diff options
| author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 | 
|---|---|---|
| committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 15:20:36 -0700 | 
| commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
| tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /fs/reiserfs/fix_node.c | |
| download | olio-linux-3.10-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.tar.xz olio-linux-3.10-1da177e4c3f41524e886b7f1b8a0c1fc7321cac2.zip  | |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'fs/reiserfs/fix_node.c')
| -rw-r--r-- | fs/reiserfs/fix_node.c | 2518 | 
1 files changed, 2518 insertions, 0 deletions
diff --git a/fs/reiserfs/fix_node.c b/fs/reiserfs/fix_node.c new file mode 100644 index 00000000000..e4f64be9e15 --- /dev/null +++ b/fs/reiserfs/fix_node.c @@ -0,0 +1,2518 @@ +/* + * Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README + */ + +/** + ** old_item_num + ** old_entry_num + ** set_entry_sizes + ** create_virtual_node + ** check_left + ** check_right + ** directory_part_size + ** get_num_ver + ** set_parameters + ** is_leaf_removable + ** are_leaves_removable + ** get_empty_nodes + ** get_lfree + ** get_rfree + ** is_left_neighbor_in_cache + ** decrement_key + ** get_far_parent + ** get_parents + ** can_node_be_removed + ** ip_check_balance + ** dc_check_balance_internal + ** dc_check_balance_leaf + ** dc_check_balance + ** check_balance + ** get_direct_parent + ** get_neighbors + ** fix_nodes + **  + **  + **/ + + +#include <linux/config.h> +#include <linux/time.h> +#include <linux/string.h> +#include <linux/reiserfs_fs.h> +#include <linux/buffer_head.h> + + +/* To make any changes in the tree we find a node, that contains item +   to be changed/deleted or position in the node we insert a new item +   to. We call this node S. To do balancing we need to decide what we +   will shift to left/right neighbor, or to a new node, where new item +   will be etc. To make this analysis simpler we build virtual +   node. Virtual node is an array of items, that will replace items of +   node S. (For instance if we are going to delete an item, virtual +   node does not contain it). Virtual node keeps information about +   item sizes and types, mergeability of first and last items, sizes +   of all entries in directory item. We use this array of items when +   calculating what we can shift to neighbors and how many nodes we +   have to have if we do not any shiftings, if we shift to left/right +   neighbor or to both. */ + + +/* taking item number in virtual node, returns number of item, that it has in source buffer */ +static inline int old_item_num (int new_num, int affected_item_num, int mode) +{ +  if (mode == M_PASTE || mode == M_CUT || new_num < affected_item_num) +    return new_num; + +  if (mode == M_INSERT) { + +    RFALSE( new_num == 0,  +	    "vs-8005: for INSERT mode and item number of inserted item"); + +    return new_num - 1; +  } + +  RFALSE( mode != M_DELETE, +	  "vs-8010: old_item_num: mode must be M_DELETE (mode = \'%c\'", mode); +  /* delete mode */ +  return new_num + 1; +} + +static void create_virtual_node (struct tree_balance * tb, int h) +{ +    struct item_head * ih; +    struct virtual_node * vn = tb->tb_vn; +    int new_num; +    struct buffer_head * Sh;	/* this comes from tb->S[h] */ + +    Sh = PATH_H_PBUFFER (tb->tb_path, h); + +    /* size of changed node */ +    vn->vn_size = MAX_CHILD_SIZE (Sh) - B_FREE_SPACE (Sh) + tb->insert_size[h]; + +    /* for internal nodes array if virtual items is not created */ +    if (h) { +	vn->vn_nr_item = (vn->vn_size - DC_SIZE) / (DC_SIZE + KEY_SIZE); +	return; +    } + +    /* number of items in virtual node  */ +    vn->vn_nr_item = B_NR_ITEMS (Sh) + ((vn->vn_mode == M_INSERT)? 1 : 0) - ((vn->vn_mode == M_DELETE)? 1 : 0); + +    /* first virtual item */ +    vn->vn_vi = (struct virtual_item *)(tb->tb_vn + 1); +    memset (vn->vn_vi, 0, vn->vn_nr_item * sizeof (struct virtual_item)); +    vn->vn_free_ptr += vn->vn_nr_item * sizeof (struct virtual_item); + + +    /* first item in the node */ +    ih = B_N_PITEM_HEAD (Sh, 0); + +    /* define the mergeability for 0-th item (if it is not being deleted) */ +    if (op_is_left_mergeable (&(ih->ih_key), Sh->b_size) && (vn->vn_mode != M_DELETE || vn->vn_affected_item_num)) +	    vn->vn_vi[0].vi_type |= VI_TYPE_LEFT_MERGEABLE; + +    /* go through all items those remain in the virtual node (except for the new (inserted) one) */ +    for (new_num = 0; new_num < vn->vn_nr_item; new_num ++) { +	int j; +	struct virtual_item * vi = vn->vn_vi + new_num; +	int is_affected = ((new_num != vn->vn_affected_item_num) ? 0 : 1); +     + +	if (is_affected && vn->vn_mode == M_INSERT) +	    continue; +     +	/* get item number in source node */ +	j = old_item_num (new_num, vn->vn_affected_item_num, vn->vn_mode); +     +	vi->vi_item_len += ih_item_len(ih + j) + IH_SIZE; +	vi->vi_ih = ih + j; +	vi->vi_item = B_I_PITEM (Sh, ih + j); +	vi->vi_uarea = vn->vn_free_ptr; + +	// FIXME: there is no check, that item operation did not +	// consume too much memory +	vn->vn_free_ptr += op_create_vi (vn, vi, is_affected, tb->insert_size [0]); +	if (tb->vn_buf + tb->vn_buf_size < vn->vn_free_ptr) +	    reiserfs_panic (tb->tb_sb, "vs-8030: create_virtual_node: " +			    "virtual node space consumed"); + +	if (!is_affected) +	    /* this is not being changed */ +	    continue; +     +	if (vn->vn_mode == M_PASTE || vn->vn_mode == M_CUT) { +	    vn->vn_vi[new_num].vi_item_len += tb->insert_size[0]; +	    vi->vi_new_data = vn->vn_data; // pointer to data which is going to be pasted +	} +    } + +   +    /* virtual inserted item is not defined yet */ +    if (vn->vn_mode == M_INSERT) { +	struct virtual_item * vi = vn->vn_vi + vn->vn_affected_item_num; +       +	RFALSE( vn->vn_ins_ih == 0, +		"vs-8040: item header of inserted item is not specified"); +	vi->vi_item_len = tb->insert_size[0]; +	vi->vi_ih = vn->vn_ins_ih; +	vi->vi_item = vn->vn_data; +	vi->vi_uarea = vn->vn_free_ptr; +	 +	op_create_vi (vn, vi, 0/*not pasted or cut*/, tb->insert_size [0]); +    } +   +    /* set right merge flag we take right delimiting key and check whether it is a mergeable item */ +    if (tb->CFR[0]) { +	struct reiserfs_key * key; + +	key = B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]); +	if (op_is_left_mergeable (key, Sh->b_size) && (vn->vn_mode != M_DELETE || +						       vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1)) +		vn->vn_vi[vn->vn_nr_item-1].vi_type |= VI_TYPE_RIGHT_MERGEABLE; + +#ifdef CONFIG_REISERFS_CHECK +	if (op_is_left_mergeable (key, Sh->b_size) && +	    !(vn->vn_mode != M_DELETE || vn->vn_affected_item_num != B_NR_ITEMS (Sh) - 1) ) { +	    /* we delete last item and it could be merged with right neighbor's first item */ +	    if (!(B_NR_ITEMS (Sh) == 1 && is_direntry_le_ih (B_N_PITEM_HEAD (Sh, 0)) && +		  I_ENTRY_COUNT (B_N_PITEM_HEAD (Sh, 0)) == 1)) { +		/* node contains more than 1 item, or item is not directory item, or this item contains more than 1 entry */ +		print_block (Sh, 0, -1, -1); +		reiserfs_panic (tb->tb_sb, "vs-8045: create_virtual_node: rdkey %k, affected item==%d (mode==%c) Must be %c",  +				key, vn->vn_affected_item_num, vn->vn_mode, M_DELETE); +	    } else +		/* we can delete directory item, that has only one directory entry in it */ +		; +	} +#endif +     +    } +} + + +/* using virtual node check, how many items can be shifted to left +   neighbor */ +static void check_left (struct tree_balance * tb, int h, int cur_free) +{ +    int i; +    struct virtual_node * vn = tb->tb_vn; +    struct virtual_item * vi; +    int d_size, ih_size; + +    RFALSE( cur_free < 0, "vs-8050: cur_free (%d) < 0", cur_free); + +    /* internal level */ +    if (h > 0) {	 +	tb->lnum[h] = cur_free / (DC_SIZE + KEY_SIZE); +	return; +    } + +    /* leaf level */ + +    if (!cur_free || !vn->vn_nr_item) { +	/* no free space or nothing to move */ +	tb->lnum[h] = 0; +	tb->lbytes = -1; +	return; +    } + +    RFALSE( !PATH_H_PPARENT (tb->tb_path, 0), +	    "vs-8055: parent does not exist or invalid"); + +    vi = vn->vn_vi; +    if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_LEFT_MERGEABLE) ? IH_SIZE : 0))) { +	/* all contents of S[0] fits into L[0] */ + +	RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, +		"vs-8055: invalid mode or balance condition failed"); + +	tb->lnum[0] = vn->vn_nr_item; +	tb->lbytes = -1; +	return; +    } +   + +    d_size = 0, ih_size = IH_SIZE; + +    /* first item may be merge with last item in left neighbor */ +    if (vi->vi_type & VI_TYPE_LEFT_MERGEABLE) +	d_size = -((int)IH_SIZE), ih_size = 0; + +    tb->lnum[0] = 0; +    for (i = 0; i < vn->vn_nr_item; i ++, ih_size = IH_SIZE, d_size = 0, vi ++) { +	d_size += vi->vi_item_len; +	if (cur_free >= d_size) {	 +	    /* the item can be shifted entirely */ +	    cur_free -= d_size; +	    tb->lnum[0] ++; +	    continue; +	} +       +	/* the item cannot be shifted entirely, try to split it */ +	/* check whether L[0] can hold ih and at least one byte of the item body */ +	if (cur_free <= ih_size) { +	    /* cannot shift even a part of the current item */ +	    tb->lbytes = -1; +	    return; +	} +	cur_free -= ih_size; +     +	tb->lbytes = op_check_left (vi, cur_free, 0, 0); +	if (tb->lbytes != -1) +	    /* count partially shifted item */ +	    tb->lnum[0] ++; +     +	break; +    } +   +    return; +} + + +/* using virtual node check, how many items can be shifted to right +   neighbor */ +static void check_right (struct tree_balance * tb, int h, int cur_free) +{ +    int i; +    struct virtual_node * vn = tb->tb_vn; +    struct virtual_item * vi; +    int d_size, ih_size; + +    RFALSE( cur_free < 0, "vs-8070: cur_free < 0"); +     +    /* internal level */ +    if (h > 0) { +	tb->rnum[h] = cur_free / (DC_SIZE + KEY_SIZE); +	return; +    } +     +    /* leaf level */ +     +    if (!cur_free || !vn->vn_nr_item) { +	/* no free space  */ +	tb->rnum[h] = 0; +	tb->rbytes = -1; +	return; +    } +   +    RFALSE( !PATH_H_PPARENT (tb->tb_path, 0), +	    "vs-8075: parent does not exist or invalid"); +   +    vi = vn->vn_vi + vn->vn_nr_item - 1; +    if ((unsigned int)cur_free >= (vn->vn_size - ((vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) ? IH_SIZE : 0))) { +	/* all contents of S[0] fits into R[0] */ +	 +	RFALSE( vn->vn_mode == M_INSERT || vn->vn_mode == M_PASTE, +		"vs-8080: invalid mode or balance condition failed"); + +	tb->rnum[h] = vn->vn_nr_item; +	tb->rbytes = -1; +	return; +    } +     +    d_size = 0, ih_size = IH_SIZE; +     +    /* last item may be merge with first item in right neighbor */ +    if (vi->vi_type & VI_TYPE_RIGHT_MERGEABLE) +	d_size = -(int)IH_SIZE, ih_size = 0; + +    tb->rnum[0] = 0; +    for (i = vn->vn_nr_item - 1; i >= 0; i --, d_size = 0, ih_size = IH_SIZE, vi --) { +	d_size += vi->vi_item_len; +	if (cur_free >= d_size) {	 +	    /* the item can be shifted entirely */ +	    cur_free -= d_size; +	    tb->rnum[0] ++; +	    continue; +	} +	 +	/* check whether R[0] can hold ih and at least one byte of the item body */ +	if ( cur_free <= ih_size ) {    /* cannot shift even a part of the current item */ +	    tb->rbytes = -1; +	    return; +	} +	 +	/* R[0] can hold the header of the item and at least one byte of its body */ +	cur_free -= ih_size;	/* cur_free is still > 0 */ + +	tb->rbytes = op_check_right (vi, cur_free); +	if (tb->rbytes != -1) +	    /* count partially shifted item */ +	    tb->rnum[0] ++; +     +	break; +    } +	 +  return; +} + + +/* + * from - number of items, which are shifted to left neighbor entirely + * to - number of item, which are shifted to right neighbor entirely + * from_bytes - number of bytes of boundary item (or directory entries) which are shifted to left neighbor + * to_bytes - number of bytes of boundary item (or directory entries) which are shifted to right neighbor */ +static int get_num_ver (int mode, struct tree_balance * tb, int h, +			int from, int from_bytes, +			int to,   int to_bytes, +			short * snum012, int flow +    ) +{ +    int i; +    int cur_free; +    //    int bytes; +    int units; +    struct virtual_node * vn = tb->tb_vn; +    //    struct virtual_item * vi; + +    int total_node_size, max_node_size, current_item_size; +    int needed_nodes; +    int start_item, 	/* position of item we start filling node from */ +	end_item,	/* position of item we finish filling node by */ +	start_bytes,/* number of first bytes (entries for directory) of start_item-th item  +		       we do not include into node that is being filled */ +	end_bytes;	/* number of last bytes (entries for directory) of end_item-th item  +			   we do node include into node that is being filled */ +    int split_item_positions[2]; /* these are positions in virtual item of +				    items, that are split between S[0] and +				    S1new and S1new and S2new */ + +    split_item_positions[0] = -1; +    split_item_positions[1] = -1; + +    /* We only create additional nodes if we are in insert or paste mode +       or we are in replace mode at the internal level. If h is 0 and +       the mode is M_REPLACE then in fix_nodes we change the mode to +       paste or insert before we get here in the code.  */ +    RFALSE( tb->insert_size[h] < 0  || (mode != M_INSERT && mode != M_PASTE), +	    "vs-8100: insert_size < 0 in overflow"); + +    max_node_size = MAX_CHILD_SIZE (PATH_H_PBUFFER (tb->tb_path, h)); + +    /* snum012 [0-2] - number of items, that lay +       to S[0], first new node and second new node */ +    snum012[3] = -1;	/* s1bytes */ +    snum012[4] = -1;	/* s2bytes */ + +    /* internal level */ +    if (h > 0) { +	i = ((to - from) * (KEY_SIZE + DC_SIZE) + DC_SIZE); +	if (i == max_node_size) +	    return 1; +	return (i / max_node_size + 1); +    } + +    /* leaf level */ +    needed_nodes = 1; +    total_node_size = 0; +    cur_free = max_node_size; + +    // start from 'from'-th item +    start_item = from; +    // skip its first 'start_bytes' units +    start_bytes = ((from_bytes != -1) ? from_bytes : 0); + +    // last included item is the 'end_item'-th one +    end_item = vn->vn_nr_item - to - 1; +    // do not count last 'end_bytes' units of 'end_item'-th item +    end_bytes = (to_bytes != -1) ? to_bytes : 0; + +    /* go through all item beginning from the start_item-th item and ending by +       the end_item-th item. Do not count first 'start_bytes' units of +       'start_item'-th item and last 'end_bytes' of 'end_item'-th item */ +     +    for (i = start_item; i <= end_item; i ++) { +	struct virtual_item * vi = vn->vn_vi + i; +	int skip_from_end = ((i == end_item) ? end_bytes : 0); + +	RFALSE( needed_nodes > 3, "vs-8105: too many nodes are needed"); + +	/* get size of current item */ +	current_item_size = vi->vi_item_len; + +	/* do not take in calculation head part (from_bytes) of from-th item */ +	current_item_size -= op_part_size (vi, 0/*from start*/, start_bytes); + +	/* do not take in calculation tail part of last item */ +	current_item_size -= op_part_size (vi, 1/*from end*/, skip_from_end); + +	/* if item fits into current node entierly */ +	if (total_node_size + current_item_size <= max_node_size) { +	    snum012[needed_nodes - 1] ++; +	    total_node_size += current_item_size; +	    start_bytes = 0; +	    continue; +	} + +	if (current_item_size > max_node_size) { +	    /* virtual item length is longer, than max size of item in +               a node. It is impossible for direct item */ +	    RFALSE( is_direct_le_ih (vi->vi_ih), +		    "vs-8110: " +		    "direct item length is %d. It can not be longer than %d", +		    current_item_size, max_node_size); +	    /* we will try to split it */ +	    flow = 1; +	} + +	if (!flow) { +	    /* as we do not split items, take new node and continue */ +	    needed_nodes ++; i --; total_node_size = 0; +	    continue; +	} + +	// calculate number of item units which fit into node being +	// filled +	{ +	    int free_space; + +	    free_space = max_node_size - total_node_size - IH_SIZE; +	    units = op_check_left (vi, free_space, start_bytes, skip_from_end); +	    if (units == -1) { +		/* nothing fits into current node, take new node and continue */ +		needed_nodes ++, i--, total_node_size = 0; +		continue; +	    } +	} + +	/* something fits into the current node */ +	//if (snum012[3] != -1 || needed_nodes != 1) +	//  reiserfs_panic (tb->tb_sb, "vs-8115: get_num_ver: too many nodes required"); +	//snum012[needed_nodes - 1 + 3] = op_unit_num (vi) - start_bytes - units; +	start_bytes += units; +	snum012[needed_nodes - 1 + 3] = units; + +	if (needed_nodes > 2) +	    reiserfs_warning (tb->tb_sb, "vs-8111: get_num_ver: " +			      "split_item_position is out of boundary"); +	snum012[needed_nodes - 1] ++; +	split_item_positions[needed_nodes - 1] = i; +	needed_nodes ++; +	/* continue from the same item with start_bytes != -1 */ +	start_item = i; +	i --; +	total_node_size = 0; +    } + +    // sum012[4] (if it is not -1) contains number of units of which +    // are to be in S1new, snum012[3] - to be in S0. They are supposed +    // to be S1bytes and S2bytes correspondingly, so recalculate +    if (snum012[4] > 0) { +	int split_item_num; +	int bytes_to_r, bytes_to_l; +	int bytes_to_S1new; +     +	split_item_num = split_item_positions[1]; +	bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); +	bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); +	bytes_to_S1new = ((split_item_positions[0] == split_item_positions[1]) ? snum012[3] : 0); + +	// s2bytes +	snum012[4] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[4] - bytes_to_r - bytes_to_l - bytes_to_S1new; + +	if (vn->vn_vi[split_item_num].vi_index != TYPE_DIRENTRY && +	    vn->vn_vi[split_item_num].vi_index != TYPE_INDIRECT) +	    reiserfs_warning (tb->tb_sb, "vs-8115: get_num_ver: not " +			      "directory or indirect item"); +    } + +    /* now we know S2bytes, calculate S1bytes */ +    if (snum012[3] > 0) { +	int split_item_num; +	int bytes_to_r, bytes_to_l; +	int bytes_to_S2new; +     +	split_item_num = split_item_positions[0]; +	bytes_to_l = ((from == split_item_num && from_bytes != -1) ? from_bytes : 0); +	bytes_to_r = ((end_item == split_item_num && end_bytes != -1) ? end_bytes : 0); +	bytes_to_S2new = ((split_item_positions[0] == split_item_positions[1] && snum012[4] != -1) ? snum012[4] : 0); + +	// s1bytes +	snum012[3] = op_unit_num (&vn->vn_vi[split_item_num]) - snum012[3] - bytes_to_r - bytes_to_l - bytes_to_S2new; +    } +     +    return needed_nodes; +} + + +#ifdef CONFIG_REISERFS_CHECK +extern struct tree_balance * cur_tb; +#endif + + +/* Set parameters for balancing. + * Performs write of results of analysis of balancing into structure tb, + * where it will later be used by the functions that actually do the balancing.  + * Parameters: + *	tb	tree_balance structure; + *	h	current level of the node; + *	lnum	number of items from S[h] that must be shifted to L[h]; + *	rnum	number of items from S[h] that must be shifted to R[h]; + *	blk_num	number of blocks that S[h] will be splitted into; + *	s012	number of items that fall into splitted nodes. + *	lbytes	number of bytes which flow to the left neighbor from the item that is not + *		not shifted entirely + *	rbytes	number of bytes which flow to the right neighbor from the item that is not + *		not shifted entirely + *	s1bytes	number of bytes which flow to the first  new node when S[0] splits (this number is contained in s012 array) + */ + +static void set_parameters (struct tree_balance * tb, int h, int lnum, +			    int rnum, int blk_num, short * s012, int lb, int rb) +{ + +  tb->lnum[h] = lnum; +  tb->rnum[h] = rnum; +  tb->blknum[h] = blk_num; + +  if (h == 0) +    {  /* only for leaf level */ +      if (s012 != NULL) +	{ +	  tb->s0num = * s012 ++, +	  tb->s1num = * s012 ++, +	  tb->s2num = * s012 ++; +	  tb->s1bytes = * s012 ++; +	  tb->s2bytes = * s012; +	} +      tb->lbytes = lb; +      tb->rbytes = rb; +    } +  PROC_INFO_ADD( tb -> tb_sb, lnum[ h ], lnum ); +  PROC_INFO_ADD( tb -> tb_sb, rnum[ h ], rnum ); + +  PROC_INFO_ADD( tb -> tb_sb, lbytes[ h ], lb ); +  PROC_INFO_ADD( tb -> tb_sb, rbytes[ h ], rb ); +} + + + +/* check, does node disappear if we shift tb->lnum[0] items to left +   neighbor and tb->rnum[0] to the right one. */ +static int is_leaf_removable (struct tree_balance * tb) +{ +  struct virtual_node * vn = tb->tb_vn; +  int to_left, to_right; +  int size; +  int remain_items; + +  /* number of items, that will be shifted to left (right) neighbor +     entirely */ +  to_left = tb->lnum[0] - ((tb->lbytes != -1) ? 1 : 0); +  to_right = tb->rnum[0] - ((tb->rbytes != -1) ? 