diff options
Diffstat (limited to 'drivers/net/e1000.c')
| -rw-r--r-- | drivers/net/e1000.c | 3016 | 
1 files changed, 3016 insertions, 0 deletions
| diff --git a/drivers/net/e1000.c b/drivers/net/e1000.c new file mode 100644 index 000000000..f0741da82 --- /dev/null +++ b/drivers/net/e1000.c @@ -0,0 +1,3016 @@ +/************************************************************************** +Inter Pro 1000 for ppcboot/das-u-boot +Drivers are port from Intel's Linux driver e1000-4.3.15 +and from Etherboot pro 1000 driver by mrakes at vivato dot net +tested on both gig copper and gig fiber boards +***************************************************************************/ +/******************************************************************************* + + +  Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. + +  This program is free software; you can redistribute it and/or modify it +  under the terms of the GNU General Public License as published by the Free +  Software Foundation; either version 2 of the License, or (at your option) +  any later version. + +  This program is distributed in the hope that it will be useful, but WITHOUT +  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for +  more details. + +  You should have received a copy of the GNU General Public License along with +  this program; if not, write to the Free Software Foundation, Inc., 59 +  Temple Place - Suite 330, Boston, MA  02111-1307, USA. + +  The full GNU General Public License is included in this distribution in the +  file called LICENSE. + +  Contact Information: +  Linux NICS <linux.nics@intel.com> +  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ +/* + *  Copyright (C) Archway Digital Solutions. + * + *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org> + *  2/9/2002 + * + *  Copyright (C) Linux Networx. + *  Massive upgrade to work with the new intel gigabit NICs. + *  <ebiederman at lnxi dot com> + */ + +#include "e1000.h" + +#if defined(CONFIG_CMD_NET) \ +	&& defined(CONFIG_NET_MULTI) && defined(CONFIG_E1000) + +#define TOUT_LOOP   100000 + +#undef	virt_to_bus +#define	virt_to_bus(x)	((unsigned long)x) +#define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a) +#define mdelay(n)       udelay((n)*1000) + +#define E1000_DEFAULT_PBA    0x00000030 + +/* NIC specific static variables go here */ + +static char tx_pool[128 + 16]; +static char rx_pool[128 + 16]; +static char packet[2096]; + +static struct e1000_tx_desc *tx_base; +static struct e1000_rx_desc *rx_base; + +static int tx_tail; +static int rx_tail, rx_last; + +static struct pci_device_id supported[] = { +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER}, +	{PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM}, +}; + +/* Function forward declarations */ +static int e1000_setup_link(struct eth_device *nic); +static int e1000_setup_fiber_link(struct eth_device *nic); +static int e1000_setup_copper_link(struct eth_device *nic); +static int e1000_phy_setup_autoneg(struct e1000_hw *hw); +static void e1000_config_collision_dist(struct e1000_hw *hw); +static int e1000_config_mac_to_phy(struct e1000_hw *hw); +static int e1000_config_fc_after_link_up(struct e1000_hw *hw); +static int e1000_check_for_link(struct eth_device *nic); +static int e1000_wait_autoneg(struct e1000_hw *hw); +static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, +				       uint16_t * duplex); +static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, +			      uint16_t * phy_data); +static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, +			       uint16_t phy_data); +static void e1000_phy_hw_reset(struct e1000_hw *hw); +static int e1000_phy_reset(struct e1000_hw *hw); +static int e1000_detect_gig_phy(struct e1000_hw *hw); + +#define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg))) +#define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg)) +#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\ +			writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))) +#define E1000_READ_REG_ARRAY(a, reg, offset) ( \ +	readl((a)->hw_addr + E1000_##reg + ((offset) << 2))) +#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);} + +#ifndef CONFIG_AP1000 /* remove for warnings */ +/****************************************************************************** + * Raises the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void +e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd) +{ +	/* Raise the clock input to the EEPROM (by setting the SK bit), and then +	 * wait 50 microseconds. +	 */ +	*eecd = *eecd | E1000_EECD_SK; +	E1000_WRITE_REG(hw, EECD, *eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); +} + +/****************************************************************************** + * Lowers the EEPROM's clock input. + * + * hw - Struct containing variables accessed by shared code + * eecd - EECD's current value + *****************************************************************************/ +static void +e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd) +{ +	/* Lower the clock input to the EEPROM (by clearing the SK bit), and then +	 * wait 50 microseconds. +	 */ +	*eecd = *eecd & ~E1000_EECD_SK; +	E1000_WRITE_REG(hw, EECD, *eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); +} + +/****************************************************************************** + * Shift data bits out to the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * data - data to send to the EEPROM + * count - number of bits to shift out + *****************************************************************************/ +static void +e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) +{ +	uint32_t eecd; +	uint32_t mask; + +	/* We need to shift "count" bits out to the EEPROM. So, value in the +	 * "data" parameter will be shifted out to the EEPROM one bit at a time. +	 * In order to do this, "data" must be broken down into bits. +	 */ +	mask = 0x01 << (count - 1); +	eecd = E1000_READ_REG(hw, EECD); +	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); +	do { +		/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", +		 * and then raising and then lowering the clock (the SK bit controls +		 * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM +		 * by setting "DI" to "0" and then raising and then lowering the clock. +		 */ +		eecd &= ~E1000_EECD_DI; + +		if (data & mask) +			eecd |= E1000_EECD_DI; + +		E1000_WRITE_REG(hw, EECD, eecd); +		E1000_WRITE_FLUSH(hw); + +		udelay(50); + +		e1000_raise_ee_clk(hw, &eecd); +		e1000_lower_ee_clk(hw, &eecd); + +		mask = mask >> 1; + +	} while (mask); + +	/* We leave the "DI" bit set to "0" when we leave this routine. */ +	eecd &= ~E1000_EECD_DI; +	E1000_WRITE_REG(hw, EECD, eecd); +} + +/****************************************************************************** + * Shift data bits in from the EEPROM + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static uint16_t +e1000_shift_in_ee_bits(struct e1000_hw *hw) +{ +	uint32_t eecd; +	uint32_t i; +	uint16_t data; + +	/* In order to read a register from the EEPROM, we need to shift 16 bits +	 * in from the EEPROM. Bits are "shifted in" by raising the clock input to +	 * the EEPROM (setting the SK bit), and then reading the value of the "DO" +	 * bit.  During this "shifting in" process the "DI" bit should always be +	 * clear.. +	 */ + +	eecd = E1000_READ_REG(hw, EECD); + +	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); +	data = 0; + +	for (i = 0; i < 16; i++) { +		data = data << 1; +		e1000_raise_ee_clk(hw, &eecd); + +		eecd = E1000_READ_REG(hw, EECD); + +		eecd &= ~(E1000_EECD_DI); +		if (eecd & E1000_EECD_DO) +			data |= 1; + +		e1000_lower_ee_clk(hw, &eecd); +	} + +	return data; +} + +/****************************************************************************** + * Prepares EEPROM for access + * + * hw - Struct containing variables accessed by shared code + * + * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This + * function should be called before issuing a command to the EEPROM. + *****************************************************************************/ +static void +e1000_setup_eeprom(struct e1000_hw *hw) +{ +	uint32_t eecd; + +	eecd = E1000_READ_REG(hw, EECD); + +	/* Clear SK and DI */ +	eecd &= ~(E1000_EECD_SK | E1000_EECD_DI); +	E1000_WRITE_REG(hw, EECD, eecd); + +	/* Set CS */ +	eecd |= E1000_EECD_CS; +	E1000_WRITE_REG(hw, EECD, eecd); +} + +/****************************************************************************** + * Returns EEPROM to a "standby" state + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +e1000_standby_eeprom(struct e1000_hw *hw) +{ +	uint32_t eecd; + +	