diff options
Diffstat (limited to 'fs/ubifs/recovery.c')
| -rw-r--r-- | fs/ubifs/recovery.c | 1249 | 
1 files changed, 1249 insertions, 0 deletions
| diff --git a/fs/ubifs/recovery.c b/fs/ubifs/recovery.c new file mode 100644 index 000000000..fe3b36443 --- /dev/null +++ b/fs/ubifs/recovery.c @@ -0,0 +1,1249 @@ +/* + * This file is part of UBIFS. + * + * Copyright (C) 2006-2008 Nokia Corporation + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 as published by + * the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for + * more details. + * + * You should have received a copy of the GNU General Public License along with + * this program; if not, write to the Free Software Foundation, Inc., 51 + * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA + * + * Authors: Adrian Hunter + *          Artem Bityutskiy (Битюцкий Артём) + */ + +/* + * This file implements functions needed to recover from unclean un-mounts. + * When UBIFS is mounted, it checks a flag on the master node to determine if + * an un-mount was completed sucessfully. If not, the process of mounting + * incorparates additional checking and fixing of on-flash data structures. + * UBIFS always cleans away all remnants of an unclean un-mount, so that + * errors do not accumulate. However UBIFS defers recovery if it is mounted + * read-only, and the flash is not modified in that case. + */ + +#include "ubifs.h" + +/** + * is_empty - determine whether a buffer is empty (contains all 0xff). + * @buf: buffer to clean + * @len: length of buffer + * + * This function returns %1 if the buffer is empty (contains all 0xff) otherwise + * %0 is returned. + */ +static int is_empty(void *buf, int len) +{ +	uint8_t *p = buf; +	int i; + +	for (i = 0; i < len; i++) +		if (*p++ != 0xff) +			return 0; +	return 1; +} + +/** + * get_master_node - get the last valid master node allowing for corruption. + * @c: UBIFS file-system description object + * @lnum: LEB number + * @pbuf: buffer containing the LEB read, is returned here + * @mst: master node, if found, is returned here + * @cor: corruption, if found, is returned here + * + * This function allocates a buffer, reads the LEB into it, and finds and + * returns the last valid master node allowing for one area of corruption. + * The corrupt area, if there is one, must be consistent with the assumption + * that it is the result of an unclean unmount while the master node was being + * written. Under those circumstances, it is valid to use the previously written + * master node. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, +			   struct ubifs_mst_node **mst, void **cor) +{ +	const int sz = c->mst_node_alsz; +	int err, offs, len; +	void *sbuf, *buf; + +	sbuf = vmalloc(c->leb_size); +	if (!sbuf) +		return -ENOMEM; + +	err = ubi_read(c->ubi, lnum, sbuf, 0, c->leb_size); +	if (err && err != -EBADMSG) +		goto out_free; + +	/* Find the first position that is definitely not a node */ +	offs = 0; +	buf = sbuf; +	len = c->leb_size; +	while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { +		struct ubifs_ch *ch = buf; + +		if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) +			break; +		offs += sz; +		buf  += sz; +		len  -= sz; +	} +	/* See if there was a valid master node before that */ +	if (offs) { +		int ret; + +		offs -= sz; +		buf  -= sz; +		len  += sz; +		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); +		if (ret != SCANNED_A_NODE && offs) { +			/* Could have been corruption so check one place back */ +			offs -= sz; +			buf  -= sz; +			len  += sz; +			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); +			if (ret != SCANNED_A_NODE) +				/* +				 * We accept only one area of corruption because +				 * we are assuming that it was caused while +				 * trying to write a master node. +				 */ +				goto out_err; +		} +		if (ret == SCANNED_A_NODE) { +			struct ubifs_ch *ch = buf; + +			if (ch->node_type != UBIFS_MST_NODE) +				goto out_err; +			dbg_rcvry("found a master node at %d:%d", lnum, offs); +			*mst = buf; +			offs += sz; +			buf  += sz; +			len  -= sz; +		} +	} +	/* Check for corruption */ +	if (offs < c->leb_size) { +		