1 : 0); +  remain_items = vn->vn_nr_item; + +  /* how many items remain in S[0] after shiftings to neighbors */ +  remain_items -= (to_left + to_right); + +  if (remain_items < 1) { +    /* all content of node can be shifted to neighbors */ +    set_parameters (tb, 0, to_left, vn->vn_nr_item - to_left, 0, NULL, -1, -1);     +    return 1; +  } +   +  if (remain_items > 1 || tb->lbytes == -1 || tb->rbytes == -1) +    /* S[0] is not removable */ +    return 0; + +  /* check, whether we can divide 1 remaining item between neighbors */ + +  /* get size of remaining item (in item units) */ +  size = op_unit_num (&(vn->vn_vi[to_left])); + +  if (tb->lbytes + tb->rbytes >= size) { +    set_parameters (tb, 0, to_left + 1, to_right + 1, 0, NULL, tb->lbytes, -1); +    return 1; +  } + +  return 0; +} + + +/* check whether L, S, R can be joined in one node */ +static int are_leaves_removable (struct tree_balance * tb, int lfree, int rfree) +{ +  struct virtual_node * vn = tb->tb_vn; +  int ih_size; +  struct buffer_head *S0; + +  S0 = PATH_H_PBUFFER (tb->tb_path, 0); + +  ih_size = 0; +  if (vn->vn_nr_item) { +    if (vn->vn_vi[0].vi_type & VI_TYPE_LEFT_MERGEABLE) +      ih_size += IH_SIZE; +     +	if (vn->vn_vi[vn->vn_nr_item-1].vi_type & VI_TYPE_RIGHT_MERGEABLE) +	    ih_size += IH_SIZE; +    } else { +	/* there was only one item and it will be deleted */ +	struct item_head * ih; +     +    RFALSE( B_NR_ITEMS (S0) != 1, +	    "vs-8125: item number must be 1: it is %d", B_NR_ITEMS(S0)); + +    ih = B_N_PITEM_HEAD (S0, 0); +    if (tb->CFR[0] && !comp_short_le_keys (&(ih->ih_key), B_N_PDELIM_KEY (tb->CFR[0], tb->rkey[0]))) +	if (is_direntry_le_ih (ih)) { +	    /* Directory must be in correct state here: that is +	       somewhere at the left side should exist first directory +	       item. But the item being deleted can not be that first +	       one because its right neighbor is item of the same +	       directory. (But first item always gets deleted in last +	       turn). So, neighbors of deleted item can be merged, so +	       we can save ih_size */ +	    ih_size = IH_SIZE; +	     +	    /* we might check that left neighbor exists and is of the +	       same directory */ +	    RFALSE(le_ih_k_offset (ih) == DOT_OFFSET, +		"vs-8130: first directory item can not be removed until directory is not empty"); +      } +     +  } + +  if (MAX_CHILD_SIZE (S0) + vn->vn_size <= rfree + lfree + ih_size) { +    set_parameters (tb, 0, -1, -1, -1, NULL, -1, -1); +    PROC_INFO_INC( tb -> tb_sb, leaves_removable ); +    return 1;   +  } +  return 0; +   +} + + + +/* when we do not split item, lnum and rnum are numbers of entire items */ +#define SET_PAR_SHIFT_LEFT \ +if (h)\ +{\ +   int to_l;\ +   \ +   to_l = (MAX_NR_KEY(Sh)+1 - lpar + vn->vn_nr_item + 1) / 2 -\ +	      (MAX_NR_KEY(Sh) + 1 - lpar);\ +	      \ +	      set_parameters (tb, h, to_l, 0, lnver, NULL, -1, -1);\ +}\ +else \ +{\ +   if (lset==LEFT_SHIFT_FLOW)\ +     set_parameters (tb, h, lpar, 0, lnver, snum012+lset,\ +		     tb->lbytes, -1);\ +   else\ +     set_parameters (tb, h, lpar - (tb->lbytes!=-1), 0, lnver, snum012+lset,\ +		     -1, -1);\ +} + + +#define SET_PAR_SHIFT_RIGHT \ +if (h)\ +{\ +   int to_r;\ +   \ +   to_r = (MAX_NR_KEY(Sh)+1 - rpar + vn->vn_nr_item + 1) / 2 - (MAX_NR_KEY(Sh) + 1 - rpar);\ +   \ +   set_parameters (tb, h, 0, to_r, rnver, NULL, -1, -1);\ +}\ +else \ +{\ +   if (rset==RIGHT_SHIFT_FLOW)\ +     set_parameters (tb, h, 0, rpar, rnver, snum012+rset,\ +		  -1, tb->rbytes);\ +   else\ +     set_parameters (tb, h, 0, rpar - (tb->rbytes!=-1), rnver, snum012+rset,\ +		  -1, -1);\ +} + + +static void free_buffers_in_tb ( +		       struct tree_balance * p_s_tb +		       ) { +  int n_counter; + +  decrement_counters_in_path(p_s_tb->tb_path); +   +  for ( n_counter = 0; n_counter < MAX_HEIGHT; n_counter++ ) { +    decrement_bcount(p_s_tb->L[n_counter]); +    p_s_tb->L[n_counter] = NULL; +    decrement_bcount(p_s_tb->R[n_counter]); +    p_s_tb->R[n_counter] = NULL; +    decrement_bcount(p_s_tb->FL[n_counter]); +    p_s_tb->FL[n_counter] = NULL; +    decrement_bcount(p_s_tb->FR[n_counter]); +    p_s_tb->FR[n_counter] = NULL; +    decrement_bcount(p_s_tb->CFL[n_counter]); +    p_s_tb->CFL[n_counter] = NULL; +    decrement_bcount(p_s_tb->CFR[n_counter]); +    p_s_tb->CFR[n_counter] = NULL; +  } +} + + +/* Get new buffers for storing new nodes that are created while balancing. + * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked; + *	        CARRY_ON - schedule didn't occur while the function worked; + *	        NO_DISK_SPACE - no disk space. + */ +/* The function is NOT SCHEDULE-SAFE! */ +static int  get_empty_nodes( +              struct tree_balance * p_s_tb, +              int n_h +            ) { +  struct buffer_head  * p_s_new_bh, +    		      *	p_s_Sh = PATH_H_PBUFFER (p_s_tb->tb_path, n_h); +  b_blocknr_t	      *	p_n_blocknr, +    			a_n_blocknrs[MAX_AMOUNT_NEEDED] = {0, }; +  int       		n_counter, +   			n_number_of_freeblk, +                	n_amount_needed,/* number of needed empty blocks */ +			n_retval = CARRY_ON; +  struct super_block *	p_s_sb = p_s_tb->tb_sb; + + +  /* number_of_freeblk is the number of empty blocks which have been +     acquired for use by the balancing algorithm minus the number of +     empty blocks used in the previous levels of the analysis, +     number_of_freeblk = tb->cur_blknum can be non-zero if a schedule occurs +     after empty blocks are acquired, and the balancing analysis is +     then restarted, amount_needed is the number needed by this level +     (n_h) of the balancing analysis. +			     +     Note that for systems with many processes writing, it would be +     more layout optimal to calculate the total number needed by all +     levels and then to run reiserfs_new_blocks to get all of them at once.  */ + +  /* Initiate number_of_freeblk to the amount acquired prior to the restart of +     the analysis or 0 if not restarted, then subtract the amount needed +     by all of the levels of the tree below n_h. */ +  /* blknum includes S[n_h], so we subtract 1 in this calculation */ +  for ( n_counter = 0, n_number_of_freeblk = p_s_tb->cur_blknum; n_counter < n_h; n_counter++ ) +    n_number_of_freeblk -= ( p_s_tb->blknum[n_counter] ) ? (p_s_tb->blknum[n_counter] - 1) : 0; + +  /* Allocate missing empty blocks. */ +  /* if p_s_Sh == 0  then we are getting a new root */ +  n_amount_needed = ( p_s_Sh ) ? (p_s_tb->blknum[n_h] - 1) : 1; +  /*  Amount_needed = the amount that we need more than the amount that we have. */ +  if ( n_amount_needed > n_number_of_freeblk ) +    n_amount_needed -= n_number_of_freeblk; +  else /* If we have enough already then there is nothing to do. */ +    return CARRY_ON; + +  /* No need to check quota - is not allocated for blocks used for formatted nodes */ +  if (reiserfs_new_form_blocknrs (p_s_tb, a_n_blocknrs, +                                   n_amount_needed) == NO_DISK_SPACE) +    return NO_DISK_SPACE; + +  /* for each blocknumber we just got, get a buffer and stick it on FEB */ +  for ( p_n_blocknr = a_n_blocknrs, n_counter = 0; n_counter < n_amount_needed; +	p_n_blocknr++, n_counter++ ) {  + +    RFALSE( ! *p_n_blocknr, +	    "PAP-8135: reiserfs_new_blocknrs failed when got new blocks"); + +    p_s_new_bh = sb_getblk(p_s_sb, *p_n_blocknr); +    RFALSE (buffer_dirty (p_s_new_bh) || +	    buffer_journaled (p_s_new_bh) || +	    buffer_journal_dirty (p_s_new_bh), +	    "PAP-8140: journlaled or dirty buffer %b for the new block",  +	    p_s_new_bh); +     +    /* Put empty buffers into the array. */ +    RFALSE (p_s_tb->FEB[p_s_tb->cur_blknum], +	    "PAP-8141: busy slot for new buffer"); + +    set_buffer_journal_new (p_s_new_bh); +    p_s_tb->FEB[p_s_tb->cur_blknum++] = p_s_new_bh; +  } + +  if ( n_retval == CARRY_ON && FILESYSTEM_CHANGED_TB (p_s_tb) ) +    n_retval = REPEAT_SEARCH ; + +  return n_retval; +} + + +/* Get free space of the left neighbor, which is stored in the parent + * node of the left neighbor.  */ +static int get_lfree (struct tree_balance * tb, int h) +{ +    struct buffer_head * l, * f; +    int order; + +    if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (l = tb->FL[h]) == 0) +	return 0; + +    if (f == l) +	order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) - 1; +    else { +	order = B_NR_ITEMS (l); +	f = l; +    } + +    return (MAX_CHILD_SIZE(f) - dc_size(B_N_CHILD(f,order))); +} + + +/* Get free space of the right neighbor, + * which is stored in the parent node of the right neighbor. + */ +static int get_rfree (struct tree_balance * tb, int h) +{ +  struct buffer_head * r, * f; +  int order; + +  if ((f = PATH_H_PPARENT (tb->tb_path, h)) == 0 || (r = tb->FR[h]) == 0) +    return 0; + +  if (f == r) +      order = PATH_H_B_ITEM_ORDER (tb->tb_path, h) + 1; +  else { +      order = 0; +      f = r; +  } + +  return (MAX_CHILD_SIZE(f) - dc_size( B_N_CHILD(f,order))); + +} + + +/* Check whether left neighbor is in memory. */ +static int  is_left_neighbor_in_cache( +              struct tree_balance * p_s_tb, +              int                   n_h +            ) { +  struct buffer_head  * p_s_father, * left; +  struct super_block  * p_s_sb = p_s_tb->tb_sb; +  b_blocknr_t		n_left_neighbor_blocknr; +  int                   n_left_neighbor_position; + +  if ( ! p_s_tb->FL[n_h] ) /* Father of the left neighbor does not exist. */ +    return 0; + +  /* Calculate father of the node to be balanced. */ +  p_s_father = PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1); + +  RFALSE( ! p_s_father ||  +	  ! B_IS_IN_TREE (p_s_father) ||  +	  ! B_IS_IN_TREE (p_s_tb->FL[n_h]) || +	  ! buffer_uptodate (p_s_father) ||  +	  ! buffer_uptodate (p_s_tb->FL[n_h]), +	  "vs-8165: F[h] (%b) or FL[h] (%b) is invalid",  +	  p_s_father, p_s_tb->FL[n_h]); + + +  /* Get position of the pointer to the left neighbor into the left father. */ +  n_left_neighbor_position = ( p_s_father == p_s_tb->FL[n_h] ) ? +                      p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]); +  /* Get left neighbor block number. */ +  n_left_neighbor_blocknr = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_left_neighbor_position); +  /* Look for the left neighbor in the cache. */ +  if ( (left = sb_find_get_block(p_s_sb, n_left_neighbor_blocknr)) ) { + +    RFALSE( buffer_uptodate (left) && ! B_IS_IN_TREE(left), +	    "vs-8170: left neighbor (%b %z) is not in the tree", left, left); +    put_bh(left) ; +    return 1; +  } + +  return 0; +} + + +#define LEFT_PARENTS  'l' +#define RIGHT_PARENTS 'r' + + +static void decrement_key (struct cpu_key * p_s_key) +{ +    // call item specific function for this key +    item_ops[cpu_key_k_type (p_s_key)]->decrement_key (p_s_key); +} + + + + +/* Calculate far left/right parent of the left/right neighbor of the current node, that + * is calculate the left/right (FL[h]/FR[h]) neighbor of the parent F[h]. + * Calculate left/right common parent of the current node and L[h]/R[h]. + * Calculate left/right delimiting key position. + * Returns:	PATH_INCORRECT   - path in the tree is not correct; + 		SCHEDULE_OCCURRED - schedule occurred while the function worked; + *	        CARRY_ON         - schedule didn't occur while the function worked; + */ +static int  get_far_parent (struct tree_balance *   p_s_tb, +			    int                     n_h, +			    struct buffer_head  **  pp_s_father, +			    struct buffer_head  **  pp_s_com_father, +			    char                    c_lr_par)  +{ +    struct buffer_head  * p_s_parent; +    INITIALIZE_PATH (s_path_to_neighbor_father); +    struct path * p_s_path = p_s_tb->tb_path; +    struct cpu_key	s_lr_father_key; +    int                   n_counter, +	n_position = INT_MAX, +	n_first_last_position = 0, +	n_path_offset = PATH_H_PATH_OFFSET(p_s_path, n_h); + +    /* Starting from F[n_h] go upwards in the tree, and look for the common +      ancestor of F[n_h], and its neighbor l/r, that should be obtained. */ + +    n_counter = n_path_offset; + +    RFALSE( n_counter < FIRST_PATH_ELEMENT_OFFSET, +	    "PAP-8180: invalid path length"); + +   +    for ( ; n_counter > FIRST_PATH_ELEMENT_OFFSET; n_counter--  )  { +	/* Check whether parent of the current