eecd = E1000_READ_REG(hw, EECD); + +	/* Deselct EEPROM */ +	eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); +	E1000_WRITE_REG(hw, EECD, eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); + +	/* Clock high */ +	eecd |= E1000_EECD_SK; +	E1000_WRITE_REG(hw, EECD, eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); + +	/* Select EEPROM */ +	eecd |= E1000_EECD_CS; +	E1000_WRITE_REG(hw, EECD, eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); + +	/* Clock low */ +	eecd &= ~E1000_EECD_SK; +	E1000_WRITE_REG(hw, EECD, eecd); +	E1000_WRITE_FLUSH(hw); +	udelay(50); +} + +/****************************************************************************** + * Reads a 16 bit word from the EEPROM. + * + * hw - Struct containing variables accessed by shared code + * offset - offset of  word in the EEPROM to read + * data - word read from the EEPROM + *****************************************************************************/ +static int +e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data) +{ +	uint32_t eecd; +	uint32_t i = 0; +	int large_eeprom = FALSE; + +	/* Request EEPROM Access */ +	if (hw->mac_type > e1000_82544) { +		eecd = E1000_READ_REG(hw, EECD); +		if (eecd & E1000_EECD_SIZE) +			large_eeprom = TRUE; +		eecd |= E1000_EECD_REQ; +		E1000_WRITE_REG(hw, EECD, eecd); +		eecd = E1000_READ_REG(hw, EECD); +		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { +			i++; +			udelay(10); +			eecd = E1000_READ_REG(hw, EECD); +		} +		if (!(eecd & E1000_EECD_GNT)) { +			eecd &= ~E1000_EECD_REQ; +			E1000_WRITE_REG(hw, EECD, eecd); +			DEBUGOUT("Could not acquire EEPROM grant\n"); +			return -E1000_ERR_EEPROM; +		} +	} + +	/*  Prepare the EEPROM for reading  */ +	e1000_setup_eeprom(hw); + +	/*  Send the READ command (opcode + addr)  */ +	e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3); +	e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6); + +	/* Read the data */ +	*data = e1000_shift_in_ee_bits(hw); + +	/* End this read operation */ +	e1000_standby_eeprom(hw); + +	/* Stop requesting EEPROM access */ +	if (hw->mac_type > e1000_82544) { +		eecd = E1000_READ_REG(hw, EECD); +		eecd &= ~E1000_EECD_REQ; +		E1000_WRITE_REG(hw, EECD, eecd); +	} + +	return 0; +} + +#if 0 +static void +e1000_eeprom_cleanup(struct e1000_hw *hw) +{ +	uint32_t eecd; + +	eecd = E1000_READ_REG(hw, EECD); +	eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); +	E1000_WRITE_REG(hw, EECD, eecd); +	e1000_raise_ee_clk(hw, &eecd); +	e1000_lower_ee_clk(hw, &eecd); +} + +static uint16_t +e1000_wait_eeprom_done(struct e1000_hw *hw) +{ +	uint32_t eecd; +	uint32_t i; + +	e1000_standby_eeprom(hw); +	for (i = 0; i < 200; i++) { +		eecd = E1000_READ_REG(hw, EECD); +		if (eecd & E1000_EECD_DO) +			return (TRUE); +		udelay(5); +	} +	return (FALSE); +} + +static int +e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data) +{ +	uint32_t eecd; +	int large_eeprom = FALSE; +	int i = 0; + +	/* Request EEPROM Access */ +	if (hw->mac_type > e1000_82544) { +		eecd = E1000_READ_REG(hw, EECD); +		if (eecd & E1000_EECD_SIZE) +			large_eeprom = TRUE; +		eecd |= E1000_EECD_REQ; +		E1000_WRITE_REG(hw, EECD, eecd); +		eecd = E1000_READ_REG(hw, EECD); +		while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { +			i++; +			udelay(5); +			eecd = E1000_READ_REG(hw, EECD); +		} +		if (!(eecd & E1000_EECD_GNT)) { +			eecd &= ~E1000_EECD_REQ; +			E1000_WRITE_REG(hw, EECD, eecd); +			DEBUGOUT("Could not acquire EEPROM grant\n"); +			return FALSE; +		} +	} +	e1000_setup_eeprom(hw); +	e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5); +	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); +	e1000_standby_eeprom(hw); +	e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3); +	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6); +	e1000_shift_out_ee_bits(hw, Data, 16); +	if (!e1000_wait_eeprom_done(hw)) { +		return FALSE; +	} +	e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5); +	e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); +	e1000_eeprom_cleanup(hw); + +	/* Stop requesting EEPROM access */ +	if (hw->mac_type > e1000_82544) { +		eecd = E1000_READ_REG(hw, EECD); +		eecd &= ~E1000_EECD_REQ; +		E1000_WRITE_REG(hw, EECD, eecd); +	} +	i = 0; +	eecd = E1000_READ_REG(hw, EECD); +	while (((eecd & E1000_EECD_GNT)) && (i < 500)) { +		i++; +		udelay(10); +		eecd = E1000_READ_REG(hw, EECD); +	} +	if ((eecd & E1000_EECD_GNT)) { +		DEBUGOUT("Could not release EEPROM grant\n"); +	} +	return TRUE; +} +#endif + +/****************************************************************************** + * Verifies that the EEPROM has a valid checksum + * + * hw - Struct containing variables accessed by shared code + * + * Reads the first 64 16 bit words of the EEPROM and sums the values read. + * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is + * valid. + *****************************************************************************/ +static int +e1000_validate_eeprom_checksum(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint16_t checksum = 0; +	uint16_t i, eeprom_data; + +	DEBUGFUNC(); + +	for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { +		if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) { +			DEBUGOUT("EEPROM Read Error\n"); +			return -E1000_ERR_EEPROM; +		} +		checksum += eeprom_data; +	} + +	if (checksum == (uint16_t) EEPROM_SUM) { +		return 0; +	} else { +		DEBUGOUT("EEPROM Checksum Invalid\n"); +		return -E1000_ERR_EEPROM; +	} +} +#endif /* #ifndef CONFIG_AP1000 */ + +/****************************************************************************** + * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the + * second function of dual function devices + * + * nic - Struct containing variables accessed by shared code + *****************************************************************************/ +static int +e1000_read_mac_addr(struct eth_device *nic) +{ +#ifndef CONFIG_AP1000 +	struct e1000_hw *hw = nic->priv; +	uint16_t offset; +	uint16_t eeprom_data; +	int i; + +	DEBUGFUNC(); + +	for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { +		offset = i >> 1; +		if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) { +			DEBUGOUT("EEPROM Read Error\n"); +			return -E1000_ERR_EEPROM; +		} +		nic->enetaddr[i] = eeprom_data & 0xff; +		nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff; +	} +	if ((hw->mac_type == e1000_82546) && +	    (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { +		/* Invert the last bit if this is the second device */ +		nic->enetaddr[5] += 1; +	} +#else +	/* +	 * The AP1000's e1000 has no eeprom; the MAC address is stored in the +	 * environment variables.  Currently this does not support the addition +	 * of a PMC e1000 card, which is certainly a possibility, so this should +	 * be updated to properly use the env variable only for the onboard e1000 +	 */ + +	int ii; +	char *s, *e; + +	DEBUGFUNC(); + +	s = getenv ("ethaddr"); +	if (s == NULL){ +		return -E1000_ERR_EEPROM; +	} +	else{ +		for(ii = 0; ii < 6; ii++) { +			nic->enetaddr[ii] = s ? simple_strtoul (s, &e, 16) : 0; +			if (s){ +				s = (*e) ? e + 1 : e; +			} +		} +	} +#endif +	return 0; +} + +/****************************************************************************** + * Initializes receive address filters. + * + * hw - Struct containing variables accessed by shared code + * + * Places the MAC address in receive address register 0 and clears the rest + * of the receive addresss registers. Clears the multicast table. Assumes + * the receiver is in reset when the routine is called. + *****************************************************************************/ +static void +e1000_init_rx_addrs(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t i; +	uint32_t addr_low; +	uint32_t addr_high; + +	DEBUGFUNC(); + +	/* Setup the receive address. */ +	DEBUGOUT("Programming MAC Address into RAR[0]\n"); +	addr_low = (nic->enetaddr[0] | +		    (nic->enetaddr[1] << 8) | +		    (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24)); + +	addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV); + +	E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); +	E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); + +	/* Zero out the other 15 receive addresses. */ +	DEBUGOUT("Clearing RAR[1-15]\n"); +	for (i = 1; i < E1000_RAR_ENTRIES; i++) { +		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); +		E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); +	} +} + +/****************************************************************************** + * Clears the VLAN filer table + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static void +e1000_clear_vfta(struct e1000_hw *hw) +{ +	uint32_t offset; + +	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) +		E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); +} + +/****************************************************************************** + * Set the mac type member in the hw struct. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +static int +e1000_set_mac_type(struct e1000_hw *hw) +{ +	DEBUGFUNC(); + +	switch (hw->device_id) { +	case E1000_DEV_ID_82542: +		switch (hw->revision_id) { +		case E1000_82542_2_0_REV_ID: +			hw->mac_type = e1000_82542_rev2_0; +			break; +		case E1000_82542_2_1_REV_ID: +			hw->mac_type = e1000_82542_rev2_1; +			break; +		default: +			/* Invalid 82542 revision ID */ +			return -E1000_ERR_MAC_TYPE; +		} +		break; +	case E1000_DEV_ID_82543GC_FIBER: +	case E1000_DEV_ID_82543GC_COPPER: +		hw->mac_type = e1000_82543; +		break; +	case E1000_DEV_ID_82544EI_COPPER: +	case E1000_DEV_ID_82544EI_FIBER: +	case E1000_DEV_ID_82544GC_COPPER: +	case E1000_DEV_ID_82544GC_LOM: +		hw->mac_type = e1000_82544; +		break; +	case E1000_DEV_ID_82540EM: +	case E1000_DEV_ID_82540EM_LOM: +		hw->mac_type = e1000_82540; +		break; +	case E1000_DEV_ID_82545EM_COPPER: +	case E1000_DEV_ID_82545EM_FIBER: +		hw->mac_type = e1000_82545; +		break; +	case E1000_DEV_ID_82546EB_COPPER: +	case E1000_DEV_ID_82546EB_FIBER: +		hw->mac_type = e1000_82546; +		break; +	default: +		/* Should never have loaded on this device */ +		return -E1000_ERR_MAC_TYPE; +	} +	return E1000_SUCCESS; +} + +/****************************************************************************** + * Reset the transmit and receive units; mask and clear all interrupts. + * + * hw - Struct containing variables accessed by shared code + *****************************************************************************/ +void +e1000_reset_hw(struct e1000_hw *hw) +{ +	uint32_t ctrl; +	uint32_t ctrl_ext; +	uint32_t icr; +	uint32_t manc; + +	DEBUGFUNC(); + +	/* For 82542 (rev 2.0), disable MWI before issuing a device reset */ +	if (hw->mac_type == e1000_82542_rev2_0) { +		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); +		pci_write_config_word(hw->pdev, PCI_COMMAND, +				      hw-> +				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE); +	} + +	/* Clear interrupt mask to stop board from generating interrupts */ +	DEBUGOUT("Masking off all interrupts\n"); +	E1000_WRITE_REG(hw, IMC, 0xffffffff); + +	/* Disable the Transmit and Receive units.  Then delay to allow +	 * any pending transactions to complete before we hit the MAC with +	 * the global reset. +	 */ +	E1000_WRITE_REG(hw, RCTL, 0); +	E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); +	E1000_WRITE_FLUSH(hw); + +	/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ +	hw->tbi_compatibility_on = FALSE; + +	/* Delay to allow any outstanding PCI transactions to complete before +	 * resetting the device +	 */ +	mdelay(10); + +	/* Issue a global reset to the MAC.  This will reset the chip's +	 * transmit, receive, DMA, and link units.  It will not effect +	 * the current PCI configuration.  The global reset bit is self- +	 * clearing, and should clear within a microsecond. +	 */ +	DEBUGOUT("Issuing a global reset to MAC\n"); +	ctrl = E1000_READ_REG(hw, CTRL); + +#if 0 +	if (hw->mac_type > e1000_82543) +		E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); +	else +#endif +		E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); + +	/* Force a reload from the EEPROM if necessary */ +	if (hw->mac_type < e1000_82540) { +		/* Wait for reset to complete */ +		udelay(10); +		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); +		ctrl_ext |= E1000_CTRL_EXT_EE_RST; +		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); +		E1000_WRITE_FLUSH(hw); +		/* Wait for EEPROM reload */ +		mdelay(2); +	} else { +		/* Wait for EEPROM reload (it happens automatically) */ +		mdelay(4); +		/* Dissable HW ARPs on ASF enabled adapters */ +		manc = E1000_READ_REG(hw, MANC); +		manc &= ~(E1000_MANC_ARP_EN); +		E1000_WRITE_REG(hw, MANC, manc); +	} + +	/* Clear interrupt mask to stop board from generating interrupts */ +	DEBUGOUT("Masking off all interrupts\n"); +	E1000_WRITE_REG(hw, IMC, 0xffffffff); + +	/* Clear any pending interrupt events. */ +	icr = E1000_READ_REG(hw, ICR); + +	/* If MWI was previously enabled, reenable it. */ +	if (hw->mac_type == e1000_82542_rev2_0) { +		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); +	} +} + +/****************************************************************************** + * Performs basic configuration of the adapter. + * + * hw - Struct containing variables accessed by shared code + * + * Assumes that the controller has previously been reset and is in a + * post-reset uninitialized state. Initializes the receive address registers, + * multicast table, and VLAN filter table. Calls routines to setup link + * configuration and flow control settings. Clears all on-chip counters. Leaves + * the transmit and receive units disabled and uninitialized. + *****************************************************************************/ +static int +e1000_init_hw(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t ctrl, status; +	uint32_t i; +	int32_t ret_val; +	uint16_t pcix_cmd_word; +	uint16_t pcix_stat_hi_word; +	uint16_t cmd_mmrbc; +	uint16_t stat_mmrbc; +	e1000_bus_type bus_type = e1000_bus_type_unknown; + +	DEBUGFUNC(); +#if 0 +	/* Initialize Identification LED */ +	ret_val = e1000_id_led_init(hw); +	if (ret_val < 0) { +		DEBUGOUT("Error Initializing Identification LED\n"); +		return ret_val; +	} +#endif +	/* Set the Media Type and exit with error if it is not valid. */ +	if (hw->mac_type != e1000_82543) { +		/* tbi_compatibility is only valid on 82543 */ +		hw->tbi_compatibility_en = FALSE; +	} + +	if (hw->mac_type >= e1000_82543) { +		status = E1000_READ_REG(hw, STATUS); +		if (status & E1000_STATUS_TBIMODE) { +			hw->media_type = e1000_media_type_fiber; +			/* tbi_compatibility not valid on fiber */ +			hw->tbi_compatibility_en = FALSE; +		} else { +			hw->media_type = e1000_media_type_copper; +		} +	} else { +		/* This is an 82542 (fiber only) */ +		hw->media_type = e1000_media_type_fiber; +	} + +	/* Disabling VLAN filtering. */ +	DEBUGOUT("Initializing the IEEE VLAN\n"); +	E1000_WRITE_REG(hw, VET, 0); + +	e1000_clear_vfta(hw); + +	/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ +	if (hw->mac_type == e1000_82542_rev2_0) { +		DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); +		pci_write_config_word(hw->pdev, PCI_COMMAND, +				      hw-> +				      pci_cmd_word & ~PCI_COMMAND_INVALIDATE); +		E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); +		E1000_WRITE_FLUSH(hw); +		mdelay(5); +	} + +	/* Setup the receive address. This involves initializing all of the Receive +	 * Address Registers (RARs 0 - 15). +	 */ +	e1000_init_rx_addrs(nic); + +	/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ +	if (hw->mac_type == e1000_82542_rev2_0) { +		E1000_WRITE_REG(hw, RCTL, 0); +		E1000_WRITE_FLUSH(hw); +		mdelay(1); +		pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); +	} + +	/* Zero out the Multicast HASH table */ +	DEBUGOUT("Zeroing the MTA\n"); +	for (i = 0; i < E1000_MC_TBL_SIZE; i++) +		E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); + +#if 0 +	/* Set the PCI priority bit correctly in the CTRL register.  This +	 * determines if the adapter gives priority to receives, or if it +	 * gives equal priority to transmits and receives. +	 */ +	if (hw->dma_fairness) { +		ctrl = E1000_READ_REG(hw, CTRL); +		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); +	} +#endif +	if (hw->mac_type >= e1000_82543) { +		status = E1000_READ_REG(hw, STATUS); +		bus_type = (status & E1000_STATUS_PCIX_MODE) ? +		    e1000_bus_type_pcix : e1000_bus_type_pci; +	} +	/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ +	if (bus_type == e1000_bus_type_pcix) { +		pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, +				     &pcix_cmd_word); +		pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, +				     &pcix_stat_hi_word); +		cmd_mmrbc = +		    (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> +		    PCIX_COMMAND_MMRBC_SHIFT; +		stat_mmrbc = +		    (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> +		    PCIX_STATUS_HI_MMRBC_SHIFT; +		if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) +			stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; +		if (cmd_mmrbc > stat_mmrbc) { +			pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; +			pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; +			pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, +					      pcix_cmd_word); +		} +	} + +	/* Call a subroutine to configure the link and setup flow control. */ +	ret_val = e1000_setup_link(nic); + +	/* Set the transmit descriptor write-back policy */ +	if (hw->mac_type > e1000_82544) { +		ctrl = E1000_READ_REG(hw, TXDCTL); +		ctrl = +		    (ctrl & ~E1000_TXDCTL_WTHRESH) | +		    E1000_TXDCTL_FULL_TX_DESC_WB; +		E1000_WRITE_REG(hw, TXDCTL, ctrl); +	} +#if 0 +	/* Clear all of the statistics registers (clear on read).  