if (!is_empty(buf, min_t(int, len, sz))) { +			*cor = buf; +			dbg_rcvry("found corruption at %d:%d", lnum, offs); +		} +		offs += sz; +		buf  += sz; +		len  -= sz; +	} +	/* Check remaining empty space */ +	if (offs < c->leb_size) +		if (!is_empty(buf, len)) +			goto out_err; +	*pbuf = sbuf; +	return 0; + +out_err: +	err = -EINVAL; +out_free: +	vfree(sbuf); +	*mst = NULL; +	*cor = NULL; +	return err; +} + +/** + * write_rcvrd_mst_node - write recovered master node. + * @c: UBIFS file-system description object + * @mst: master node + * + * This function returns %0 on success and a negative error code on failure. + */ +static int write_rcvrd_mst_node(struct ubifs_info *c, +				struct ubifs_mst_node *mst) +{ +	int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; +	__le32 save_flags; + +	dbg_rcvry("recovery"); + +	save_flags = mst->flags; +	mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); + +	ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); +	err = ubi_leb_change(c->ubi, lnum, mst, sz, UBI_SHORTTERM); +	if (err) +		goto out; +	err = ubi_leb_change(c->ubi, lnum + 1, mst, sz, UBI_SHORTTERM); +	if (err) +		goto out; +out: +	mst->flags = save_flags; +	return err; +} + +/** + * ubifs_recover_master_node - recover the master node. + * @c: UBIFS file-system description object + * + * This function recovers the master node from corruption that may occur due to + * an unclean unmount. + * + * This function returns %0 on success and a negative error code on failure. + */ +int ubifs_recover_master_node(struct ubifs_info *c) +{ +	void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; +	struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; +	const int sz = c->mst_node_alsz; +	int err, offs1, offs2; + +	dbg_rcvry("recovery"); + +	err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); +	if (err) +		goto out_free; + +	err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); +	if (err) +		goto out_free; + +	if (mst1) { +		offs1 = (void *)mst1 - buf1; +		if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && +		    (offs1 == 0 && !cor1)) { +			/* +			 * mst1 was written by recovery at offset 0 with no +			 * corruption. +			 */ +			dbg_rcvry("recovery recovery"); +			mst = mst1; +		} else if (mst2) { +			offs2 = (void *)mst2 - buf2; +			if (offs1 == offs2) { +				/* Same offset, so must be the same */ +				if (memcmp((void *)mst1 + UBIFS_CH_SZ, +					   (void *)mst2 + UBIFS_CH_SZ, +					   UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) +					goto out_err; +				mst = mst1; +			} else if (offs2 + sz == offs1) { +				/* 1st LEB was written, 2nd was not */ +				if (cor1) +					goto out_err; +				mst = mst1; +			} else if (offs1 == 0 && offs2 + sz >= c->leb_size) { +				/* 1st LEB was unmapped and written, 2nd not */ +				if (cor1) +					goto out_err; +				mst = mst1; +			} else +				goto out_err; +		} else { +			/* +			 * 2nd LEB was unmapped and about to be written, so +			 * there must be only one master node in the first LEB +			 * and no corruption. +			 */ +			if (offs1 != 0 || cor1) +				goto out_err; +			mst = mst1; +		} +	} else { +		if (!mst2) +			goto out_err; +		/* +		 * 1st LEB was unmapped and about to be written, so there must +		 * be no room left in 2nd LEB. +		 */ +		offs2 = (void *)mst2 - buf2; +		if (offs2 + sz + sz <= c->leb_size) +			goto out_err; +		mst = mst2; +	} + +	dbg_rcvry("recovered master node from LEB %d", +		  (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); + +	memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); + +	if ((c->vfs_sb->s_flags & MS_RDONLY)) { +		/* Read-only mode. Keep a copy for switching to rw mode */ +		c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); +		if (!c->rcvrd_mst_node) { +			err = -ENOMEM; +			goto out_free; +		} +		memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); +	} + +	vfree(buf2); +	vfree(buf1); + +	return 0; + +out_err: +	err = -EINVAL; +out_free: +	ubifs_err("failed to recover master node"); +	if (mst1) { +		dbg_err("dumping first master node"); +		dbg_dump_node(c, mst1); +	} +	if (mst2) { +		dbg_err("dumping second master node"); +		