(); +	test_kstrtos32_fail(); + +	test_kstrtou16_ok(); +	test_kstrtou16_fail(); +	test_kstrtos16_ok(); +	test_kstrtos16_fail(); + +	test_kstrtou8_ok(); +	test_kstrtou8_fail(); +	test_kstrtos8_ok(); +	test_kstrtos8_fail(); +	return -EINVAL; +} +module_init(test_kstrtox_init); +MODULE_LICENSE("Dual BSD/GPL"); diff --git a/lib/timerqueue.c b/lib/timerqueue.c index e3a1050e682..191176a43e9 100644 --- a/lib/timerqueue.c +++ b/lib/timerqueue.c @@ -5,7 +5,7 @@   *  Uses rbtrees for quick list adds and expiration.   *   *  NOTE: All of the following functions need to be serialized - *  to avoid races. No locking is done by this libary code. + *  to avoid races. No locking is done by this library code.   *   *  This program is free software; you can redistribute it and/or modify   *  it under the terms of the GNU General Public License as published by diff --git a/lib/vsprintf.c b/lib/vsprintf.c index bba9caa375d..dba35d1985c 100644 --- a/lib/vsprintf.c +++ b/lib/vsprintf.c @@ -120,147 +120,6 @@ long long simple_strtoll(const char *cp, char **endp, unsigned int base)  }  EXPORT_SYMBOL(simple_strtoll); -/** - * strict_strtoul - convert a string to an unsigned long strictly - * @cp: The string to be converted - * @base: The number base to use - * @res: The converted result value - * - * strict_strtoul converts a string to an unsigned long only if the - * string is really an unsigned long string, any string containing - * any invalid char at the tail will be rejected and -EINVAL is returned, - * only a newline char at the tail is acceptible because people generally - * change a module parameter in the following way: - * - * 	echo 1024 > /sys/module/e1000/parameters/copybreak - * - * echo will append a newline to the tail. - * - * It returns 0 if conversion is successful and *res is set to the converted - * value, otherwise it returns -EINVAL and *res is set to 0. - * - * simple_strtoul just ignores the successive invalid characters and - * return the converted value of prefix part of the string. - */ -int strict_strtoul(const char *cp, unsigned int base, unsigned long *res) -{ -	char *tail; -	unsigned long val; - -	*res = 0; -	if (!*cp) -		return -EINVAL; - -	val = simple_strtoul(cp, &tail, base); -	if (tail == cp) -		return -EINVAL; - -	if ((tail[0] == '\0') || (tail[0] == '\n' && tail[1] == '\0')) { -		*res = val; -		return 0; -	} - -	return -EINVAL; -} -EXPORT_SYMBOL(strict_strtoul); - -/** - * strict_strtol - convert a string to a long strictly - * @cp: The string to be converted - * @base: The number base to use - * @res: The converted result value - * - * strict_strtol is similiar to strict_strtoul, but it allows the first - * character of a string is '-'. - * - * It returns 0 if conversion is successful and *res is set to the converted - * value, otherwise it returns -EINVAL and *res is set to 0. - */ -int strict_strtol(const char *cp, unsigned int base, long *res) -{ -	int ret; -	if (*cp == '-') { -		ret = strict_strtoul(cp + 1, base, (unsigned long *)res); -		if (!ret) -			*res = -(*res); -	} else { -		ret = strict_strtoul(cp, base, (unsigned long *)res); -	} - -	return ret; -} -EXPORT_SYMBOL(strict_strtol); - -/** - * strict_strtoull - convert a string to an unsigned long long strictly - * @cp: The string to be converted - * @base: The number base to use - * @res: The converted result value - * - * strict_strtoull converts a string to an unsigned long long only if the - * string is really an unsigned long long string, any string containing - * any invalid char at the tail will be rejected and -EINVAL is returned, - * only a newline char at the tail is acceptible because people generally - * change a module parameter in the following way: - * - * 	echo 1024 > /sys/module/e1000/parameters/copybreak - * - * echo will append a newline to the tail of the string. - * - * It returns 0 if conversion is successful and *res is set to the converted - * value, otherwise it returns -EINVAL and *res is set to 0. - * - * simple_strtoull just ignores the successive invalid characters and - * return the converted value of prefix part of the string. - */ -int strict_strtoull(const char *cp, unsigned int base, unsigned long long *res) -{ -	char *tail; -	unsigned long long val; - -	*res = 0; -	if (!*cp) -		return -EINVAL; - -	val = simple_strtoull(cp, &tail, base); -	if (tail == cp) -		return -EINVAL; -	if ((tail[0] == '\0') || (tail[0] == '\n' && tail[1] == '\0')) { -		*res = val; -		return 0; -	} - -	return -EINVAL; -} -EXPORT_SYMBOL(strict_strtoull); - -/** - * strict_strtoll - convert a string to a long long strictly - * @cp: The string to be converted - * @base: The number base to use - * @res: The converted result value - * - * strict_strtoll is similiar to strict_strtoull, but it allows the first - * character of a string is '-'. - * - * It returns 0 if conversion is successful and *res is set to the converted - * value, otherwise it returns -EINVAL and *res is set to 0. - */ -int strict_strtoll(const char *cp, unsigned int base, long long *res) -{ -	int ret; -	if (*cp == '-') { -		ret = strict_strtoull(cp + 1, base, (unsigned long long *)res); -		if (!ret) -			*res = -(*res); -	} else { -		ret = strict_strtoull(cp, base, (unsigned long long *)res); -	} - -	return ret; -} -EXPORT_SYMBOL(strict_strtoll); -  static noinline_for_stack  int skip_atoi(const char **s)  { @@ -574,7 +433,9 @@ char *symbol_string(char *buf, char *end, void *ptr,  	unsigned long value = (unsigned long) ptr;  #ifdef CONFIG_KALLSYMS  	char sym[KSYM_SYMBOL_LEN]; -	if (ext != 'f' && ext != 's') +	if (ext == 'B') +		sprint_backtrace(sym, value); +	else if (ext != 'f' && ext != 's')  		sprint_symbol(sym, value);  	else  		kallsyms_lookup(value, NULL, NULL, NULL, sym); @@ -949,6 +810,7 @@ int kptr_restrict = 1;   * - 'f' For simple symbolic function names without offset   * - 'S' For symbolic direct pointers with offset   * - 's' For symbolic direct pointers without offset + * - 'B' For backtraced symbolic direct pointers with offset   * - 'R' For decoded struct resource, e.g., [mem 0x0-0x1f 64bit pref]   * - 'r' For raw struct resource, e.g., [mem 0x0-0x1f flags 0x201]   * - 'M' For a 6-byte MAC address, it prints the address in the @@ -991,7 +853,7 @@ static noinline_for_stack  char *pointer(const char *fmt, char *buf, char *end, void *ptr,  	      struct printf_spec spec)  { -	if (!ptr) { +	if (!ptr && *fmt != 'K') {  		/*  		 * Print (null) with the same width as a pointer so it makes  		 * tabular output look nice. @@ -1008,6 +870,7 @@ char *pointer(const char *fmt, char *buf, char *end, void *ptr,  		/* Fallthrough */  	case 'S':  	case 's': +	case 'B':  		return symbol_string(buf, end, ptr, spec, *fmt);  	case 'R':  	case 'r': @@ -1047,16 +910,12 @@ char *pointer(const char *fmt, char *buf, char *end, void *ptr,  			if (spec.field_width == -1)  				spec.field_width = 2 * sizeof(void *);  			return string(buf, end, "pK-error", spec); -		} else if ((kptr_restrict == 0) || -			 (kptr_restrict == 1 && -			  has_capability_noaudit(current, CAP_SYSLOG))) -			break; - -		if (spec.field_width == -1) { -			spec.field_width = 2 * sizeof(void *); -			spec.flags |= ZEROPAD;  		} -		return number(buf, end, 0, spec); +		if (!