It is +	 * important that we do this after we have tried to establish link +	 * because the symbol error count will increment wildly if there +	 * is no link. +	 */ +	e1000_clear_hw_cntrs(hw); +#endif + +	return ret_val; +} + +/****************************************************************************** + * Configures flow control and link settings. + * + * hw - Struct containing variables accessed by shared code + * + * Determines which flow control settings to use. Calls the apropriate media- + * specific link configuration function. Configures the flow control settings. + * Assuming the adapter has a valid link partner, a valid link should be + * established. Assumes the hardware has previously been reset and the + * transmitter and receiver are not enabled. + *****************************************************************************/ +static int +e1000_setup_link(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t ctrl_ext; +	int32_t ret_val; +	uint16_t eeprom_data; + +	DEBUGFUNC(); + +#ifndef CONFIG_AP1000 +	/* Read and store word 0x0F of the EEPROM. This word contains bits +	 * that determine the hardware's default PAUSE (flow control) mode, +	 * a bit that determines whether the HW defaults to enabling or +	 * disabling auto-negotiation, and the direction of the +	 * SW defined pins. If there is no SW over-ride of the flow +	 * control setting, then the variable hw->fc will +	 * be initialized based on a value in the EEPROM. +	 */ +	if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) { +		DEBUGOUT("EEPROM Read Error\n"); +		return -E1000_ERR_EEPROM; +	} +#else +	/* we have to hardcode the proper value for our hardware. */ +	/* this value is for the 82540EM pci card used for prototyping, and it works. */ +	eeprom_data = 0xb220; +#endif + +	if (hw->fc == e1000_fc_default) { +		if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) +			hw->fc = e1000_fc_none; +		else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == +			 EEPROM_WORD0F_ASM_DIR) +			hw->fc = e1000_fc_tx_pause; +		else +			hw->fc = e1000_fc_full; +	} + +	/* We want to save off the original Flow Control configuration just +	 * in case we get disconnected and then reconnected into a different +	 * hub or switch with different Flow Control capabilities. +	 */ +	if (hw->mac_type == e1000_82542_rev2_0) +		hw->fc &= (~e1000_fc_tx_pause); + +	if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) +		hw->fc &= (~e1000_fc_rx_pause); + +	hw->original_fc = hw->fc; + +	DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc); + +	/* Take the 4 bits from EEPROM word 0x0F that determine the initial +	 * polarity value for the SW controlled pins, and setup the +	 * Extended Device Control reg with that info. +	 * This is needed because one of the SW controlled pins is used for +	 * signal detection.  So this should be done before e1000_setup_pcs_link() +	 * or e1000_phy_setup() is called. +	 */ +	if (hw->mac_type == e1000_82543) { +		ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << +			    SWDPIO__EXT_SHIFT); +		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); +	} + +	/* Call the necessary subroutine to configure the link. */ +	ret_val = (hw->media_type == e1000_media_type_fiber) ? +	    e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic); +	if (ret_val < 0) { +		return ret_val; +	} + +	/* Initialize the flow control address, type, and PAUSE timer +	 * registers to their default values.  This is done even if flow +	 * control is disabled, because it does not hurt anything to +	 * initialize these registers. +	 */ +	DEBUGOUT +	    ("Initializing the Flow Control address, type and timer regs\n"); + +	E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); +	E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); +	E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); +	E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); + +	/* Set the flow control receive threshold registers.  Normally, +	 * these registers will be set to a default threshold that may be +	 * adjusted later by the driver's runtime code.  However, if the +	 * ability to transmit pause frames in not enabled, then these +	 * registers will be set to 0. +	 */ +	if (!(hw->fc & e1000_fc_tx_pause)) { +		E1000_WRITE_REG(hw, FCRTL, 0); +		E1000_WRITE_REG(hw, FCRTH, 0); +	} else { +		/* We need to set up the Receive Threshold high and low water marks +		 * as well as (optionally) enabling the transmission of XON frames. +		 */ +		if (hw->fc_send_xon) { +			E1000_WRITE_REG(hw, FCRTL, +					(hw->fc_low_water | E1000_FCRTL_XONE)); +			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); +		} else { +			E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); +			E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); +		} +	} +	return ret_val; +} + +/****************************************************************************** + * Sets up link for a fiber based adapter + * + * hw - Struct containing variables accessed by shared code + * + * Manipulates Physical Coding Sublayer functions in order to configure + * link. Assumes the hardware has been previously reset and the transmitter + * and receiver are not enabled. + *****************************************************************************/ +static int +e1000_setup_fiber_link(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t ctrl; +	uint32_t status; +	uint32_t txcw = 0; +	uint32_t i; +	uint32_t signal; +	int32_t ret_val; + +	DEBUGFUNC(); +	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be +	 * set when the optics detect a signal. On older adapters, it will be +	 * cleared when there is a signal +	 */ +	ctrl = E1000_READ_REG(hw, CTRL); +	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) +		signal = E1000_CTRL_SWDPIN1; +	else +		signal = 0; + +	printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal, +	       ctrl); +	/* Take the link out of reset */ +	ctrl &= ~(E1000_CTRL_LRST); + +	e1000_config_collision_dist(hw); + +	/* Check for a software override of the flow control settings, and setup +	 * the device accordingly.  If auto-negotiation is enabled, then software +	 * will have to set the "PAUSE" bits to the correct value in the Tranmsit +	 * Config Word Register (TXCW) and re-start auto-negotiation.  However, if +	 * auto-negotiation is disabled, then software will have to manually +	 * configure the two flow control enable bits in the CTRL register. +	 * +	 * The possible values of the "fc" parameter are: +	 *      0:  Flow control is completely disabled +	 *      1:  Rx flow control is enabled (we can receive pause frames, but +	 *          not send pause frames). +	 *      2:  Tx flow control is enabled (we can send pause frames but we do +	 *          not support receiving pause frames). +	 *      3:  Both Rx and TX flow control (symmetric) are enabled. +	 */ +	switch (hw->fc) { +	case e1000_fc_none: +		/* Flow control is completely disabled by a software over-ride. */ +		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); +		break; +	case e1000_fc_rx_pause: +		/* RX Flow control is enabled and TX Flow control is disabled by a +		 * software over-ride. Since there really isn't a way to advertise +		 * that we are capable of RX Pause ONLY, we will advertise that we +		 * support both symmetric and asymmetric RX PAUSE. Later, we will +		 *  disable the adapter's ability to send PAUSE frames. +		 */ +		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); +		break; +	case e1000_fc_tx_pause: +		/* TX Flow control is enabled, and RX Flow control is disabled, by a +		 * software over-ride. +		 */ +		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); +		break; +	case e1000_fc_full: +		/* Flow control (both RX and TX) is enabled by a software over-ride. */ +		txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); +		break; +	default: +		DEBUGOUT("Flow control param set incorrectly\n"); +		return -E1000_ERR_CONFIG; +		break; +	} + +	/* Since auto-negotiation is enabled, take the link out of reset (the link +	 * will be in reset, because we previously reset the chip). This will +	 * restart auto-negotiation.  