dbg_dump_node(c, mst2); +	} +	vfree(buf2); +	vfree(buf1); +	return err; +} + +/** + * ubifs_write_rcvrd_mst_node - write the recovered master node. + * @c: UBIFS file-system description object + * + * This function writes the master node that was recovered during mounting in + * read-only mode and must now be written because we are remounting rw. + * + * This function returns %0 on success and a negative error code on failure. + */ +int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) +{ +	int err; + +	if (!c->rcvrd_mst_node) +		return 0; +	c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); +	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); +	err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); +	if (err) +		return err; +	kfree(c->rcvrd_mst_node); +	c->rcvrd_mst_node = NULL; +	return 0; +} + +/** + * is_last_write - determine if an offset was in the last write to a LEB. + * @c: UBIFS file-system description object + * @buf: buffer to check + * @offs: offset to check + * + * This function returns %1 if @offs was in the last write to the LEB whose data + * is in @buf, otherwise %0 is returned.  The determination is made by checking + * for subsequent empty space starting from the next min_io_size boundary (or a + * bit less than the common header size if min_io_size is one). + */ +static int is_last_write(const struct ubifs_info *c, void *buf, int offs) +{ +	int empty_offs; +	int check_len; +	uint8_t *p; + +	if (c->min_io_size == 1) { +		check_len = c->leb_size - offs; +		p = buf + check_len; +		for (; check_len > 0; check_len--) +			if (*--p != 0xff) +				break; +		/* +		 * 'check_len' is the size of the corruption which cannot be +		 * more than the size of 1 node if it was caused by an unclean +		 * unmount. +		 */ +		if (check_len > UBIFS_MAX_NODE_SZ) +			return 0; +		return 1; +	} + +	/* +	 * Round up to the next c->min_io_size boundary i.e. 'offs' is in the +	 * last wbuf written. After that should be empty space. +	 */ +	empty_offs = ALIGN(offs + 1, c->min_io_size); +	check_len = c->leb_size - empty_offs; +	p = buf + empty_offs - offs; + +	for (; check_len > 0; check_len--) +		if (*p++ != 0xff) +			return 0; +	return 1; +} + +/** + * clean_buf - clean the data from an LEB sitting in a buffer. + * @c: UBIFS file-system description object + * @buf: buffer to clean + * @lnum: LEB number to clean + * @offs: offset from which to clean + * @len: length of buffer + * + * This function pads up to the next min_io_size boundary (if there is one) and + * sets empty space to all 0xff. @buf, @offs and @len are updated to the next + * min_io_size boundary (if there is one). + */ +static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, +		      int *offs, int *len) +{ +	int empty_offs, pad_len; + +	lnum = lnum; +	dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); + +	if (c->min_io_size == 1) { +		memset(*buf, 0xff, c->leb_size - *offs); +		return; +	} + +	ubifs_assert(!(*offs & 7)); +	empty_offs = ALIGN(*offs, c->min_io_size); +	pad_len = empty_offs - *offs; +	ubifs_pad(c, *buf, pad_len); +	*offs += pad_len; +	*buf += pad_len; +	*len -= pad_len; +	memset(*buf, 0xff, c->leb_size - empty_offs); +} + +/** + * no_more_nodes - determine if there are no more nodes in a buffer. + * @c: UBIFS file-system description object + * @buf: buffer to check + * @len: length of buffer + * @lnum: LEB number of the LEB from which @buf was read + * @offs: offset from which @buf was read + * + * This function scans @buf for more nodes and returns %0 is a node is found and + * %1 if no more nodes are found. + */ +static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, +			int lnum, int offs) +{ +	int skip, next_offs = 0; + +	if (len > UBIFS_DATA_NODE_SZ) { +		struct ubifs_ch *ch = buf; +		int dlen = le32_to_cpu(ch->len); + +		if (ch->node_type == UBIFS_DATA_NODE && dlen >= UBIFS_CH_SZ && +		    dlen <= UBIFS_MAX_DATA_NODE_SZ) +			/* The corrupt node looks like a data node */ +			next_offs = ALIGN(offs + dlen, 8); +	} + +	if (c->min_io_size == 1) +		skip = 8; +	else +		skip = ALIGN(offs + 1, c->min_io_size) - offs; + +	offs += skip; +	buf += skip; +	len -= skip; +	while (len > 8) { +		struct ubifs_ch *ch = buf; +		uint32_t magic = le32_to_cpu(ch->magic); +		int ret; + +		if (magic == UBIFS_NODE_MAGIC) { +			ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); +			if (ret == SCANNED_A_NODE || ret > 0) { +				/* +				 * There is a small chance this is just data in +				 * a data node, so check that possibility. e.g. +				 * this is part of a file that itself contains +				 * a UBIFS image. +				 */ +				if (next_offs && offs + le32_to_cpu(ch->len) <= +				    next_offs) +					continue; +				dbg_rcvry("unexpected node at %d:%d", lnum, +					  offs); +				return 0; +			} +		} +		offs += 8; +		buf += 8; +		len -= 8; +	} +	return 1; +} + +/** + * fix_unclean_leb - fix an unclean LEB. + * @c: UBIFS file-system description object + * @sleb: scanned LEB information + * @start: offset where scan started + */ +static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, +			   int start) +{ +	int lnum = sleb->lnum, endpt = start; + +	/* Get the end offset of the last node we are keeping */ +	if (!list_empty(&sleb->nodes)) { +		struct ubifs_scan_node *snod; + +		snod = list_entry(sleb->nodes.prev, +				  struct ubifs_scan_node, list); +		endpt = snod->offs + snod->len; +	} + +	if ((c->vfs_sb->s_flags & MS_RDONLY) && !c->remounting_rw) { +		/* Add to recovery list */ +		struct ubifs_unclean_leb *ucleb; + +		dbg_rcvry("need to fix LEB %d start %d endpt %d", +			  lnum, start, sleb->endpt); +		ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); +		if (!ucleb) +			return -ENOMEM; +		ucleb->lnum = lnum; +		ucleb->endpt = endpt; +		list_add_tail(&ucleb->list, &c->unclean_leb_list); +	} +	return 0; +} + +/** + * drop_incomplete_group - drop nodes from an incomplete group. + * @sleb: scanned LEB information + * @offs: offset of dropped nodes is returned here + * + * This function returns %1 if nodes are dropped and %0 otherwise. + */ +static int drop_incomplete_group(struct ubifs_scan_leb *sleb, int *offs) +{ +	int dropped = 0; + +	while (!list_empty(&sleb->nodes)) { +		struct ubifs_scan_node *snod; +		struct ubifs_ch *ch; + +		snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, +				  list); +		ch = snod->node; +		if (ch->group_type != UBIFS_IN_NODE_GROUP) +			return dropped; +		dbg_rcvry("dropping node at %d:%d", sleb->lnum, snod->offs); +		*offs = snod->offs; +		list_del(&snod->list); +		kfree(snod); +		sleb->nodes_cnt -= 1; +		dropped = 1; +	} +	return dropped; +} + +/** + * ubifs_recover_leb - scan and recover a LEB. + * @c: UBIFS file-system description object + * @lnum: LEB number + * @offs: offset + * @sbuf: LEB-sized buffer to use + * @grouped: nodes may be grouped for recovery + * + * This function does a scan of a LEB, but caters for errors that might have + * been caused by the unclean unmount from which we are attempting to recover. + * + * This function returns %0 on success and a negative error code on failure. + */ +struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, +					 int offs, void *sbuf, int grouped) +{ +	int err, len = c->leb_size - offs, need_clean = 0, quiet = 1; +	int empty_chkd = 0, start = offs; +	struct ubifs_scan_leb *sleb; +	void *buf = sbuf + offs; + +	dbg_rcvry("%d:%d", lnum, offs); + +	sleb = ubifs_start_scan(c, lnum, offs, sbuf); +	if (IS_ERR(sleb)) +		return sleb; + +	if (sleb->ecc) +		need_clean = 1; + +	while (len >= 8) { +		int ret; + +		dbg_scan("look at LEB %d:%d (%d bytes left)", +			 lnum, offs, len); + +		cond_resched(); + +		/* +		 * Scan quietly until there is an error from which we cannot +		 * recover +		 */ +		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); + +		if (ret == SCANNED_A_NODE) { +			/* A valid node, and not a padding node */ +			struct ubifs_ch *ch = buf; +			int node_len; + +			err = ubifs_add_snod(c, sleb, buf, offs); +			if (err) +				goto error; +			node_len = ALIGN(le32_to_cpu(ch->len), 8); +			offs += node_len; +			buf += node_len; +			len -= node_len; +			continue; +		} + +		if (ret > 0) { +			/* Padding bytes or a valid padding node */ +			offs += ret; +			buf += ret; +			len -= ret; +			continue; +		} + +		if (ret == SCANNED_EMPTY_SPACE) { +			if (!is_empty(buf, len)) { +				if (!is_last_write(c, buf, offs)) +					break; +				clean_buf(c, &buf, lnum, &offs, &len); +				need_clean = 1; +			} +			empty_chkd = 1; +			break; +		} + +		if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) +			if (is_last_write(c, buf, offs)) { +				clean_buf(c, &buf, lnum, &offs, &len); +				need_clean = 1; +				empty_chkd = 1; +				break; +			} + +		if (ret == SCANNED_A_CORRUPT_NODE) +			if (no_more_nodes(c, buf, len, lnum, offs)) { +				clean_buf(c, &buf, lnum, &offs, &len); +				need_clean = 1; +				empty_chkd = 1; +				break; +			} + +		if (quiet) { +			/* Redo the last scan but noisily */ +			quiet = 0; +			continue; +		} + +		switch (ret) { +		case SCANNED_GARBAGE: +			dbg_err("garbage"); +			goto corrupted; +		case SCANNED_A_CORRUPT_NODE: +		case SCANNED_A_BAD_PAD_NODE: +			dbg_err("bad node"); +			goto corrupted; +		default: +			dbg_err("unknown"); +			goto corrupted; +		} +	} + +	if (!empty_chkd && !is_empty(buf, len)) { +		if (is_last_write(c, buf, offs)) { +			clean_buf(c, &buf, lnum, &offs, &len); +			need_clean = 1; +		} else { +			ubifs_err("corrupt empty space at LEB %d:%d", +				  lnum, offs); +			goto corrupted; +		} +	} + +	/* Drop nodes from incomplete group */ +	if (grouped && drop_incomplete_group(sleb, &offs)) { +		buf = sbuf + offs; +		len = c->leb_size - offs; +		clean_buf(c, &buf, lnum, &offs, &len); +		need_clean = 1; +	} + +	if (offs % c->min_io_size) { +		clean_buf(c, &buf, lnum, &offs, &len); +		need_clean = 1; +	} + +	ubifs_end_scan(c, sleb, lnum, offs); + +	if (need_clean) { +		err = fix_unclean_leb(c, sleb, start); +		if (err) +			goto error; +	} + +	return sleb; + +corrupted: +	ubifs_scanned_corruption(c, lnum, offs, buf); +	err = -EUCLEAN; +error: +	ubifs_err("LEB %d scanning failed", lnum); +	ubifs_scan_destroy(sleb); +	return ERR_PTR(err); +} + +/** + * get_cs_sqnum - get commit start sequence number. + * @c: UBIFS file-system description object + * @lnum: LEB number of commit start node + * @offs: offset of commit start node + * @cs_sqnum: commit start sequence number is returned here + * + * This function returns %0 on success and a negative error code on failure. + */ +static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, +			unsigned long long *cs_sqnum) +{ +	struct ubifs_cs_node *cs_node = NULL; +	int err, ret; + +	dbg_rcvry("at %d:%d", lnum, offs); +	cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); +	if (!cs_node) +		return -ENOMEM; +	if (c->leb_size - offs < UBIFS_CS_NODE_SZ) +		goto out_err; +	err = ubi_read(c->ubi, lnum, (void *)cs_node, offs, UBIFS_CS_NODE_SZ); +	if (err && err != -EBADMSG) +		goto out_free; +	ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); +	if (ret != SCANNED_A_NODE) { +		dbg_err("Not a valid node"); +		goto out_err; +	} +	if (cs_node->ch.node_type != UBIFS_CS_NODE) { +		dbg_err("Node a CS node, type is %d", cs_node->ch.node_type); +		goto out_err; +	} +	if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { +		dbg_err("CS node cmt_no %llu != current cmt_no %llu", +			(unsigned long long)le64_to_cpu(cs_node->cmt_no), +			c->cmt_no); +		goto out_err; +	} +	*cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); +	dbg_rcvry("commit start sqnum %llu", *cs_sqnum); +	kfree(cs_node); +	return 0; + +out_err: +	err = -EINVAL; +out_free: +	ubifs_err("failed to get CS sqnum"); +	kfree(cs_node); +	return err; +} + +/** + * ubifs_recover_log_leb - scan and recover a log LEB. + * @c: UBIFS file-system description object + * @lnum: LEB number + * @offs: offset + * @sbuf: LEB-sized buffer to use + * + * This function does a scan of a LEB, but caters for errors that might have + * been caused by the unclean unmount from which we are attempting to recover. + * + * This function returns %0 on success and a negative error code on failure. + */ +struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, +					     int offs, void *sbuf) +{ +	struct ubifs_scan_leb *sleb; +	int next_lnum; + +	dbg_rcvry("LEB %d", lnum); +	next_lnum = lnum + 1; +	if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) +		