buffer in the path is really parent in the tree. */ +	if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_path, n_counter - 1)) ) +	    return REPEAT_SEARCH; +	/* Check whether position in the parent is correct. */ +	if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_counter - 1)) > B_NR_ITEMS(p_s_parent) ) +	    return REPEAT_SEARCH; +	/* Check whether parent at the path really points to the child. */ +	if ( B_N_CHILD_NUM(p_s_parent, n_position) != +	     PATH_OFFSET_PBUFFER(p_s_path, n_counter)->b_blocknr ) +	    return REPEAT_SEARCH; +	/* Return delimiting key if position in the parent is not equal to first/last one. */ +	if ( c_lr_par == RIGHT_PARENTS ) +	    n_first_last_position = B_NR_ITEMS (p_s_parent); +	if ( n_position != n_first_last_position ) { +	    *pp_s_com_father = p_s_parent; +	    get_bh(*pp_s_com_father) ; +	    /*(*pp_s_com_father = p_s_parent)->b_count++;*/ +	    break; +	} +    } + +    /* if we are in the root of the tree, then there is no common father */ +    if ( n_counter == FIRST_PATH_ELEMENT_OFFSET ) { +	/* Check whether first buffer in the path is the root of the tree. */ +	if ( PATH_OFFSET_PBUFFER(p_s_tb->tb_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == +	     SB_ROOT_BLOCK (p_s_tb->tb_sb) ) { +	    *pp_s_father = *pp_s_com_father = NULL; +	    return CARRY_ON; +	} +	return REPEAT_SEARCH; +    } + +    RFALSE( B_LEVEL (*pp_s_com_father) <= DISK_LEAF_NODE_LEVEL, +	    "PAP-8185: (%b %z) level too small",  +	    *pp_s_com_father, *pp_s_com_father); + +    /* Check whether the common parent is locked. */ + +    if ( buffer_locked (*pp_s_com_father) ) { +	__wait_on_buffer(*pp_s_com_father); +	if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { +	    decrement_bcount(*pp_s_com_father); +	    return REPEAT_SEARCH; +	} +    } + +    /* So, we got common parent of the current node and its left/right neighbor. +     Now we are geting the parent of the left/right neighbor. */ + +    /* Form key to get parent of the left/right neighbor. */ +    le_key2cpu_key (&s_lr_father_key, B_N_PDELIM_KEY(*pp_s_com_father, ( c_lr_par == LEFT_PARENTS ) ? +						     (p_s_tb->lkey[n_h - 1] = n_position - 1) : (p_s_tb->rkey[n_h - 1] = n_position))); + + +    if ( c_lr_par == LEFT_PARENTS ) +	decrement_key(&s_lr_father_key); + +    if (search_by_key(p_s_tb->tb_sb, &s_lr_father_key, &s_path_to_neighbor_father, n_h + 1) == IO_ERROR) +	// path is released +	return IO_ERROR; + +    if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { +	decrement_counters_in_path(&s_path_to_neighbor_father); +	decrement_bcount(*pp_s_com_father); +	return REPEAT_SEARCH; +    } + +    *pp_s_father = PATH_PLAST_BUFFER(&s_path_to_neighbor_father); + +    RFALSE( B_LEVEL (*pp_s_father) != n_h + 1, +	    "PAP-8190: (%b %z) level too small", *pp_s_father, *pp_s_father); +    RFALSE( s_path_to_neighbor_father.path_length < FIRST_PATH_ELEMENT_OFFSET, +	    "PAP-8192: path length is too small"); + +    s_path_to_neighbor_father.path_length--; +    decrement_counters_in_path(&s_path_to_neighbor_father); +    return CARRY_ON; +} + + +/* Get parents of neighbors of node in the path(S[n_path_offset]) and common parents of + * S[n_path_offset] and L[n_path_offset]/R[n_path_offset]: F[n_path_offset], FL[n_path_offset], + * FR[n_path_offset], CFL[n_path_offset], CFR[n_path_offset]. + * Calculate numbers of left and right delimiting keys position: lkey[n_path_offset], rkey[n_path_offset]. + * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked; + *	        CARRY_ON - schedule didn't occur while the function worked; + */ +static int  get_parents (struct tree_balance * p_s_tb, int n_h) +{ +    struct path         * p_s_path = p_s_tb->tb_path; +    int                   n_position, +	n_ret_value, +	n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); +    struct buffer_head  * p_s_curf, +	* p_s_curcf; + +    /* Current node is the root of the tree or will be root of the tree */ +    if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) { +	/* The root can not have parents. +	   Release nodes which previously were obtained as parents of the current node neighbors. */ +	decrement_bcount(p_s_tb->FL[n_h]); +	decrement_bcount(p_s_tb->CFL[n_h]); +	decrement_bcount(p_s_tb->FR[n_h]); +	decrement_bcount(p_s_tb->CFR[n_h]); +	p_s_tb->FL[n_h] = p_s_tb->CFL[n_h] = p_s_tb->FR[n_h] = p_s_tb->CFR[n_h] = NULL; +	return CARRY_ON; +    } +   +    /* Get parent FL[n_path_offset] of L[n_path_offset]. */ +    if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) )  { +	/* Current node is not the first child of its parent. */ +	/*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/ +	p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); +	get_bh(p_s_curf) ; +	get_bh(p_s_curf) ; +	p_s_tb->lkey[n_h] = n_position - 1; +    } +    else  { +	/* Calculate current parent of L[n_path_offset], which is the left neighbor of the current node. +	   Calculate current common parent of L[n_path_offset] and the current node. Note that +	   CFL[n_path_offset] not equal FL[n_path_offset] and CFL[n_path_offset] not equal F[n_path_offset]. +	   Calculate lkey[n_path_offset]. */ +	if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf, +					   &p_s_curcf, LEFT_PARENTS)) != CARRY_ON ) +	    return n_ret_value; +    } + +    decrement_bcount(p_s_tb->FL[n_h]); +    p_s_tb->FL[n_h] = p_s_curf; /* New initialization of FL[n_h]. */ +    decrement_bcount(p_s_tb->CFL[n_h]); +    p_s_tb->CFL[n_h] = p_s_curcf; /* New initialization of CFL[n_h]. */ + +    RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) ||  +	    (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)), +	    "PAP-8195: FL (%b) or CFL (%b) is invalid", p_s_curf, p_s_curcf); + +/* Get parent FR[n_h] of R[n_h]. */ + +/* Current node is the last child of F[n_h]. FR[n_h] != F[n_h]. */ +    if ( n_position == B_NR_ITEMS (PATH_H_PBUFFER(p_s_path, n_h + 1)) ) { +/* Calculate current parent of R[n_h], which is the right neighbor of F[n_h]. +   Calculate current common parent of R[n_h] and current node. Note that CFR[n_h] +   not equal FR[n_path_offset] and CFR[n_h] not equal F[n_h]. */ +	if ( (n_ret_value = get_far_parent(p_s_tb, n_h + 1, &p_s_curf,  &p_s_curcf, RIGHT_PARENTS)) != CARRY_ON ) +	    return n_ret_value; +    } +    else { +/* Current node is not the last child of its parent F[n_h]. */ +	/*(p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1))->b_count += 2;*/ +	p_s_curf = p_s_curcf = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1); +	get_bh(p_s_curf) ; +	get_bh(p_s_curf) ; +	p_s_tb->rkey[n_h] = n_position; +    }	 + +    decrement_bcount(p_s_tb->FR[n_h]); +    p_s_tb->FR[n_h] = p_s_curf; /* New initialization of FR[n_path_offset]. */ +     +    decrement_bcount(p_s_tb->CFR[n_h]); +    p_s_tb->CFR[n_h] = p_s_curcf; /* New initialization of CFR[n_path_offset]. */ + +    RFALSE( (p_s_curf && !B_IS_IN_TREE (p_s_curf)) || +            (p_s_curcf && !B_IS_IN_TREE (p_s_curcf)), +	    "PAP-8205: FR (%b) or CFR (%b) is invalid", p_s_curf, p_s_curcf); + +    return CARRY_ON; +} + + +/* it is possible to remove node as result of shiftings to +   neighbors even when we insert or paste item. */ +static inline int can_node_be_removed (int mode, int lfree, int sfree, int rfree, struct tree_balance * tb, int h) +{ +    struct buffer_head * Sh = PATH_H_PBUFFER (tb->tb_path, h); +    int levbytes = tb->insert_size[h]; +    struct item_head * ih; +    struct reiserfs_key * r_key = NULL; + +    ih = B_N_PITEM_HEAD (Sh, 0); +    if ( tb->CFR[h] ) +	r_key = B_N_PDELIM_KEY(tb->CFR[h],tb->rkey[h]); +   +    if ( +	lfree + rfree + sfree < MAX_CHILD_SIZE(Sh) + levbytes +	/* shifting may merge items which might save space */ +	- (( ! h && op_is_left_mergeable (&(ih->ih_key), Sh->b_size) ) ? IH_SIZE : 0) +	- (( ! h && r_key && op_is_left_mergeable (r_key, Sh->b_size) ) ? IH_SIZE : 0) +	+ (( h ) ? KEY_SIZE : 0)) +    { +	/* node can not be removed */ +	if (sfree >= levbytes ) { /* new item fits into node S[h] without any shifting */ +	    if ( ! h ) +		tb->s0num = B_NR_ITEMS(Sh) + ((mode == M_INSERT ) ? 1 : 0); +	    set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); +	    return NO_BALANCING_NEEDED; +	} +    } +    PROC_INFO_INC( tb -> tb_sb, can_node_be_removed[ h ] ); +    return !NO_BALANCING_NEEDED; +} + + + +/* Check whether current node S[h] is balanced when increasing its size by + * Inserting or Pasting. + * Calculate parameters for balancing for current level h. + * Parameters: + *	tb	tree_balance structure; + *	h	current level of the node; + *	inum	item number in S[h]; + *	mode	i - insert, p - paste; + * Returns:	1 - schedule occurred;  + *	        0 - balancing for higher levels needed; + *	       -1 - no balancing for higher levels needed; + *	       -2 - no disk space. + */ +/* ip means Inserting or Pasting */ +static int ip_check_balance (struct tree_balance * tb, int h) +{ +    struct virtual_node * vn = tb->tb_vn; +    int levbytes,  /* Number of bytes that must be inserted into (value +		      is negative if bytes are deleted) buffer which +		      contains node being balanced.  The mnemonic is +		      that the attempted change in node space used level +		      is levbytes bytes. */ +	n_ret_value; + +    int lfree, sfree, rfree /* free space in L, S and R */; + +    /* nver is short for number of vertixes, and lnver is the number if +       we shift to the left, rnver is the number if we shift to the +       right, and lrnver is the number if we shift in both directions. +       The goal is to minimize first the number of vertixes, and second, +       the number of vertixes whose contents are changed by shifting, +       and third the number of uncached vertixes whose contents are +       changed by shifting and must be read from disk.  */ +    int nver, lnver, rnver, lrnver; + +    /* used at leaf level only, S0 = S[0] is the node being balanced, +       sInum [ I = 0,1,2 ] is the number of items that will +       remain in node SI after balancing.  S1 and S2 are new +       nodes that might be created. */ +   +    /* we perform 8 calls to get_num_ver().  