If auto-neogtiation is successful then the +	 * link-up status bit will be set and the flow control enable bits (RFCE +	 * and TFCE) will be set according to their negotiated value. +	 */ +	DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw); + +	E1000_WRITE_REG(hw, TXCW, txcw); +	E1000_WRITE_REG(hw, CTRL, ctrl); +	E1000_WRITE_FLUSH(hw); + +	hw->txcw = txcw; +	mdelay(1); + +	/* If we have a signal (the cable is plugged in) then poll for a "Link-Up" +	 * indication in the Device Status Register.  Time-out if a link isn't +	 * seen in 500 milliseconds seconds (Auto-negotiation should complete in +	 * less than 500 milliseconds even if the other end is doing it in SW). +	 */ +	if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { +		DEBUGOUT("Looking for Link\n"); +		for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { +			mdelay(10); +			status = E1000_READ_REG(hw, STATUS); +			if (status & E1000_STATUS_LU) +				break; +		} +		if (i == (LINK_UP_TIMEOUT / 10)) { +			/* AutoNeg failed to achieve a link, so we'll call +			 * e1000_check_for_link. This routine will force the link up if we +			 * detect a signal. This will allow us to communicate with +			 * non-autonegotiating link partners. +			 */ +			DEBUGOUT("Never got a valid link from auto-neg!!!\n"); +			hw->autoneg_failed = 1; +			ret_val = e1000_check_for_link(nic); +			if (ret_val < 0) { +				DEBUGOUT("Error while checking for link\n"); +				return ret_val; +			} +			hw->autoneg_failed = 0; +		} else { +			hw->autoneg_failed = 0; +			DEBUGOUT("Valid Link Found\n"); +		} +	} else { +		DEBUGOUT("No Signal Detected\n"); +		return -E1000_ERR_NOLINK; +	} +	return 0; +} + +/****************************************************************************** +* Detects which PHY is present and the speed and duplex +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int +e1000_setup_copper_link(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t ctrl; +	int32_t ret_val; +	uint16_t i; +	uint16_t phy_data; + +	DEBUGFUNC(); + +	ctrl = E1000_READ_REG(hw, CTRL); +	/* With 82543, we need to force speed and duplex on the MAC equal to what +	 * the PHY speed and duplex configuration is. In addition, we need to +	 * perform a hardware reset on the PHY to take it out of reset. +	 */ +	if (hw->mac_type > e1000_82543) { +		ctrl |= E1000_CTRL_SLU; +		ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); +		E1000_WRITE_REG(hw, CTRL, ctrl); +	} else { +		ctrl |= +		    (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); +		E1000_WRITE_REG(hw, CTRL, ctrl); +		e1000_phy_hw_reset(hw); +	} + +	/* Make sure we have a valid PHY */ +	ret_val = e1000_detect_gig_phy(hw); +	if (ret_val < 0) { +		DEBUGOUT("Error, did not detect valid phy.\n"); +		return ret_val; +	} +	DEBUGOUT("Phy ID = %x \n", hw->phy_id); + +	/* Enable CRS on TX. This must be set for half-duplex operation. */ +	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; + +#if 0 +	/* Options: +	 *   MDI/MDI-X = 0 (default) +	 *   0 - Auto for all speeds +	 *   1 - MDI mode +	 *   2 - MDI-X mode +	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) +	 */ +	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; +	switch (hw->mdix) { +	case 1: +		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; +		break; +	case 2: +		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; +		break; +	case 3: +		phy_data |= M88E1000_PSCR_AUTO_X_1000T; +		break; +	case 0: +	default: +		phy_data |= M88E1000_PSCR_AUTO_X_MODE; +		break; +	} +#else +	phy_data |= M88E1000_PSCR_AUTO_X_MODE; +#endif + +#if 0 +	/* Options: +	 *   disable_polarity_correction = 0 (default) +	 *       Automatic Correction for Reversed Cable Polarity +	 *   0 - Disabled +	 *   1 - Enabled +	 */ +	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; +	if (hw->disable_polarity_correction == 1) +		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; +#else +	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; +#endif +	if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} + +	/* Force TX_CLK in the Extended PHY Specific Control Register +	 * to 25MHz clock. +	 */ +	if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	phy_data |= M88E1000_EPSCR_TX_CLK_25; +	/* Configure Master and Slave downshift values */ +	phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | +		      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); +	phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | +		     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); +	if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} + +	/* SW Reset the PHY so all changes take effect */ +	ret_val = e1000_phy_reset(hw); +	if (ret_val < 0) { +		DEBUGOUT("Error Resetting the PHY\n"); +		return ret_val; +	} + +	/* Options: +	 *   autoneg = 1 (default) +	 *      PHY will advertise value(s) parsed from +	 *      autoneg_advertised and fc +	 *   autoneg = 0 +	 *      PHY will be set to 10H, 10F, 100H, or 100F +	 *      depending on value parsed from forced_speed_duplex. +	 */ + +	/* Is autoneg enabled?  This is enabled by default or by software override. +	 * If so, call e1000_phy_setup_autoneg routine to parse the +	 * autoneg_advertised and fc options. If autoneg is NOT enabled, then the +	 * user should have provided a speed/duplex override.  If so, then call +	 * e1000_phy_force_speed_duplex to parse and set this up. +	 */ +	/* Perform some bounds checking on the hw->autoneg_advertised +	 * parameter.  If this variable is zero, then set it to the default. +	 */ +	hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; + +	/* If autoneg_advertised is zero, we assume it was not defaulted +	 * by the calling code so we set to advertise full capability. +	 */ +	if (hw->autoneg_advertised == 0) +		hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; + +	DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); +	ret_val = e1000_phy_setup_autoneg(hw); +	if (ret_val < 0) { +		DEBUGOUT("Error Setting up Auto-Negotiation\n"); +		return ret_val; +	} +	DEBUGOUT("Restarting Auto-Neg\n"); + +	/* Restart auto-negotiation by setting the Auto Neg Enable bit and +	 * the Auto Neg Restart bit in the PHY control register. +	 */ +	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); +	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} +#if 0 +	/* Does the user want to wait for Auto-Neg to complete here, or +	 * check at a later time (for example, callback routine). +	 */ +	if (hw->wait_autoneg_complete) { +		ret_val = e1000_wait_autoneg(hw); +		if (ret_val < 0) { +			DEBUGOUT +			    ("Error while waiting for autoneg to complete\n"); +			return ret_val; +		} +	} +#else +	/* If we do not wait for autonegtation to complete I +	 * do not see a valid link status. +	 */ +	ret_val = e1000_wait_autoneg(hw); +	if (ret_val < 0) { +		DEBUGOUT("Error while waiting for autoneg to complete\n"); +		return ret_val; +	} +#endif + +	/* Check link status. Wait up to 100 microseconds for link to become +	 * valid. +	 */ +	for (i = 0; i < 10; i++) { +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} +		if (phy_data & MII_SR_LINK_STATUS) { +			/* We have link, so we need to finish the config process: +			 *   1) Set up the MAC to the current PHY speed/duplex +			 *      if we are on 82543.  If we +			 *      are on newer silicon, we only need to configure +			 *      collision distance in the Transmit Control Register. +			 *   2) Set up flow control on the MAC to that established with +			 *      the link partner. +			 */ +			if (hw->mac_type >= e1000_82544) { +				e1000_config_collision_dist(hw); +			} else { +				ret_val = e1000_config_mac_to_phy(hw); +				if (ret_val < 0) { +					DEBUGOUT +					    ("Error configuring MAC to PHY settings\n"); +					return ret_val; +				} +			} +			ret_val = e1000_config_fc_after_link_up(hw); +			if (ret_val < 0) { +				DEBUGOUT("Error Configuring Flow Control\n"); +				return ret_val; +			} +			DEBUGOUT("Valid link established!!!\n"); +			return 0; +		} +		udelay(10); +	} + +	DEBUGOUT("Unable to establish link!!!\n"); +	return -E1000_ERR_NOLINK; +} + +/****************************************************************************** +* Configures PHY autoneg and flow control advertisement settings +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int +e1000_phy_setup_autoneg(struct e1000_hw *hw) +{ +	uint16_t mii_autoneg_adv_reg; +	uint16_t mii_1000t_ctrl_reg; + +	DEBUGFUNC(); + +	/* Read the MII Auto-Neg Advertisement Register (Address 4). */ +	if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} + +	/* Read the MII 1000Base-T Control Register (Address 9). */ +	if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} + +	/* Need to parse both autoneg_advertised and fc and set up +	 * the appropriate PHY registers.  