next_lnum = UBIFS_LOG_LNUM; +	if (next_lnum != c->ltail_lnum) { +		/* +		 * We can only recover at the end of the log, so check that the +		 * next log LEB is empty or out of date. +		 */ +		sleb = ubifs_scan(c, next_lnum, 0, sbuf); +		if (IS_ERR(sleb)) +			return sleb; +		if (sleb->nodes_cnt) { +			struct ubifs_scan_node *snod; +			unsigned long long cs_sqnum = c->cs_sqnum; + +			snod = list_entry(sleb->nodes.next, +					  struct ubifs_scan_node, list); +			if (cs_sqnum == 0) { +				int err; + +				err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); +				if (err) { +					ubifs_scan_destroy(sleb); +					return ERR_PTR(err); +				} +			} +			if (snod->sqnum > cs_sqnum) { +				ubifs_err("unrecoverable log corruption " +					  "in LEB %d", lnum); +				ubifs_scan_destroy(sleb); +				return ERR_PTR(-EUCLEAN); +			} +		} +		ubifs_scan_destroy(sleb); +	} +	return ubifs_recover_leb(c, lnum, offs, sbuf, 0); +} + +/** + * recover_head - recover a head. + * @c: UBIFS file-system description object + * @lnum: LEB number of head to recover + * @offs: offset of head to recover + * @sbuf: LEB-sized buffer to use + * + * This function ensures that there is no data on the flash at a head location. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int recover_head(const struct ubifs_info *c, int lnum, int offs, +			void *sbuf) +{ +	int len, err, need_clean = 0; + +	if (c->min_io_size > 1) +		len = c->min_io_size; +	else +		len = 512; +	if (offs + len > c->leb_size) +		len = c->leb_size - offs; + +	if (!len) +		return 0; + +	/* Read at the head location and check it is empty flash */ +	err = ubi_read(c->ubi, lnum, sbuf, offs, len); +	if (err) +		need_clean = 1; +	else { +		uint8_t *p = sbuf; + +		while (len--) +			if (*p++ != 0xff) { +				need_clean = 1; +				break; +			} +	} + +	if (need_clean) { +		dbg_rcvry("cleaning head at %d:%d", lnum, offs); +		if (offs == 0) +			return ubifs_leb_unmap(c, lnum); +		err = ubi_read(c->ubi, lnum, sbuf, 0, offs); +		if (err) +			return err; +		return ubi_leb_change(c->ubi, lnum, sbuf, offs, UBI_UNKNOWN); +	} + +	return 0; +} + +/** + * ubifs_recover_inl_heads - recover index and LPT heads. + * @c: UBIFS file-system description object + * @sbuf: LEB-sized buffer to use + * + * This function ensures that there is no data on the flash at the index and + * LPT head locations. + * + * This deals with the recovery of a half-completed journal commit. UBIFS is + * careful never to overwrite the last version of the index or the LPT. Because + * the index and LPT are wandering trees, data from a half-completed commit will + * not be referenced anywhere in UBIFS. The data will be either in LEBs that are + * assumed to be empty and will be unmapped anyway before use, or in the index + * and LPT heads. + * + * This function returns %0 on success and a negative error code on failure. + */ +int ubifs_recover_inl_heads(const struct ubifs_info *c, void *sbuf) +{ +	int err; + +	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY) || c->remounting_rw); + +	dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); +	err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); +	if (err) +		return err; + +	dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); +	err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); +	if (err) +		return err; + +	return 0; +} + +/** + *  clean_an_unclean_leb - read and write a LEB to remove corruption. + * @c: UBIFS file-system description object + * @ucleb: unclean LEB information + * @sbuf: LEB-sized buffer to use + * + * This function reads a LEB up to a point pre-determined by the mount recovery, + * checks the nodes, and writes the result back to the flash, thereby cleaning + * off any following corruption, or non-fatal ECC errors. + * + * This function returns %0 on success and a negative error code on failure. + */ +static int clean_an_unclean_leb(const struct ubifs_info *c, +				struct ubifs_unclean_leb *ucleb, void *sbuf) +{ +	int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; +	void *buf = sbuf; + +	dbg_rcvry("LEB %d len %d", lnum, len); + +	if (len == 0) { +		/* Nothing to read, just unmap it */ +		err = ubifs_leb_unmap(c, lnum); +		if (err) +			return err; +		return 0; +	} + +	err = ubi_read(c->ubi, lnum, buf, offs, len); +	if (err && err != -EBADMSG) +		return err; + +	while (len >= 8) { +		int ret; + +		cond_resched(); + +		/* Scan quietly until there is an error */ +		ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); + +		if (ret == SCANNED_A_NODE) { +			/* A valid node, and not a padding node */ +			struct ubifs_ch *ch = buf; +			int node_len; + +			node_len = ALIGN(le32_to_cpu(ch->len), 8); +			offs += node_len; +			buf += node_len; +			len -= node_len; +			continue; +		} + +		if (ret > 0) { +			/* Padding bytes or a valid padding node */ +			offs += ret; +			buf += ret; +			len -= ret; +			continue; +		} + +		if (ret == SCANNED_EMPTY_SPACE) { +			ubifs_err("unexpected empty space at %d:%d", +				  lnum, offs); +			return -EUCLEAN; +		} + +		if (quiet) { +			/* Redo the last scan but noisily */ +			quiet = 0; +			continue; +		} + +		ubifs_scanned_corruption(c, lnum, offs, buf); +		return -EUCLEAN; +	} + +	/* Pad to min_io_size */ +	len = ALIGN(ucleb->endpt, c->min_io_size); +	if (len > ucleb->endpt) { +		int pad_len = len - ALIGN(ucleb->endpt, 8); + +		if (pad_len > 0) { +			buf = c->sbuf + len - pad_len; +			ubifs_pad(c, buf, pad_len); +		} +	} + +	/* Write back the LEB atomically */ +	err = ubi_leb_change(c->ubi, lnum, sbuf, len, UBI_UNKNOWN); +	if (err) +		return err; + +	dbg_rcvry("cleaned LEB %d", lnum); + +	return 0; +} + +/** + * ubifs_clean_lebs - clean LEBs recovered during read-only mount. + * @c: UBIFS file-system description object + * @sbuf: LEB-sized buffer to use + * + * This function cleans a LEB identified during recovery that needs to be + * written but was not because UBIFS was mounted read-only. This happens when + * remounting to read-write mode. + * + * This function returns %0 on success and a negative error code on failure. + */ +int ubifs_clean_lebs(const struct ubifs_info *c, void *sbuf) +{ +	dbg_rcvry("recovery"); +	while (!list_empty(&c->unclean_leb_list)) { +		struct ubifs_unclean_leb *ucleb; +		int err; + +		ucleb = list_entry(c->unclean_leb_list.next, +				   struct ubifs_unclean_leb, list); +		err = clean_an_unclean_leb(c, ucleb, sbuf); +		if (err) +			return err; +		list_del(&ucleb->list); +		kfree(ucleb); +	} +	return 0; +} + +/** + * struct size_entry - inode size information for recovery. + * @rb: link in the RB-tree of sizes + * @inum: inode number + * @i_size: size on inode + * @d_size: maximum size based on data nodes + * @exists: indicates whether the inode exists + * @inode: inode if pinned in memory awaiting rw mode to fix it + */ +struct size_entry { +	struct rb_node rb; +	ino_t inum; +	loff_t i_size; +	loff_t d_size; +	int exists; +	struct inode *inode; +}; + +/** + * add_ino - add an entry to the size tree. + * @c: UBIFS file-system description object + * @inum: inode number + * @i_size: size on inode + * @d_size: maximum size based on data nodes + * @exists: indicates whether the inode exists + */ +static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, +		   loff_t d_size, int exists) +{ +	struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; +	struct size_entry *e; + +	while (*p) { +		parent = *p; +		e = rb_entry(parent, struct size_entry, rb); +		if (inum < e->inum) +			p = &(*p)->rb_left; +		else +			p = &(*p)->rb_right; +	} + +	e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); +	if (!e) +		return -ENOMEM; + +	e->inum = inum; +	e->i_size = i_size; +	e->d_size = d_size; +	e->exists = exists; + +	rb_link_node(&e->rb, parent, p); +	rb_insert_color(&e->rb, &c->size_tree); + +	return 0; +} + +/** + * find_ino - find an entry on the size tree. + * @c: UBIFS file-system description object + * @inum: inode number + */ +static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) +{ +	struct rb_node *p = c->size_tree.rb_node; +	struct size_entry *e; + +	while (p) { +		e = rb_entry(p, struct size_entry, rb); +		if (inum < e->inum) +			p = p->rb_left; +		else if (inum > e->inum) +			p = p->rb_right; +		else +			return e; +	} +	return NULL; +} + +/** + * remove_ino - remove