((kptr_restrict == 0) || +		      (kptr_restrict == 1 && +		       has_capability_noaudit(current, CAP_SYSLOG)))) +			ptr = NULL; +		break;  	}  	spec.flags |= SMALL;  	if (spec.field_width == -1) { @@ -1279,6 +1138,7 @@ qualifier:   * %ps output the name of a text symbol without offset   * %pF output the name of a function pointer with its offset   * %pf output the name of a function pointer without its offset + * %pB output the name of a backtrace symbol with its offset   * %pR output the address range in a struct resource with decoded flags   * %pr output the address range in a struct resource with raw flags   * %pM output a 6-byte MAC address with colons diff --git a/lib/zlib_deflate/deflate.c b/lib/zlib_deflate/deflate.c index 46a31e5f49c..d63381e8e33 100644 --- a/lib/zlib_deflate/deflate.c +++ b/lib/zlib_deflate/deflate.c @@ -176,6 +176,7 @@ int zlib_deflateInit2(      deflate_state *s;      int noheader = 0;      deflate_workspace *mem; +    char *next;      ush *overlay;      /* We overlay pending_buf and d_buf+l_buf. This works since the average @@ -199,6 +200,21 @@ int zlib_deflateInit2(  	strategy < 0 || strategy > Z_HUFFMAN_ONLY) {          return Z_STREAM_ERROR;      } + +    /* +     * Direct the workspace's pointers to the chunks that were allocated +     * along with the deflate_workspace struct. +     */ +    next = (char *) mem; +    next += sizeof(*mem); +    mem->window_memory = (Byte *) next; +    next += zlib_deflate_window_memsize(windowBits); +    mem->prev_memory = (Pos *) next; +    next += zlib_deflate_prev_memsize(windowBits); +    mem->head_memory = (Pos *) next; +    next += zlib_deflate_head_memsize(memLevel); +    mem->overlay_memory = next; +      s = (deflate_state *) &(mem->deflate_memory);      strm->state = (struct internal_state *)s;      s->strm = strm; @@ -1247,7 +1263,18 @@ static block_state deflate_slow(      return flush == Z_FINISH ? finish_done : block_done;  } -int zlib_deflate_workspacesize(void) +int zlib_deflate_workspacesize(int windowBits, int memLevel)  { -    return sizeof(deflate_workspace); +    if (windowBits < 0) /* undocumented feature: suppress zlib header */ +        windowBits = -windowBits; + +    /* Since the return value is typically passed to vmalloc() unchecked... */ +    BUG_ON(memLevel < 1 || memLevel > MAX_MEM_LEVEL || windowBits < 9 || +							windowBits > 15); + +    return sizeof(deflate_workspace) +        + zlib_deflate_window_memsize(windowBits) +        + zlib_deflate_prev_memsize(windowBits) +        + zlib_deflate_head_memsize(memLevel) +        + zlib_deflate_overlay_memsize(memLevel);  } diff --git a/lib/zlib_deflate/defutil.h b/lib/zlib_deflate/defutil.h index 6b15a909ca3..b640b6402e9 100644 --- a/lib/zlib_deflate/defutil.h +++ b/lib/zlib_deflate/defutil.h @@ -241,12 +241,21 @@ typedef struct deflate_state {  typedef struct deflate_workspace {      /* State memory for the deflator */      deflate_state deflate_memory; -    Byte window_memory[2 * (1 << MAX_WBITS)]; -    Pos prev_memory[1 << MAX_WBITS]; -    Pos head_memory[1 << (MAX_MEM_LEVEL + 7)]; -    char overlay_memory[(1 << (MAX_MEM_LEVEL + 6)) * (sizeof(ush)+2)]; +    Byte *window_memory; +    Pos *prev_memory; +    Pos *head_memory; +    char *overlay_memory;  } deflate_workspace; +#define zlib_deflate_window_memsize(windowBits) \ +	(2 * (1 << (windowBits)) * sizeof(Byte)) +#define zlib_deflate_prev_memsize(windowBits) \ +	((1 << (windowBits)) * sizeof(Pos)) +#define zlib_deflate_head_memsize(memLevel) \ +	((1 << ((memLevel)+7)) * sizeof(Pos)) +#define zlib_deflate_overlay_memsize(memLevel) \ +	((1 << ((memLevel)+6)) * (sizeof(ush)+2)) +  /* Output a byte on the stream.   * IN assertion: there is enough room in pending_buf.   */  |