First we will parse for +	 * autoneg_advertised software override.  Since we can advertise +	 * a plethora of combinations, we need to check each bit +	 * individually. +	 */ + +	/* First we clear all the 10/100 mb speed bits in the Auto-Neg +	 * Advertisement Register (Address 4) and the 1000 mb speed bits in +	 * the  1000Base-T Control Register (Address 9). +	 */ +	mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; +	mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; + +	DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised); + +	/* Do we want to advertise 10 Mb Half Duplex? */ +	if (hw->autoneg_advertised & ADVERTISE_10_HALF) { +		DEBUGOUT("Advertise 10mb Half duplex\n"); +		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; +	} + +	/* Do we want to advertise 10 Mb Full Duplex? */ +	if (hw->autoneg_advertised & ADVERTISE_10_FULL) { +		DEBUGOUT("Advertise 10mb Full duplex\n"); +		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; +	} + +	/* Do we want to advertise 100 Mb Half Duplex? */ +	if (hw->autoneg_advertised & ADVERTISE_100_HALF) { +		DEBUGOUT("Advertise 100mb Half duplex\n"); +		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; +	} + +	/* Do we want to advertise 100 Mb Full Duplex? */ +	if (hw->autoneg_advertised & ADVERTISE_100_FULL) { +		DEBUGOUT("Advertise 100mb Full duplex\n"); +		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; +	} + +	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */ +	if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { +		DEBUGOUT +		    ("Advertise 1000mb Half duplex requested, request denied!\n"); +	} + +	/* Do we want to advertise 1000 Mb Full Duplex? */ +	if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { +		DEBUGOUT("Advertise 1000mb Full duplex\n"); +		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; +	} + +	/* Check for a software override of the flow control settings, and +	 * setup the PHY advertisement registers accordingly.  If +	 * auto-negotiation is enabled, then software will have to set the +	 * "PAUSE" bits to the correct value in the Auto-Negotiation +	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. +	 * +	 * The possible values of the "fc" parameter are: +	 *      0:  Flow control is completely disabled +	 *      1:  Rx flow control is enabled (we can receive pause frames +	 *          but not send pause frames). +	 *      2:  Tx flow control is enabled (we can send pause frames +	 *          but we do not support receiving pause frames). +	 *      3:  Both Rx and TX flow control (symmetric) are enabled. +	 *  other:  No software override.  The flow control configuration +	 *          in the EEPROM is used. +	 */ +	switch (hw->fc) { +	case e1000_fc_none:	/* 0 */ +		/* Flow control (RX & TX) is completely disabled by a +		 * software over-ride. +		 */ +		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); +		break; +	case e1000_fc_rx_pause:	/* 1 */ +		/* RX Flow control is enabled, and TX Flow control is +		 * disabled, by a software over-ride. +		 */ +		/* Since there really isn't a way to advertise that we are +		 * capable of RX Pause ONLY, we will advertise that we +		 * support both symmetric and asymmetric RX PAUSE.  Later +		 * (in e1000_config_fc_after_link_up) we will disable the +		 *hw's ability to send PAUSE frames. +		 */ +		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); +		break; +	case e1000_fc_tx_pause:	/* 2 */ +		/* TX Flow control is enabled, and RX Flow control is +		 * disabled, by a software over-ride. +		 */ +		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; +		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; +		break; +	case e1000_fc_full:	/* 3 */ +		/* Flow control (both RX and TX) is enabled by a software +		 * over-ride. +		 */ +		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); +		break; +	default: +		DEBUGOUT("Flow control param set incorrectly\n"); +		return -E1000_ERR_CONFIG; +	} + +	if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} + +	DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); + +	if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} +	return 0; +} + +/****************************************************************************** +* Sets the collision distance in the Transmit Control register +* +* hw - Struct containing variables accessed by shared code +* +* Link should have been established previously. Reads the speed and duplex +* information from the Device Status register. +******************************************************************************/ +static void +e1000_config_collision_dist(struct e1000_hw *hw) +{ +	uint32_t tctl; + +	tctl = E1000_READ_REG(hw, TCTL); + +	tctl &= ~E1000_TCTL_COLD; +	tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; + +	E1000_WRITE_REG(hw, TCTL, tctl); +	E1000_WRITE_FLUSH(hw); +} + +/****************************************************************************** +* Sets MAC speed and duplex settings to reflect the those in the PHY +* +* hw - Struct containing variables accessed by shared code +* mii_reg - data to write to the MII control register +* +* The contents of the PHY register containing the needed information need to +* be passed in. +******************************************************************************/ +static int +e1000_config_mac_to_phy(struct e1000_hw *hw) +{ +	uint32_t ctrl; +	uint16_t phy_data; + +	DEBUGFUNC(); + +	/* Read the Device Control Register and set the bits to Force Speed +	 * and Duplex. +	 */ +	ctrl = E1000_READ_REG(hw, CTRL); +	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); +	ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); + +	/* Set up duplex in the Device Control and Transmit Control +	 * registers depending on negotiated values. +	 */ +	if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	if (phy_data & M88E1000_PSSR_DPLX) +		ctrl |= E1000_CTRL_FD; +	else +		ctrl &= ~E1000_CTRL_FD; + +	e1000_config_collision_dist(hw); + +	/* Set up speed in the Device Control register depending on +	 * negotiated values. +	 */ +	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) +		ctrl |= E1000_CTRL_SPD_1000; +	else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) +		ctrl |= E1000_CTRL_SPD_100; +	/* Write the configured values back to the Device Control Reg. */ +	E1000_WRITE_REG(hw, CTRL, ctrl); +	return 0; +} + +/****************************************************************************** + * Forces the MAC's flow control settings. + * + * hw - Struct containing variables accessed by shared code + * + * Sets the TFCE and RFCE bits in the device control register to reflect + * the adapter settings. TFCE and RFCE need to be explicitly set by + * software when a Copper PHY is used because autonegotiation is managed + * by the PHY rather than the MAC. Software must also configure these + * bits when link is forced on a fiber connection. + *****************************************************************************/ +static int +e1000_force_mac_fc(struct e1000_hw *hw) +{ +	uint32_t ctrl; + +	DEBUGFUNC(); + +	/* Get the current configuration of the Device Control Register */ +	ctrl = E1000_READ_REG(hw, CTRL); + +	/* Because we didn't get link via the internal auto-negotiation +	 * mechanism (we either forced link or we got link via PHY +	 * auto-neg), we have to manually enable/disable transmit an +	 * receive flow control. +	 * +	 * The "Case" statement below enables/disable flow control +	 * according to the "hw->fc" parameter. +	 * +	 * The possible values of the "fc" parameter are: +	 *      0:  Flow control is completely disabled +	 *      1:  Rx flow control is enabled (we can receive pause +	 *          frames but not send pause frames). +	 *      2:  Tx flow control is enabled (we can send pause frames +	 *          frames but we do not receive pause frames). +	 *      3:  Both Rx and TX flow control (symmetric) is enabled. +	 *  other:  No other values should be possible at this point. +	 */ + +	switch (hw->fc) { +	case e1000_fc_none: +		ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); +		break; +	case e1000_fc_rx_pause: +		ctrl &= (~E1000_CTRL_TFCE); +		ctrl |= E1000_CTRL_RFCE; +		break; +	case e1000_fc_tx_pause: +		ctrl &= (~E1000_CTRL_RFCE); +		ctrl |= E1000_CTRL_TFCE; +		break; +	case e1000_fc_full: +		ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); +		break; +	default: +		DEBUGOUT("Flow control param set incorrectly\n"); +		return -E1000_ERR_CONFIG; +	} + +	/* Disable TX Flow Control for 82542 (rev 2.0) */ +	if (hw->mac_type == e1000_82542_rev2_0) +		ctrl &= (~E1000_CTRL_TFCE); + +	E1000_WRITE_REG(hw, CTRL, ctrl); +	return 0; +} + +/****************************************************************************** + * Configures flow control settings after link is established + * + * hw - Struct containing variables accessed by shared code + * + * Should be called immediately after a valid link has been established. + * Forces MAC flow control settings if link was forced. When in MII/GMII mode + * and autonegotiation is enabled, the MAC flow control settings will be set + * based on the flow control negotiated by the PHY. In TBI mode, the TFCE + * and RFCE bits will be automaticaly set to the negotiated flow control mode. + *****************************************************************************/ +static int +e1000_config_fc_after_link_up(struct e1000_hw *hw) +{ +	int32_t ret_val; +	uint16_t mii_status_reg; +	uint16_t mii_nway_adv_reg; +	uint16_t mii_nway_lp_ability_reg; +	uint16_t speed; +	uint16_t duplex; + +	DEBUGFUNC(); + +	/* Check for the case where we have fiber media and auto-neg failed +	 * so we had to force link.  