For each call we calculate five parameters. +       where 4th parameter is s1bytes and 5th - s2bytes +    */ +    short snum012[40] = {0,};	/* s0num, s1num, s2num for 8 cases  +				   0,1 - do not shift and do not shift but bottle +				   2 - shift only whole item to left +				   3 - shift to left and bottle as much as possible +				   4,5 - shift to right	(whole items and as much as possible +				   6,7 - shift to both directions (whole items and as much as possible) +				*/ + +    /* Sh is the node whose balance is currently being checked */ +    struct buffer_head * Sh; +   +    Sh = PATH_H_PBUFFER (tb->tb_path, h); +    levbytes = tb->insert_size[h]; +   +    /* Calculate balance parameters for creating new root. */ +    if ( ! Sh )  { +	if ( ! h ) +	    reiserfs_panic (tb->tb_sb, "vs-8210: ip_check_balance: S[0] can not be 0"); +	switch ( n_ret_value = get_empty_nodes (tb, h) )  { +	case CARRY_ON: +	    set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); +	    return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ + +	case NO_DISK_SPACE: +	case REPEAT_SEARCH: +	    return n_ret_value; +	default:    +	    reiserfs_panic(tb->tb_sb, "vs-8215: ip_check_balance: incorrect return value of get_empty_nodes"); +	} +    } +   +    if ( (n_ret_value = get_parents (tb, h)) != CARRY_ON ) /* get parents of S[h] neighbors. */ +	return n_ret_value; +   +    sfree = B_FREE_SPACE (Sh); + +    /* get free space of neighbors */ +    rfree = get_rfree (tb, h); +    lfree = get_lfree (tb, h); + +    if (can_node_be_removed (vn->vn_mode, lfree, sfree, rfree, tb, h) == NO_BALANCING_NEEDED) +	/* and new item fits into node S[h] without any shifting */ +	return NO_BALANCING_NEEDED; +      +    create_virtual_node (tb, h); + +    /*	 +	determine maximal number of items we can shift to the left neighbor (in tb structure) +	and the maximal number of bytes that can flow to the left neighbor +	from the left most liquid item that cannot be shifted from S[0] entirely (returned value) +    */ +    check_left (tb, h, lfree); + +    /* +      determine maximal number of items we can shift to the right neighbor (in tb structure) +      and the maximal number of bytes that can flow to the right neighbor +      from the right most liquid item that cannot be shifted from S[0] entirely (returned value) +    */ +    check_right (tb, h, rfree); + + +    /* all contents of internal node S[h] can be moved into its +       neighbors, S[h] will be removed after balancing */ +    if (h && (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1)) { +	int to_r;  +        +	/* Since we are working on internal nodes, and our internal +	   nodes have fixed size entries, then we can balance by the +	   number of items rather than the space they consume.  In this +	   routine we set the left node equal to the right node, +	   allowing a difference of less than or equal to 1 child +	   pointer. */ +	to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 -  +	    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); +	set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); +	return CARRY_ON; +    } + +    /* this checks balance condition, that any two neighboring nodes can not fit in one node */ +    RFALSE( h &&  +	    ( tb->lnum[h] >= vn->vn_nr_item + 1 ||  +	      tb->rnum[h] >= vn->vn_nr_item + 1), +	    "vs-8220: tree is not balanced on internal level"); +    RFALSE( ! h && ((tb->lnum[h] >= vn->vn_nr_item && (tb->lbytes == -1)) || +		    (tb->rnum[h] >= vn->vn_nr_item && (tb->rbytes == -1)) ), +	    "vs-8225: tree is not balanced on leaf level"); + +    /* all contents of S[0] can be moved into its neighbors +       S[0] will be removed after balancing. */ +    if (!h && is_leaf_removable (tb)) +	return CARRY_ON; + + +    /* why do we perform this check here rather than earlier?? +       Answer: we can win 1 node in some cases above. Moreover we +       checked it above, when we checked, that S[0] is not removable +       in principle */ +    if (sfree >= levbytes) { /* new item fits into node S[h] without any shifting */ +	if ( ! h ) +	    tb->s0num = vn->vn_nr_item; +	set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); +	return NO_BALANCING_NEEDED; +    } + + +    { +	int lpar, rpar, nset, lset, rset, lrset; +	/*  +	 * regular overflowing of the node +	 */ + +	/* get_num_ver works in 2 modes (FLOW & NO_FLOW)  +	   lpar, rpar - number of items we can shift to left/right neighbor (including splitting item) +	   nset, lset, rset, lrset - shows, whether flowing items give better packing  +	*/ +#define FLOW 1 +#define NO_FLOW 0	/* do not any splitting */ + +	/* we choose one the following */ +#define NOTHING_SHIFT_NO_FLOW	0 +#define NOTHING_SHIFT_FLOW	5 +#define LEFT_SHIFT_NO_FLOW	10 +#define LEFT_SHIFT_FLOW		15 +#define RIGHT_SHIFT_NO_FLOW	20 +#define RIGHT_SHIFT_FLOW	25 +#define LR_SHIFT_NO_FLOW	30 +#define LR_SHIFT_FLOW		35 + + +	lpar = tb->lnum[h]; +	rpar = tb->rnum[h]; + + +	/* calculate number of blocks S[h] must be split into when +	   nothing is shifted to the neighbors, +	   as well as number of items in each part of the split node (s012 numbers), +	   and number of bytes (s1bytes) of the shared drop which flow to S1 if any */ +	nset = NOTHING_SHIFT_NO_FLOW; +	nver = get_num_ver (vn->vn_mode, tb, h, +			    0, -1, h?vn->vn_nr_item:0, -1,  +			    snum012, NO_FLOW); + +	if (!h) +	{ +	    int nver1; + +	    /* note, that in this case we try to bottle between S[0] and S1 (S1 - the first new node) */ +	    nver1 = get_num_ver (vn->vn_mode, tb, h,  +				 0, -1, 0, -1,  +				 snum012 + NOTHING_SHIFT_FLOW, FLOW); +	    if (nver > nver1) +		nset = NOTHING_SHIFT_FLOW, nver = nver1; +	} +        +  +	/* calculate number of blocks S[h] must be split into when +	   l_shift_num first items and l_shift_bytes of the right most +	   liquid item to be shifted are shifted to the left neighbor, +	   as well as number of items in each part of the splitted node (s012 numbers), +	   and number of bytes (s1bytes) of the shared drop which flow to S1 if any +	*/ +	lset = LEFT_SHIFT_NO_FLOW; +	lnver = get_num_ver (vn->vn_mode, tb, h,  +			     lpar - (( h || tb->lbytes == -1 ) ? 0 : 1), -1, h ? vn->vn_nr_item:0, -1, +			     snum012 + LEFT_SHIFT_NO_FLOW, NO_FLOW); +	if (!h) +	{ +	    int lnver1; + +	    lnver1 = get_num_ver (vn->vn_mode, tb, h,  +				  lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, 0, -1, +				  snum012 + LEFT_SHIFT_FLOW, FLOW); +	    if (lnver > lnver1) +		lset = LEFT_SHIFT_FLOW, lnver = lnver1; +	} + + +	/* calculate number of blocks S[h] must be split into when +	   r_shift_num first items and r_shift_bytes of the left most +	   liquid item to be shifted are shifted to the right neighbor, +	   as well as number of items in each part of the splitted node (s012 numbers), +	   and number of bytes (s1bytes) of the shared drop which flow to S1 if any +	*/ +	rset = RIGHT_SHIFT_NO_FLOW; +	rnver = get_num_ver (vn->vn_mode, tb, h,  +			     0, -1, h ? (vn->vn_nr_item-rpar) : (rpar - (( tb->rbytes != -1 ) ? 1 : 0)), -1,  +			     snum012 + RIGHT_SHIFT_NO_FLOW, NO_FLOW); +	if (!h) +	{ +	    int rnver1; + +	    rnver1 = get_num_ver (vn->vn_mode, tb, h,  +				  0, -1, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes,  +				  snum012 + RIGHT_SHIFT_FLOW, FLOW); + +	    if (rnver > rnver1) +		rset = RIGHT_SHIFT_FLOW, rnver = rnver1; +	} + + +	/* calculate number of blocks S[h] must be split into when +	   items are shifted in both directions, +	   as well as number of items in each part of the splitted node (s012 numbers), +	   and number of bytes (s1bytes) of the shared drop which flow to S1 if any +	*/ +	lrset = LR_SHIFT_NO_FLOW; +	lrnver = get_num_ver (vn->vn_mode, tb, h,  +			      lpar - ((h || tb->lbytes == -1) ? 0 : 1), -1, h ? (vn->vn_nr_item-rpar):(rpar - ((tb->rbytes != -1) ? 1 : 0)), -1, +			      snum012 + LR_SHIFT_NO_FLOW, NO_FLOW); +	if (!h) +	{ +	    int lrnver1; + +	    lrnver1 = get_num_ver (vn->vn_mode, tb, h,  +				   lpar - ((tb->lbytes != -1) ? 1 : 0), tb->lbytes, (rpar - ((tb->rbytes != -1) ? 1 : 0)), tb->rbytes, +				   snum012 + LR_SHIFT_FLOW, FLOW); +	    if (lrnver > lrnver1) +		lrset = LR_SHIFT_FLOW, lrnver = lrnver1; +	} + + + +	/* Our general shifting strategy is: +	   1) to minimized number of new nodes; +	   2) to minimized number of neighbors involved in shifting; +	   3) to minimized number of disk reads; */ + +	/* we can win TWO or ONE nodes by shifting in both directions */ +	if (lrnver < lnver && lrnver < rnver) +	{ +	    RFALSE( h &&  +		    (tb->lnum[h] != 1 ||  +		     tb->rnum[h] != 1 ||  +		     lrnver != 1 || rnver != 2 || lnver != 2 || h != 1), +		    "vs-8230: bad h"); +	    if (lrset == LR_SHIFT_FLOW) +		set_parameters (tb, h, tb->lnum[h], tb->rnum[h], lrnver, snum012 + lrset, +				tb->lbytes, tb->rbytes); +	    else +		set_parameters (tb, h, tb->lnum[h] - ((tb->lbytes == -1) ? 0 : 1),  +				tb->rnum[h] - ((tb->rbytes == -1) ? 0 : 1), lrnver, snum012 + lrset, -1, -1); + +	    return CARRY_ON; +	} + +	/* if shifting doesn't lead to better packing then don't shift */ +	if (nver == lrnver) +	{ +	    set_parameters (tb, h, 0, 0, nver, snum012 + nset, -1, -1); +	    return CARRY_ON; +	} + + +	/* now we know that for better packing shifting in only one +	   direction either to the left or to the right is required */ + +	/*  if shifting to the left is better than shifting to the right */ +	if (lnver < rnver) +	{ +	    SET_PAR_SHIFT_LEFT; +	    return CARRY_ON; +	} + +	/* if shifting to the right is better than shifting to the left */ +	if (lnver > rnver) +	{ +	    SET_PAR_SHIFT_RIGHT; +	    return CARRY_ON; +	} + + +	/* now shifting in either direction gives the same number +	   of nodes and we can make use of the cached neighbors */ +	if (is_left_neighbor_in_cache (tb,h)) +	{ +	    SET_PAR_SHIFT_LEFT; +	    return CARRY_ON; +	} + +	/* shift to the right independently on whether the right neighbor in cache or not */ +	SET_PAR_SHIFT_RIGHT; +	return CARRY_ON; +    } +} + + +/* Check whether current node S[h] is balanced when Decreasing its size by + * Deleting or Cutting for INTERNAL node of S+tree. + * Calculate parameters for balancing for current level h. + * Parameters: + *	tb	tree_balance structure; + *	h	current level of the node; + *	inum	item number in S[h]; + *	mode	i - insert, p - paste; + * Returns:	1 - schedule occurred;  + *	        0 - balancing for higher levels needed; + *	       -1 - no balancing for higher levels needed; + *	       -2 - no disk space. + * + * Note: Items of internal nodes have fixed size, so the balance condition for + * the internal part of S+tree is as for the B-trees. + */ +static int dc_check_balance_internal (struct tree_balance * tb, int h) +{ +  struct virtual_node * vn = tb->tb_vn; + +  /* Sh is the node whose balance is currently being checked, +     and Fh is its father.  */ +  struct buffer_head * Sh, * Fh; +  int maxsize, +      n_ret_value; +  int lfree, rfree /* free space in L and R */; + +  Sh = PATH_H_PBUFFER (tb->tb_path, h);  +  Fh = PATH_H_PPARENT (tb->tb_path, h);  + +  maxsize = MAX_CHILD_SIZE(Sh);  + +/*   using tb->insert_size[h], which is negative in this case, create_virtual_node calculates: */ +/*   new_nr_item = number of items node would have if operation is */ +/* 	performed without balancing (new_nr_item); */ +  create_virtual_node (tb, h); + +  if ( ! Fh ) +    {   /* S[h] is the root. */ +      if ( vn->vn_nr_item > 0 ) +	{ +	  set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); +	  return NO_BALANCING_NEEDED; /* no balancing for higher levels needed */ +	} +      /* new_nr_item == 0. +       * Current root will be deleted resulting in +       * decrementing the tree height. */ +      set_parameters (tb, h, 0, 0, 0, NULL, -1, -1); +      return CARRY_ON; +    } + +  if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON ) +    return n_ret_value; + + +  /* get free space of neighbors */ +  rfree = get_rfree (tb, h); +  lfree = get_lfree (tb, h); +		 +  /* determine maximal number of items we can fit into neighbors */ +  check_left (tb, h, lfree); +  check_right (tb, h, rfree); + + +  if ( vn->vn_nr_item >= MIN_NR_KEY(Sh) ) +    { /* Balance condition for the internal node is valid. +       * In this case we balance only if it leads to better packing. */  +      if ( vn->vn_nr_item == MIN_NR_KEY(Sh) ) +	{ /* Here we join S[h] with one of its neighbors, +	   * which is impossible with greater values of new_nr_item. */ +	  if ( tb->lnum[h] >= vn->vn_nr_item + 1 ) +	    { +	      /* All contents of S[h] can be moved to L[h]. */ +	      int n; +	      int order_L; +	       +	      order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; +	      n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE); +	      set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1); +	      return CARRY_ON; +	    } + +	  if ( tb->rnum[h] >= vn->vn_nr_item + 1 ) +	    { +	      /* All contents of S[h] can be moved to R[h]. */ +	      int n; +	      int order_R; +	     +	      order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : n + 1; +	      n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE); +	      set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1); +	      return CARRY_ON;    +	    } +	} + +      if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) +	{ +	  /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ +	  int to_r; + +	  to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 -  +	    (MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); +	  set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); +	  return CARRY_ON; +	} + +      /* Balancing does not lead to better packing. */ +      set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); +      return NO_BALANCING_NEEDED; +    } + +  /* Current node contain insufficient number of items. Balancing is required. */	 +  /* Check whether we can merge S[h] with left neighbor. */ +  if (tb->lnum[h] >= vn->vn_nr_item + 1) +    if (is_left_neighbor_in_cache (tb,h) || tb->rnum[h] < vn->vn_nr_item + 1 || !tb->FR[h]) +      { +	int n; +	int order_L; +	       +	order_L = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==0) ? B_NR_ITEMS(tb->FL[h]) : n - 1; +	n = dc_size(B_N_CHILD(tb->FL[h],order_L)) / (DC_SIZE + KEY_SIZE); +	set_parameters (tb, h, -n-1, 0, 0, NULL, -1, -1); +	return CARRY_ON; +      } + +  /* Check whether we can merge S[h] with right neighbor. */ +  if (tb->rnum[h] >= vn->vn_nr_item + 1) +    { +      int n; +      int order_R; +	     +      order_R = ((n=PATH_H_B_ITEM_ORDER(tb->tb_path, h))==B_NR_ITEMS(Fh)) ? 0 : (n + 1); +      n = dc_size(B_N_CHILD(tb->FR[h],order_R)) / (DC_SIZE + KEY_SIZE); +      set_parameters (tb, h, 0, -n-1, 0, NULL, -1, -1); +      return CARRY_ON;    +    } + +  /* All contents of S[h] can be moved to the neighbors (L[h] & R[h]). */ +  if (tb->rnum[h] + tb->lnum[h] >= vn->vn_nr_item + 1) +    { +      int to_r; +	     +      to_r = ((MAX_NR_KEY(Sh)<<1)+2-tb->lnum[h]-tb->rnum[h]+vn->vn_nr_item+1)/2 -  +	(MAX_NR_KEY(Sh) + 1 - tb->rnum[h]); +      set_parameters (tb, h, vn->vn_nr_item + 1 - to_r, to_r, 0, NULL, -1, -1); +      return CARRY_ON; +    } + +  /* For internal nodes try to borrow item from a neighbor */ +  RFALSE( !tb->FL[h] && !tb->FR[h], "vs-8235: trying to borrow for root"); + +  /* Borrow one or two items from caching neighbor */ +  if (is_left_neighbor_in_cache (tb,h) || !tb->FR[h]) +    { +      int from_l; +		 +      from_l = (MAX_NR_KEY(Sh) + 1 - tb->lnum[h] + vn->vn_nr_item + 1) / 2 -  (vn->vn_nr_item + 1); +      set_parameters (tb, h, -from_l, 0, 1, NULL, -1, -1); +      return CARRY_ON; +    } + +  set_parameters (tb, h, 0, -((MAX_NR_KEY(Sh)+1-tb->rnum[h]+vn->vn_nr_item+1)/2-(vn->vn_nr_item+1)), 1,  +		  NULL, -1, -1); +  return CARRY_ON; +} + + +/* Check whether current node S[h] is balanced when Decreasing its size by + * Deleting or Truncating for LEAF node of S+tree. + * Calculate parameters for balancing for current level h. + * Parameters: + *	tb	tree_balance structure; + *	h	current level of the node; + *	inum	item number in S[h]; + *	mode	i - insert, p - paste; + * Returns:	1 - schedule occurred;  + *	        0 - balancing for higher levels needed; + *	       -1 - no balancing for higher levels needed; + *	       -2 - no disk space. + */ +static int dc_check_balance_leaf (struct tree_balance * tb, int h) +{ +  struct virtual_node * vn = tb->tb_vn; + +  /* Number of bytes that must be deleted from +     (value is negative if bytes are deleted) buffer which +     contains node being balanced.  The mnemonic is that the +     attempted change in node space used level is levbytes bytes. */ +  int levbytes; +  /* the maximal item size */ +  int maxsize, +      n_ret_value; +  /* S0 is the node whose balance is currently being checked, +     and F0 is its father.  */ +  struct buffer_head * S0, * F0; +  int lfree, rfree /* free space in L and R */; + +  S0 = PATH_H_PBUFFER (tb->tb_path, 0); +  F0 = PATH_H_PPARENT (tb->tb_path, 0); + +  levbytes = tb->insert_size[h]; + +  maxsize = MAX_CHILD_SIZE(S0); 	/* maximal possible size of an item */ + +  if ( ! F0 ) +    {  /* S[0] is the root now. */ + +      RFALSE( -levbytes >= maxsize - B_FREE_SPACE (S0), +	      "vs-8240: attempt to create empty buffer tree"); + +      set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); +      return NO_BALANCING_NEEDED; +    } + +  if ( (n_ret_value = get_parents(tb,h)) != CARRY_ON ) +    return n_ret_value; + +  /* get free space of neighbors */ +  rfree = get_rfree (tb, h); +  lfree = get_lfree (tb, h);		 + +  create_virtual_node (tb, h); + +  /* if 3 leaves can be merge to one, set parameters and return */ +  if (are_leaves_removable (tb, lfree, rfree)) +    return CARRY_ON; + +  /* determine maximal number of items we can shift to the left/right  neighbor +     and the maximal number of bytes that can flow to the left/right neighbor +     from the left/right most liquid item that cannot be shifted from S[0] entirely +     */ +  check_left (tb, h, lfree); +  check_right (tb, h, rfree);    + +  /* check whether we can merge S with left neighbor. */ +  if (tb->lnum[0] >= vn->vn_nr_item && tb->lbytes == -1) +    if (is_left_neighbor_in_cache (tb,h) || +	((tb->rnum[0] - ((tb->rbytes == -1) ? 0 : 1)) < vn->vn_nr_item) || /* S can not be merged with R */ +	!tb->FR[h]) { +       +      RFALSE( !tb->FL[h], "vs-8245: dc_check_balance_leaf: FL[h] must exist"); + +      /* set parameter to merge S[0] with its left neighbor */ +      set_parameters (tb, h, -1, 0, 0, NULL, -1, -1); +      return CARRY_ON; +    } + +  /* check whether we can merge S[0] with right neighbor. */ +  if (tb->rnum[0] >= vn->vn_nr_item && tb->rbytes == -1) { +    set_parameters (tb, h, 0, -1, 0, NULL, -1, -1); +    return CARRY_ON; +  } +   +  /* All contents of S[0] can be moved to the neighbors (L[0] & R[0]). Set parameters and return */ +  if (is_leaf_removable (tb)) +    return CARRY_ON; +   +  /* Balancing is not required. */ +  tb->s0num = vn->vn_nr_item; +  set_parameters (tb, h, 0, 0, 1, NULL, -1, -1); +  return NO_BALANCING_NEEDED; +} + + + +/* Check whether current node S[h] is balanced when Decreasing its size by + * Deleting or Cutting. + * Calculate parameters for balancing for current level h. + * Parameters: + *	tb	tree_balance structure; + *	h	current level of the node; + *	inum	item number in S[h]; + *	mode	d - delete, c - cut. + * Returns:	1 - schedule occurred;  + *	        0 - balancing for higher levels needed; + *	       -1 - no balancing for higher levels needed; + *	       -2 - no disk space. + */ +static int dc_check_balance (struct tree_balance * tb, int h) +{ + RFALSE( ! (PATH_H_PBUFFER (tb->tb_path, h)), "vs-8250: S is not initialized"); + + if ( h ) +   return dc_check_balance_internal (tb, h); + else +   return dc_check_balance_leaf (tb, h); +} + + + +/* Check whether current node S[h] is balanced. + * Calculate parameters for balancing for current level h. + * Parameters: + * + *	tb	tree_balance structure: + * + *              tb is a large structure that must be read about in the header file + *              at the same time as this procedure if the reader is to successfully + *              understand this procedure + * + *	h	current level of the node; + *	inum	item number in S[h]; + *	mode	i - insert, p - paste, d - delete, c - cut. + * Returns:	1 - schedule occurred;  + *	        0 - balancing for higher levels needed; + *	       -1 - no balancing for higher levels needed; + *	       -2 - no disk space. + */ +static int check_balance (int mode,  +			  struct tree_balance * tb, +			  int h,  +			  int inum, +			  int pos_in_item, +			  struct item_head * ins_ih, +			  const void * data +			  ) +{ +  struct virtual_node * vn; + +  vn = tb->tb_vn = (struct virtual_node *)(tb->vn_buf); +  vn->vn_free_ptr = (char *)(tb->tb_vn + 1); +  vn->vn_mode = mode; +  vn->vn_affected_item_num = inum; +  vn->vn_pos_in_item = pos_in_item; +  vn->vn_ins_ih = ins_ih; +  vn->vn_data = data; + +  RFALSE( mode == M_INSERT && !vn->vn_ins_ih, +	  "vs-8255: ins_ih can not be 0 in insert mode"); + + if ( tb->insert_size[h] > 0 ) +   /* Calculate balance parameters when size of node is increasing. */ +   return ip_check_balance (tb, h); + + /* Calculate balance parameters when  size of node is decreasing. */ + return dc_check_balance (tb, h); +} + + + +/* Check whether parent at the path is the really parent of the current node.*/ +static int  get_direct_parent( +              struct tree_balance * p_s_tb, +              int                   n_h +            ) { +    struct buffer_head  * p_s_bh; +    struct path         * p_s_path      = p_s_tb->tb_path; +    int                   n_position, +	n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h); +     +    /* We are in the root or in the new root. */ +    if ( n_path_offset <= FIRST_PATH_ELEMENT_OFFSET ) { +	 +	RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET - 1, +		"PAP-8260: invalid offset in the path"); + +	if ( PATH_OFFSET_PBUFFER(p_s_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == +	     SB_ROOT_BLOCK (p_s_tb->tb_sb) ) { +	    /* Root is not changed. */ +	    PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1) = NULL; +	    PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1) = 0; +	    return CARRY_ON; +	} +	return REPEAT_SEARCH; /* Root is changed and we must recalculate the path. */ +    } + +    if ( ! B_IS_IN_TREE(p_s_bh = PATH_OFFSET_PBUFFER(p_s_path, n_path_offset - 1)) ) +	return REPEAT_SEARCH; /* Parent in the path is not in the tree. */ + +    if ( (n_position = PATH_OFFSET_POSITION(p_s_path, n_path_offset - 1)) > B_NR_ITEMS(p_s_bh) ) +	return REPEAT_SEARCH; +     +    if ( B_N_CHILD_NUM(p_s_bh, n_position) != PATH_OFFSET_PBUFFER(p_s_path, n_path_offset)->b_blocknr ) +	/* Parent in the path is not parent of the current node in the tree. */ +	return REPEAT_SEARCH; + +    if ( buffer_locked(p_s_bh) ) { +	__wait_on_buffer(p_s_bh); +	if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) +	    return REPEAT_SEARCH; +    } + +    return CARRY_ON; /* Parent in the path is unlocked and really parent of the current node.  */ +} + + +/* Using lnum[n_h] and rnum[n_h] we should determine what neighbors + * of S[n_h] we + * need in order to balance S[n_h], and get them if necessary. + * Returns:	SCHEDULE_OCCURRED - schedule occurred while the function worked; + *	        CARRY_ON - schedule didn't occur while the function worked; + */ +static int  get_neighbors( +	            struct tree_balance * p_s_tb, +	            int 		  n_h +	          ) { +    int		 	n_child_position, +	n_path_offset = PATH_H_PATH_OFFSET(p_s_tb->tb_path, n_h + 1); +    unsigned long		n_son_number; +    struct super_block  *	p_s_sb = p_s_tb->tb_sb; +    struct buffer_head  * p_s_bh; + + +    PROC_INFO_INC( p_s_sb, get_neighbors[ n_h ] ); + +    if ( p_s_tb->lnum[n_h] ) { +	/* We need left neighbor to balance S[n_h]. */ +	PROC_INFO_INC( p_s_sb, need_l_neighbor[ n_h ] ); +	p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); +	 +	RFALSE( p_s_bh == p_s_tb->FL[n_h] &&  +		! PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset), +		"PAP-8270: invalid position in the parent"); + +	n_child_position = ( p_s_bh == p_s_tb->FL[n_h] ) ? p_s_tb->lkey[n_h] : B_NR_ITEMS (p_s_tb->FL[n_h]); +	n_son_number = B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position); +	p_s_bh = sb_bread(p_s_sb, n_son_number); +	if (!p_s_bh) +	    return IO_ERROR; +	if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { +	    decrement_bcount(p_s_bh); +	    PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] ); +	    return REPEAT_SEARCH; +	} +	 +	RFALSE( ! B_IS_IN_TREE(p_s_tb->FL[n_h]) || +                n_child_position > B_NR_ITEMS(p_s_tb->FL[n_h]) || +	        B_N_CHILD_NUM(p_s_tb->FL[n_h], n_child_position) != +                p_s_bh->b_blocknr, "PAP-8275: invalid parent"); +	RFALSE( ! B_IS_IN_TREE(p_s_bh), "PAP-8280: invalid child"); +	RFALSE( ! n_h && +                B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FL[0],n_child_position)), +                "PAP-8290: invalid child size of left neighbor"); + +	decrement_bcount(p_s_tb->L[n_h]); +	p_s_tb->L[n_h] = p_s_bh; +    } + + +    if ( p_s_tb->rnum[n_h] ) { /* We need right neighbor to balance S[n_path_offset]. */ +	PROC_INFO_INC( p_s_sb, need_r_neighbor[ n_h ] ); +	p_s_bh = PATH_OFFSET_PBUFFER(p_s_tb->tb_path, n_path_offset); +	 +	RFALSE( p_s_bh == p_s_tb->FR[n_h] &&  +		PATH_OFFSET_POSITION(p_s_tb->tb_path, n_path_offset) >= B_NR_ITEMS(p_s_bh), +		"PAP-8295: invalid position in the parent"); + +	n_child_position = ( p_s_bh == p_s_tb->FR[n_h] ) ? p_s_tb->rkey[n_h] + 1 : 0; +	n_son_number = B_N_CHILD_NUM(p_s_tb->FR[n_h], n_child_position); +	p_s_bh = sb_bread(p_s_sb, n_son_number); +	if (!p_s_bh) +	    return IO_ERROR; +	if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { +	    decrement_bcount(p_s_bh); +	    PROC_INFO_INC( p_s_sb, get_neighbors_restart[ n_h ] ); +	    return REPEAT_SEARCH; +	} +	decrement_bcount(p_s_tb->R[n_h]); +	p_s_tb->R[n_h] = p_s_bh; + +	RFALSE( ! n_h && B_FREE_SPACE (p_s_bh) != MAX_CHILD_SIZE (p_s_bh) - dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position)), +                "PAP-8300: invalid child size of right neighbor (%d != %d - %d)", +                B_FREE_SPACE (p_s_bh), MAX_CHILD_SIZE (p_s_bh), +                dc_size(B_N_CHILD (p_s_tb->FR[0],n_child_position))); +	 +    } +    return CARRY_ON; +} + +#ifdef CONFIG_REISERFS_CHECK +void * reiserfs_kmalloc (size_t size, int flags, struct super_block * s) +{ +    void * vp; +    static size_t malloced; + + +    vp = kmalloc (size, flags); +    if (vp) { +	REISERFS_SB(s)->s_kmallocs += size; +	if (REISERFS_SB(s)->s_kmallocs > malloced + 200000) { +	    reiserfs_warning (s, +			      "vs-8301: reiserfs_kmalloc: allocated memory %d", +			      REISERFS_SB(s)->s_kmallocs); +	    malloced = REISERFS_SB(s)->s_kmallocs; +	} +    } +    return vp; +} + +void reiserfs_kfree (const void * vp, size_t size, struct super_block * s) +{ +    kfree (vp); +   +    REISERFS_SB(s)->s_kmallocs -= size; +    if (REISERFS_SB(s)->s_kmallocs < 0) +	reiserfs_warning (s, "vs-8302: reiserfs_kfree: allocated memory %d", +			  REISERFS_SB(s)->s_kmallocs); + +} +#endif + + +static int get_virtual_node_size (struct super_block * sb, struct buffer_head * bh) +{ +    int max_num_of_items; +    int max_num_of_entries; +    unsigned long blocksize = sb->s_blocksize; + +#define MIN_NAME_LEN 1 + +    max_num_of_items = (blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN); +    max_num_of_entries = (blocksize - BLKH_SIZE - IH_SIZE) /  +                         (DEH_SIZE + MIN_NAME_LEN); + +    return sizeof(struct virtual_node) +  +           max(max_num_of_items * sizeof (struct virtual_item), +	       sizeof (struct virtual_item) + sizeof(struct direntry_uarea) +  +               (max_num_of_entries - 1) * sizeof (__u16)); +} + + + +/* maybe we should fail balancing we are going to perform when kmalloc +   fails several times. But now it will loop until kmalloc gets +   required memory */ +static int get_mem_for_virtual_node (struct tree_balance * tb) +{ +    int check_fs = 0; +    int size; +    char * buf; + +    size = get_virtual_node_size (tb->tb_sb, PATH_PLAST_BUFFER (tb->tb_path)); + +    if (size > tb->vn_buf_size) { +	/* we have to allocate more memory for virtual node */ +	if (tb->vn_buf) { +	    /* free memory allocated before */ +	    reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb); +	    /* this is not needed if kfree is atomic */ +            check_fs = 1; +	} + +	/* virtual node requires now more memory */ +	tb->vn_buf_size = size; + +	/* get memory for virtual item */ +	buf = reiserfs_kmalloc(size, GFP_ATOMIC | __GFP_NOWARN, tb->tb_sb); +	if ( ! buf ) { +	    /* getting memory with GFP_KERNEL priority may involve +               balancing now (due to indirect_to_direct conversion on +               dcache shrinking). So, release path and collected +               resources here */ +	    free_buffers_in_tb (tb); +	    buf = reiserfs_kmalloc(size, GFP_NOFS, tb->tb_sb); +	    if ( !buf ) { +#ifdef CONFIG_REISERFS_CHECK +		reiserfs_warning (tb->tb_sb, +				  "vs-8345: get_mem_for_virtual_node: " +				  "kmalloc failed. reiserfs kmalloced %d bytes", +				  REISERFS_SB(tb->tb_sb)->s_kmallocs); +#endif +		tb->vn_buf_size = 0; +	    } +	    tb->vn_buf = buf; +	    schedule() ; +	    return REPEAT_SEARCH; +	} + +	tb->vn_buf = buf; +    } + +    if ( check_fs && FILESYSTEM_CHANGED_TB (tb) ) +        return REPEAT_SEARCH; + +    return CARRY_ON; +} + + +#ifdef CONFIG_REISERFS_CHECK +static void tb_buffer_sanity_check (struct super_block * p_s_sb, +				    struct buffer_head * p_s_bh,  +				    const char *descr, int level) { +  if (p_s_bh) { +    if (atomic_read (&(p_s_bh->b_count)) <= 0) { + +      reiserfs_panic (p_s_sb, "jmacd-1: tb_buffer_sanity_check(): negative or zero reference counter for buffer %s[%d] (%b)\n", descr, level, p_s_bh); +    } + +    if ( ! buffer_uptodate (p_s_bh) ) { +      reiserfs_panic (p_s_sb, "jmacd-2: tb_buffer_sanity_check(): buffer is not up to date %s[%d] (%b)\n", descr, level, p_s_bh); +    } + +    if ( ! B_IS_IN_TREE (p_s_bh) ) { +      reiserfs_panic (p_s_sb, "jmacd-3: tb_buffer_sanity_check(): buffer is not in tree %s[%d] (%b)\n", descr, level, p_s_bh); +    } + +    if (p_s_bh->b_bdev != p_s_sb->s_bdev) { +	reiserfs_panic (p_s_sb, "jmacd-4: tb_buffer_sanity_check(): buffer has wrong device %s[%d] (%b)\n", descr, level, p_s_bh); +    } + +    if (p_s_bh->b_size != p_s_sb->s_blocksize) { +	reiserfs_panic (p_s_sb, "jmacd-5: tb_buffer_sanity_check(): buffer has wrong blocksize %s[%d] (%b)\n", descr, level, p_s_bh); +    } + +    if (p_s_bh->b_blocknr > SB_BLOCK_COUNT(p_s_sb)) { +	reiserfs_panic (p_s_sb, "jmacd-6: tb_buffer_sanity_check(): buffer block number too high %s[%d] (%b)\n", descr, level, p_s_bh); +    } +  } +} +#else +static void tb_buffer_sanity_check (struct super_block * p_s_sb, +				    struct buffer_head * p_s_bh,  +				    const char *descr, int level) +{;} +#endif + +static int clear_all_dirty_bits(struct super_block *s, +                                 struct buffer_head *bh) { +  return reiserfs_prepare_for_journal(s, bh, 0) ; +} + +static int wait_tb_buffers_until_unlocked (struct tree_balance * p_s_tb) +{ +    struct buffer_head * locked; +#ifdef CONFIG_REISERFS_CHECK +    int repeat_counter = 0; +#endif +    int i; + +    do { + +	locked = NULL; + +	for ( i = p_s_tb->tb_path->path_length; !locked && i > ILLEGAL_PATH_ELEMENT_OFFSET; i-- ) { +	    if ( PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i) ) { +		/* if I understand correctly, we can only be sure the last buffer +		** in the path is in the tree --clm +		*/ +#ifdef CONFIG_REISERFS_CHECK +		if (PATH_PLAST_BUFFER(p_s_tb->tb_path) == +		    PATH_OFFSET_PBUFFER(p_s_tb->tb_path, i)) { +		    tb_buffer_sanity_check (p_s_tb->tb_sb,  +					    PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i),  +					    "S",  +					    p_s_tb->tb_path->path_length - i); +		} +#endif +		if (!clear_all_dirty_bits(p_s_tb->tb_sb, +				     PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i))) +		{ +		    locked = PATH_OFFSET_PBUFFER (p_s_tb->tb_path, i); +		} +	    } +	} + +	for ( i = 0; !locked && i < MAX_HEIGHT && p_s_tb->insert_size[i]; i++ ) {  + +	    if (p_s_tb->lnum[i] ) { + +		if ( p_s_tb->L[i] ) { +		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->L[i], "L", i); +		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->L[i])) +			locked = p_s_tb->L[i]; +		} + +		if ( !locked && p_s_tb->FL[i] ) { +		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FL[i], "FL", i); +		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FL[i])) +			locked = p_s_tb->FL[i]; +		} + +		if ( !locked && p_s_tb->CFL[i] ) { +		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFL[i], "CFL", i); +		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFL[i])) +			locked = p_s_tb->CFL[i]; +		} + +	    } + +	    if ( !locked && (p_s_tb->rnum[i]) ) { + +		if ( p_s_tb->R[i] ) { +		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->R[i], "R", i); +		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->R[i])) +			locked = p_s_tb->R[i]; +		} + +        +		if ( !locked && p_s_tb->FR[i] ) { +		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->FR[i], "FR", i); +		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FR[i])) +			locked = p_s_tb->FR[i]; +		} + +		if ( !locked && p_s_tb->CFR[i] ) { +		    tb_buffer_sanity_check (p_s_tb->tb_sb, p_s_tb->CFR[i], "CFR", i); +		    if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->CFR[i])) +			locked = p_s_tb->CFR[i]; +		} +	    } +	} +	/* as far as I can tell, this is not required.  