an entry from the size tree. + * @c: UBIFS file-system description object + * @inum: inode number + */ +static void remove_ino(struct ubifs_info *c, ino_t inum) +{ +	struct size_entry *e = find_ino(c, inum); + +	if (!e) +		return; +	rb_erase(&e->rb, &c->size_tree); +	kfree(e); +} + +/** + * ubifs_recover_size_accum - accumulate inode sizes for recovery. + * @c: UBIFS file-system description object + * @key: node key + * @deletion: node is for a deletion + * @new_size: inode size + * + * This function has two purposes: + *     1) to ensure there are no data nodes that fall outside the inode size + *     2) to ensure there are no data nodes for inodes that do not exist + * To accomplish those purposes, a rb-tree is constructed containing an entry + * for each inode number in the journal that has not been deleted, and recording + * the size from the inode node, the maximum size of any data node (also altered + * by truncations) and a flag indicating a inode number for which no inode node + * was present in the journal. + * + * Note that there is still the possibility that there are data nodes that have + * been committed that are beyond the inode size, however the only way to find + * them would be to scan the entire index. Alternatively, some provision could + * be made to record the size of inodes at the start of commit, which would seem + * very cumbersome for a scenario that is quite unlikely and the only negative + * consequence of which is wasted space. + * + * This functions returns %0 on success and a negative error code on failure. + */ +int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, +			     int deletion, loff_t new_size) +{ +	ino_t inum = key_inum(c, key); +	struct size_entry *e; +	int err; + +	switch (key_type(c, key)) { +	case UBIFS_INO_KEY: +		if (deletion) +			remove_ino(c, inum); +		else { +			e = find_ino(c, inum); +			if (e) { +				e->i_size = new_size; +				e->exists = 1; +			} else { +				err = add_ino(c, inum, new_size, 0, 1); +				if (err) +					return err; +			} +		} +		break; +	case UBIFS_DATA_KEY: +		e = find_ino(c, inum); +		if (e) { +			if (new_size > e->d_size) +				e->d_size = new_size; +		} else { +			err = add_ino(c, inum, 0, new_size, 0); +			if (err) +				return err; +		} +		break; +	case UBIFS_TRUN_KEY: +		e = find_ino(c, inum); +		if (e) +			e->d_size = new_size; +		break; +	} +	return 0; +} + +/** + * ubifs_recover_size - recover inode size. + * @c: UBIFS file-system description object + * + * This function attempts to fix inode size discrepancies identified by the + * 'ubifs_recover_size_accum()' function. + * + * This functions returns %0 on success and a negative error code on failure. + */ +int ubifs_recover_size(struct ubifs_info *c) +{ +	struct rb_node *this = rb_first(&c->size_tree); + +	while (this) { +		struct size_entry *e; +		int err; + +		e = rb_entry(this, struct size_entry, rb); +		if (!e->exists) { +			union ubifs_key key; + +			ino_key_init(c, &key, e->inum); +			err = ubifs_tnc_lookup(c, &key, c->sbuf); +			if (err && err != -ENOENT) +				return err; +			if (err == -ENOENT) { +				/* Remove data nodes that have no inode */ +				dbg_rcvry("removing ino %lu", +					  (unsigned long)e->inum); +				err = ubifs_tnc_remove_ino(c, e->inum); +				if (err) +					return err; +			} else { +				struct ubifs_ino_node *ino = c->sbuf; + +				e->exists = 1; +				e->i_size = le64_to_cpu(ino->size); +			} +		} +		if (e->exists && e->i_size < e->d_size) { +			if (!e->inode && (c->vfs_sb->s_flags & MS_RDONLY)) { +				/* Fix the inode size and pin it in memory */ +				struct inode *inode; + +				inode = ubifs_iget(c->vfs_sb, e->inum); +				if (IS_ERR(inode)) +					return PTR_ERR(inode); +				if (inode->i_size < e->d_size) { +					dbg_rcvry("ino %lu size %lld -> %lld", +						  (unsigned long)e->inum, +						  e->d_size, inode->i_size); +					inode->i_size = e->d_size; +					ubifs_inode(inode)->ui_size = e->d_size; +					e->inode = inode; +					this = rb_next(this); +					continue; +				} +				iput(inode); +			} +		} +		this = rb_next(this); +		rb_erase(&e->rb, &c->size_tree); +		kfree(e); +	} +	return 0; +} |