In this case, we need to force the +	 * configuration of the MAC to match the "fc" parameter. +	 */ +	if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) { +		ret_val = e1000_force_mac_fc(hw); +		if (ret_val < 0) { +			DEBUGOUT("Error forcing flow control settings\n"); +			return ret_val; +		} +	} + +	/* Check for the case where we have copper media and auto-neg is +	 * enabled.  In this case, we need to check and see if Auto-Neg +	 * has completed, and if so, how the PHY and link partner has +	 * flow control configured. +	 */ +	if (hw->media_type == e1000_media_type_copper) { +		/* Read the MII Status Register and check to see if AutoNeg +		 * has completed.  We read this twice because this reg has +		 * some "sticky" (latched) bits. +		 */ +		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { +			DEBUGOUT("PHY Read Error \n"); +			return -E1000_ERR_PHY; +		} +		if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { +			DEBUGOUT("PHY Read Error \n"); +			return -E1000_ERR_PHY; +		} + +		if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { +			/* The AutoNeg process has completed, so we now need to +			 * read both the Auto Negotiation Advertisement Register +			 * (Address 4) and the Auto_Negotiation Base Page Ability +			 * Register (Address 5) to determine how flow control was +			 * negotiated. +			 */ +			if (e1000_read_phy_reg +			    (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { +				DEBUGOUT("PHY Read Error\n"); +				return -E1000_ERR_PHY; +			} +			if (e1000_read_phy_reg +			    (hw, PHY_LP_ABILITY, +			     &mii_nway_lp_ability_reg) < 0) { +				DEBUGOUT("PHY Read Error\n"); +				return -E1000_ERR_PHY; +			} + +			/* Two bits in the Auto Negotiation Advertisement Register +			 * (Address 4) and two bits in the Auto Negotiation Base +			 * Page Ability Register (Address 5) determine flow control +			 * for both the PHY and the link partner.  The following +			 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, +			 * 1999, describes these PAUSE resolution bits and how flow +			 * control is determined based upon these settings. +			 * NOTE:  DC = Don't Care +			 * +			 *   LOCAL DEVICE  |   LINK PARTNER +			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution +			 *-------|---------|-------|---------|-------------------- +			 *   0   |    0    |  DC   |   DC    | e1000_fc_none +			 *   0   |    1    |   0   |   DC    | e1000_fc_none +			 *   0   |    1    |   1   |    0    | e1000_fc_none +			 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause +			 *   1   |    0    |   0   |   DC    | e1000_fc_none +			 *   1   |   DC    |   1   |   DC    | e1000_fc_full +			 *   1   |    1    |   0   |    0    | e1000_fc_none +			 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause +			 * +			 */ +			/* Are both PAUSE bits set to 1?  If so, this implies +			 * Symmetric Flow Control is enabled at both ends.  The +			 * ASM_DIR bits are irrelevant per the spec. +			 * +			 * For Symmetric Flow Control: +			 * +			 *   LOCAL DEVICE  |   LINK PARTNER +			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +			 *-------|---------|-------|---------|-------------------- +			 *   1   |   DC    |   1   |   DC    | e1000_fc_full +			 * +			 */ +			if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && +			    (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { +				/* Now we need to check if the user selected RX ONLY +				 * of pause frames.  In this case, we had to advertise +				 * FULL flow control because we could not advertise RX +				 * ONLY. Hence, we must now check to see if we need to +				 * turn OFF  the TRANSMISSION of PAUSE frames. +				 */ +				if (hw->original_fc == e1000_fc_full) { +					hw->fc = e1000_fc_full; +					DEBUGOUT("Flow Control = FULL.\r\n"); +				} else { +					hw->fc = e1000_fc_rx_pause; +					DEBUGOUT +					    ("Flow Control = RX PAUSE frames only.\r\n"); +				} +			} +			/* For receiving PAUSE frames ONLY. +			 * +			 *   LOCAL DEVICE  |   LINK PARTNER +			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +			 *-------|---------|-------|---------|-------------------- +			 *   0   |    1    |   1   |    1    | e1000_fc_tx_pause +			 * +			 */ +			else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && +				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && +				 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && +				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) +			{ +				hw->fc = e1000_fc_tx_pause; +				DEBUGOUT +				    ("Flow Control = TX PAUSE frames only.\r\n"); +			} +			/* For transmitting PAUSE frames ONLY. +			 * +			 *   LOCAL DEVICE  |   LINK PARTNER +			 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result +			 *-------|---------|-------|---------|-------------------- +			 *   1   |    1    |   0   |    1    | e1000_fc_rx_pause +			 * +			 */ +			else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && +				 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && +				 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && +				 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) +			{ +				hw->fc = e1000_fc_rx_pause; +				DEBUGOUT +				    ("Flow Control = RX PAUSE frames only.\r\n"); +			} +			/* Per the IEEE spec, at this point flow control should be +			 * disabled.  However, we want to consider that we could +			 * be connected to a legacy switch that doesn't advertise +			 * desired flow control, but can be forced on the link +			 * partner.  So if we advertised no flow control, that is +			 * what we will resolve to.  If we advertised some kind of +			 * receive capability (Rx Pause Only or Full Flow Control) +			 * and the link partner advertised none, we will configure +			 * ourselves to enable Rx Flow Control only.  We can do +			 * this safely for two reasons:  If the link partner really +			 * didn't want flow control enabled, and we enable Rx, no +			 * harm done since we won't be receiving any PAUSE frames +			 * anyway.  If the intent on the link partner was to have +			 * flow control enabled, then by us enabling RX only, we +			 * can at least receive pause frames and process them. +			 * This is a good idea because in most cases, since we are +			 * predominantly a server NIC, more times than not we will +			 * be asked to delay transmission of packets than asking +			 * our link partner to pause transmission of frames. +			 */ +			else if (hw->original_fc == e1000_fc_none || +				 hw->original_fc == e1000_fc_tx_pause) { +				hw->fc = e1000_fc_none; +				DEBUGOUT("Flow Control = NONE.\r\n"); +			} else { +				hw->fc = e1000_fc_rx_pause; +				DEBUGOUT +				    ("Flow Control = RX PAUSE frames only.\r\n"); +			} + +			/* Now we need to do one last check...  If we auto- +			 * negotiated to HALF DUPLEX, flow control should not be +			 * enabled per IEEE 802.3 spec. +			 */ +			e1000_get_speed_and_duplex(hw, &speed, &duplex); + +			if (duplex == HALF_DUPLEX) +				hw->fc = e1000_fc_none; + +			/* Now we call a subroutine to actually force the MAC +			 * controller to use the correct flow control settings. +			 */ +			ret_val = e1000_force_mac_fc(hw); +			if (ret_val < 0) { +				DEBUGOUT +				    ("Error forcing flow control settings\n"); +				return ret_val; +			} +		} else { +			DEBUGOUT +			    ("Copper PHY and Auto Neg has not completed.