The FEB list seems +	** to be full of newly allocated nodes, which will never be locked, +	** dirty, or anything else. +	** To be safe, I'm putting in the checks and waits in.  For the moment, +	** they are needed to keep the code in journal.c from complaining +	** about the buffer.  That code is inside CONFIG_REISERFS_CHECK as well. +	** --clm +	*/ +	for ( i = 0; !locked && i < MAX_FEB_SIZE; i++ ) {  +	    if ( p_s_tb->FEB[i] ) { +		if (!clear_all_dirty_bits(p_s_tb->tb_sb, p_s_tb->FEB[i])) +		    locked = p_s_tb->FEB[i] ; +	    } +	} + +	if (locked) { +#ifdef CONFIG_REISERFS_CHECK +	    repeat_counter++; +	    if ( (repeat_counter % 10000) == 0) { +		reiserfs_warning (p_s_tb->tb_sb, +				  "wait_tb_buffers_until_released(): too many " +				  "iterations waiting for buffer to unlock " +				  "(%b)", locked); + +		/* Don't loop forever.  Try to recover from possible error. */ + +		return ( FILESYSTEM_CHANGED_TB (p_s_tb) ) ? REPEAT_SEARCH : CARRY_ON; +	    } +#endif +	    __wait_on_buffer (locked); +	    if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) { +		return REPEAT_SEARCH; +	    } +	} + +    } while (locked); + +    return CARRY_ON; +} + + +/* Prepare for balancing, that is + *	get all necessary parents, and neighbors; + *	analyze what and where should be moved; + *	get sufficient number of new nodes; + * Balancing will start only after all resources will be collected at a time. + *  + * When ported to SMP kernels, only at the last moment after all needed nodes + * are collected in cache, will the resources be locked using the usual + * textbook ordered lock acquisition algorithms.  Note that ensuring that + * this code neither write locks what it does not need to write lock nor locks out of order + * will be a pain in the butt that could have been avoided.  Grumble grumble. -Hans + *  + * fix is meant in the sense of render unchanging + *  + * Latency might be improved by first gathering a list of what buffers are needed + * and then getting as many of them in parallel as possible? -Hans + * + * Parameters: + *	op_mode	i - insert, d - delete, c - cut (truncate), p - paste (append) + *	tb	tree_balance structure; + *	inum	item number in S[h]; + *      pos_in_item - comment this if you can + *      ins_ih & ins_sd are used when inserting + * Returns:	1 - schedule occurred while the function worked; + *	        0 - schedule didn't occur while the function worked; + *             -1 - if no_disk_space  + */ + + +int fix_nodes (int n_op_mode, +	       struct tree_balance * 	p_s_tb, +	       struct item_head * p_s_ins_ih, // item head of item being inserted +	       const void * data // inserted item or data to be pasted +    ) { +    int	n_ret_value, +    	n_h, +    	n_item_num = PATH_LAST_POSITION(p_s_tb->tb_path); +    int n_pos_in_item; + +    /* we set wait_tb_buffers_run when we have to restore any dirty bits cleared +    ** during wait_tb_buffers_run +    */ +    int wait_tb_buffers_run = 0 ;  +    struct buffer_head  * p_s_tbS0 = PATH_PLAST_BUFFER(p_s_tb->tb_path); + +    ++ REISERFS_SB(p_s_tb -> tb_sb) -> s_fix_nodes; + +    n_pos_in_item = p_s_tb->tb_path->pos_in_item; + + +    p_s_tb->fs_gen = get_generation (p_s_tb->tb_sb); + +    /* we prepare and log the super here so it will already be in the +    ** transaction when do_balance needs to change it. +    ** This way do_balance won't have to schedule when trying to prepare +    ** the super for logging +    */ +    reiserfs_prepare_for_journal(p_s_tb->tb_sb,  +                                 SB_BUFFER_WITH_SB(p_s_tb->tb_sb), 1) ; +    journal_mark_dirty(p_s_tb->transaction_handle, p_s_tb->tb_sb,  +                       SB_BUFFER_WITH_SB(p_s_tb->tb_sb)) ; +    if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) +	return REPEAT_SEARCH; + +    /* if it possible in indirect_to_direct conversion */ +    if (buffer_locked (p_s_tbS0)) { +        __wait_on_buffer (p_s_tbS0); +        if ( FILESYSTEM_CHANGED_TB (p_s_tb) ) +            return REPEAT_SEARCH; +    } + +#ifdef CONFIG_REISERFS_CHECK +    if ( cur_tb ) { +	print_cur_tb ("fix_nodes"); +	reiserfs_panic(p_s_tb->tb_sb,"PAP-8305: fix_nodes:  there is pending do_balance"); +    } + +    if (!buffer_uptodate (p_s_tbS0) || !B_IS_IN_TREE (p_s_tbS0)) { +	reiserfs_panic (p_s_tb->tb_sb, "PAP-8320: fix_nodes: S[0] (%b %z) is not uptodate " +			"at the beginning of fix_nodes or not in tree (mode %c)", p_s_tbS0, p_s_tbS0, n_op_mode); +    } + +    /* Check parameters. */ +    switch (n_op_mode) { +    case M_INSERT: +	if ( n_item_num <= 0 || n_item_num > B_NR_ITEMS(p_s_tbS0) ) +	    reiserfs_panic(p_s_tb->tb_sb,"PAP-8330: fix_nodes: Incorrect item number %d (in S0 - %d) in case of insert", +			   n_item_num, B_NR_ITEMS(p_s_tbS0)); +	break; +    case M_PASTE: +    case M_DELETE: +    case M_CUT: +	if ( n_item_num < 0 || n_item_num >= B_NR_ITEMS(p_s_tbS0) ) { +	    print_block (p_s_tbS0, 0, -1, -1); +	    reiserfs_panic(p_s_tb->tb_sb,"PAP-8335: fix_nodes: Incorrect item number(%d); mode = %c insert_size = %d\n", n_item_num, n_op_mode, p_s_tb->insert_size[0]); +	} +	break; +    default: +	reiserfs_panic(p_s_tb->tb_sb,"PAP-8340: fix_nodes: Incorrect mode of operation"); +    } +#endif + +    if (get_mem_for_virtual_node (p_s_tb) == REPEAT_SEARCH) +	// FIXME: maybe -ENOMEM when tb->vn_buf == 0? Now just repeat +	return REPEAT_SEARCH; + + +    /* Starting from the leaf level; for all levels n_h of the tree. */ +    for ( n_h = 0; n_h < MAX_HEIGHT && p_s_tb->insert_size[n_h]; n_h++ ) {  +	if ( (n_ret_value = get_direct_parent(p_s_tb, n_h)) != CARRY_ON ) { +	    goto repeat; +	} + +	if ( (n_ret_value = check_balance (n_op_mode, p_s_tb, n_h, n_item_num, +					   n_pos_in_item, p_s_ins_ih, data)) != CARRY_ON ) { +	    if ( n_ret_value == NO_BALANCING_NEEDED ) { +		/* No balancing for higher levels needed. */ +		if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) { +		    goto repeat; +		} +		if ( n_h != MAX_HEIGHT - 1 )   +		    p_s_tb->insert_size[n_h + 1] = 0; +		/* ok, analysis and resource gathering are complete */ +		break; +	    } +	    goto repeat; +	} + +	if ( (n_ret_value = get_neighbors(p_s_tb, n_h)) != CARRY_ON ) { +	    goto repeat; +	} + +	if ( (n_ret_value = get_empty_nodes(p_s_tb, n_h)) != CARRY_ON ) { +	    goto repeat;        /* No disk space, or schedule occurred and +				   analysis may be invalid and needs to be redone. */ +	} +     +	if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h) ) { +	    /* We have a positive insert size but no nodes exist on this +	       level, this means that we are creating a new root. */ + +	    RFALSE( p_s_tb->blknum[n_h] != 1, +		    "PAP-8350: creating new empty root"); + +	    if ( n_h < MAX_HEIGHT - 1 ) +		p_s_tb->insert_size[n_h + 1] = 0; +	} +	else +	    if ( ! PATH_H_PBUFFER(p_s_tb->tb_path, n_h + 1) ) { +		if ( p_s_tb->blknum[n_h] > 1 ) { +		    /* The tree needs to be grown, so this node S[n_h] +		       which is the root node is split into two nodes, +		       and a new node (S[n_h+1]) will be created to +		       become the root node.  */ +	   +		    RFALSE( n_h == MAX_HEIGHT - 1, +			    "PAP-8355: attempt to create too high of a tree"); + +		    p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1) + DC_SIZE; +		} +		else +		    if ( n_h < MAX_HEIGHT - 1 ) +			p_s_tb->insert_size[n_h + 1] = 0; +	    } +	    else +		p_s_tb->insert_size[n_h + 1] = (DC_SIZE + KEY_SIZE) * (p_s_tb->blknum[n_h] - 1); +    } + +    if ((n_ret_value = wait_tb_buffers_until_unlocked (p_s_tb)) == CARRY_ON) { +	if (FILESYSTEM_CHANGED_TB(p_s_tb)) { +	    wait_tb_buffers_run = 1 ; +	    n_ret_value = REPEAT_SEARCH ; +	    goto repeat;  +	} else { +	    return CARRY_ON; +	} +    } else { +	wait_tb_buffers_run = 1 ; +	goto repeat;  +    } + + repeat: +    // fix_nodes was unable to perform its calculation due to +    // filesystem got changed under us, lack of free disk space or i/o +    // failure. If the first is the case - the search will be +    // repeated. For now - free all resources acquired so far except +    // for the new allocated nodes +    { +	int i; + +	/* Release path buffers. */ +	if (wait_tb_buffers_run) { +	    pathrelse_and_restore(p_s_tb->tb_sb, p_s_tb->tb_path) ; +	} else { +	    pathrelse (p_s_tb->tb_path); +        }	 +	/* brelse all resources collected for balancing */ +	for ( i = 0; i < MAX_HEIGHT; i++ ) { +	    if (wait_tb_buffers_run) { +		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->L[i]); +		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->R[i]); +		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FL[i]); +		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->FR[i]); +		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFL[i]); +		reiserfs_restore_prepared_buffer(p_s_tb->tb_sb, p_s_tb->CFR[i]); +	    } + +	    brelse (p_s_tb->L[i]);p_s_tb->L[i] = NULL; +	    brelse (p_s_tb->R[i]);p_s_tb->R[i] = NULL; +	    brelse (p_s_tb->FL[i]);p_s_tb->FL[i] = NULL; +	    brelse (p_s_tb->FR[i]);p_s_tb->FR[i] = NULL; +	    brelse (p_s_tb->CFL[i]);p_s_tb->CFL[i] = NULL; +	    brelse (p_s_tb->CFR[i]);p_s_tb->CFR[i] = NULL; +	} + +	if (wait_tb_buffers_run) { +	    for ( i = 0; i < MAX_FEB_SIZE; i++ ) {  +		if ( p_s_tb->FEB[i] ) { +		    reiserfs_restore_prepared_buffer(p_s_tb->tb_sb,  +						     p_s_tb->FEB[i]) ; +		} +	    } +	} +	return n_ret_value; +    } + +} + + +/* Anatoly will probably forgive me renaming p_s_tb to tb. I just +   wanted to make lines shorter */ +void unfix_nodes (struct tree_balance * tb) +{ +    int	i; + +    /* Release path buffers. */ +    pathrelse_and_restore (tb->tb_sb, tb->tb_path); + +    /* brelse all resources collected for balancing */ +    for ( i = 0; i < MAX_HEIGHT; i++ ) { +	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->L[i]); +	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->R[i]); +	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FL[i]); +	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->FR[i]); +	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFL[i]); +	reiserfs_restore_prepared_buffer (tb->tb_sb, tb->CFR[i]); + +	brelse (tb->L[i]); +	brelse (tb->R[i]); +	brelse (tb->FL[i]); +	brelse (tb->FR[i]); +	brelse (tb->CFL[i]); +	brelse (tb->CFR[i]); +    } + +    /* deal with list of allocated (used and unused) nodes */ +    for ( i = 0; i < MAX_FEB_SIZE; i++ ) { +	if ( tb->FEB[i] ) { +	    b_blocknr_t blocknr  = tb->FEB[i]->b_blocknr ; +	    /* de-allocated block which was not used by balancing and +               bforget about buffer for it */ +	    brelse (tb->FEB[i]); +	    reiserfs_free_block (tb->transaction_handle, NULL, blocknr, 0); +	} +	if (tb->used[i]) { +	    /* release used as new nodes including a new root */ +	    brelse (tb->used[i]); +	} +    } + +    if (tb->vn_buf)  +    reiserfs_kfree (tb->vn_buf, tb->vn_buf_size, tb->tb_sb); + +}  + + +  |