\r\n"); +		} +	} +	return 0; +} + +/****************************************************************************** + * Checks to see if the link status of the hardware has changed. + * + * hw - Struct containing variables accessed by shared code + * + * Called by any function that needs to check the link status of the adapter. + *****************************************************************************/ +static int +e1000_check_for_link(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	uint32_t rxcw; +	uint32_t ctrl; +	uint32_t status; +	uint32_t rctl; +	uint32_t signal; +	int32_t ret_val; +	uint16_t phy_data; +	uint16_t lp_capability; + +	DEBUGFUNC(); + +	/* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be +	 * set when the optics detect a signal. On older adapters, it will be +	 * cleared when there is a signal +	 */ +	ctrl = E1000_READ_REG(hw, CTRL); +	if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) +		signal = E1000_CTRL_SWDPIN1; +	else +		signal = 0; + +	status = E1000_READ_REG(hw, STATUS); +	rxcw = E1000_READ_REG(hw, RXCW); +	DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw); + +	/* If we have a copper PHY then we only want to go out to the PHY +	 * registers to see if Auto-Neg has completed and/or if our link +	 * status has changed.  The get_link_status flag will be set if we +	 * receive a Link Status Change interrupt or we have Rx Sequence +	 * Errors. +	 */ +	if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { +		/* First we want to see if the MII Status Register reports +		 * link.  If so, then we want to get the current speed/duplex +		 * of the PHY. +		 * Read the register twice since the link bit is sticky. +		 */ +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} + +		if (phy_data & MII_SR_LINK_STATUS) { +			hw->get_link_status = FALSE; +		} else { +			/* No link detected */ +			return -E1000_ERR_NOLINK; +		} + +		/* We have a M88E1000 PHY and Auto-Neg is enabled.  If we +		 * have Si on board that is 82544 or newer, Auto +		 * Speed Detection takes care of MAC speed/duplex +		 * configuration.  So we only need to configure Collision +		 * Distance in the MAC.  Otherwise, we need to force +		 * speed/duplex on the MAC to the current PHY speed/duplex +		 * settings. +		 */ +		if (hw->mac_type >= e1000_82544) +			e1000_config_collision_dist(hw); +		else { +			ret_val = e1000_config_mac_to_phy(hw); +			if (ret_val < 0) { +				DEBUGOUT +				    ("Error configuring MAC to PHY settings\n"); +				return ret_val; +			} +		} + +		/* Configure Flow Control now that Auto-Neg has completed. First, we +		 * need to restore the desired flow control settings because we may +		 * have had to re-autoneg with a different link partner. +		 */ +		ret_val = e1000_config_fc_after_link_up(hw); +		if (ret_val < 0) { +			DEBUGOUT("Error configuring flow control\n"); +			return ret_val; +		} + +		/* At this point we know that we are on copper and we have +		 * auto-negotiated link.  These are conditions for checking the link +		 * parter capability register.  We use the link partner capability to +		 * determine if TBI Compatibility needs to be turned on or off.  If +		 * the link partner advertises any speed in addition to Gigabit, then +		 * we assume that they are GMII-based, and TBI compatibility is not +		 * needed. If no other speeds are advertised, we assume the link +		 * partner is TBI-based, and we turn on TBI Compatibility. +		 */ +		if (hw->tbi_compatibility_en) { +			if (e1000_read_phy_reg +			    (hw, PHY_LP_ABILITY, &lp_capability) < 0) { +				DEBUGOUT("PHY Read Error\n"); +				return -E1000_ERR_PHY; +			} +			if (lp_capability & (NWAY_LPAR_10T_HD_CAPS | +					     NWAY_LPAR_10T_FD_CAPS | +					     NWAY_LPAR_100TX_HD_CAPS | +					     NWAY_LPAR_100TX_FD_CAPS | +					     NWAY_LPAR_100T4_CAPS)) { +				/* If our link partner advertises anything in addition to +				 * gigabit, we do not need to enable TBI compatibility. +				 */ +				if (hw->tbi_compatibility_on) { +					/* If we previously were in the mode, turn it off. */ +					rctl = E1000_READ_REG(hw, RCTL); +					rctl &= ~E1000_RCTL_SBP; +					E1000_WRITE_REG(hw, RCTL, rctl); +					hw->tbi_compatibility_on = FALSE; +				} +			} else { +				/* If TBI compatibility is was previously off, turn it on. For +				 * compatibility with a TBI link partner, we will store bad +				 * packets. Some frames have an additional byte on the end and +				 * will look like CRC errors to to the hardware. +				 */ +				if (!hw->tbi_compatibility_on) { +					hw->tbi_compatibility_on = TRUE; +					rctl = E1000_READ_REG(hw, RCTL); +					rctl |= E1000_RCTL_SBP; +					E1000_WRITE_REG(hw, RCTL, rctl); +				} +			} +		} +	} +	/* If we don't have link (auto-negotiation failed or link partner cannot +	 * auto-negotiate), the cable is plugged in (we have signal), and our +	 * link partner is not trying to auto-negotiate with us (we are receiving +	 * idles or data), we need to force link up. We also need to give +	 * auto-negotiation time to complete, in case the cable was just plugged +	 * in. The autoneg_failed flag does this. +	 */ +	else if ((hw->media_type == e1000_media_type_fiber) && +		 (!(status & E1000_STATUS_LU)) && +		 ((ctrl & E1000_CTRL_SWDPIN1) == signal) && +		 (!(rxcw & E1000_RXCW_C))) { +		if (hw->autoneg_failed == 0) { +			hw->autoneg_failed = 1; +			return 0; +		} +		DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); + +		/* Disable auto-negotiation in the TXCW register */ +		E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); + +		/* Force link-up and also force full-duplex. */ +		ctrl = E1000_READ_REG(hw, CTRL); +		ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); +		E1000_WRITE_REG(hw, CTRL, ctrl); + +		/* Configure Flow Control after forcing link up. */ +		ret_val = e1000_config_fc_after_link_up(hw); +		if (ret_val < 0) { +			DEBUGOUT("Error configuring flow control\n"); +			return ret_val; +		} +	} +	/* If we are forcing link and we are receiving /C/ ordered sets, re-enable +	 * auto-negotiation in the TXCW register and disable forced link in the +	 * Device Control register in an attempt to auto-negotiate with our link +	 * partner. +	 */ +	else if ((hw->media_type == e1000_media_type_fiber) && +		 (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { +		DEBUGOUT +		    ("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); +		E1000_WRITE_REG(hw, TXCW, hw->txcw); +		E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); +	} +	return 0; +} + +/****************************************************************************** + * Detects the current speed and duplex settings of the hardware. + * + * hw - Struct containing variables accessed by shared code + * speed - Speed of the connection + * duplex - Duplex setting of the connection + *****************************************************************************/ +static void +e1000_get_speed_and_duplex(struct e1000_hw *hw, +			   uint16_t * speed, uint16_t * duplex) +{ +	uint32_t status; + +	DEBUGFUNC(); + +	if (hw->mac_type >= e1000_82543) { +		status = E1000_READ_REG(hw, STATUS); +		if (status & E1000_STATUS_SPEED_1000) { +			*speed = SPEED_1000; +			DEBUGOUT("1000 Mbs, "); +		} else if (status & E1000_STATUS_SPEED_100) { +			*speed = SPEED_100; +			DEBUGOUT("100 Mbs, "); +		} else { +			*speed = SPEED_10; +			DEBUGOUT("10 Mbs, "); +		} + +		if (status & E1000_STATUS_FD) { +			*duplex = FULL_DUPLEX; +			DEBUGOUT("Full Duplex\r\n"); +		} else { +			*duplex = HALF_DUPLEX; +			DEBUGOUT(" Half Duplex\r\n"); +		} +	} else { +		DEBUGOUT("1000 Mbs, Full Duplex\r\n"); +		*speed = SPEED_1000; +		*duplex = FULL_DUPLEX; +	} +} + +/****************************************************************************** +* Blocks until autoneg completes or times out (~4.5 seconds) +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int +e1000_wait_autoneg(struct e1000_hw *hw) +{ +	uint16_t i; +	uint16_t phy_data; + +	DEBUGFUNC(); +	DEBUGOUT("Waiting for Auto-Neg to complete.\n"); + +	/* We will wait for autoneg to complete or 4.5 seconds to expire. */ +	for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { +		/* Read the MII Status Register and wait for Auto-Neg +		 * Complete bit to be set. +		 */ +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} +		if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { +			DEBUGOUT("PHY Read Error\n"); +			return -E1000_ERR_PHY; +		} +		if (phy_data & MII_SR_AUTONEG_COMPLETE) { +			DEBUGOUT("Auto-Neg complete.\n"); +			return 0; +		} +		mdelay(100); +	} +	DEBUGOUT("Auto-Neg timedout.\n"); +	return -E1000_ERR_TIMEOUT; +} + +/****************************************************************************** +* Raises the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void +e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) +{ +	/* Raise the clock input to the Management Data Clock (by setting the MDC +	 * bit), and then delay 2 microseconds. +	 */ +	E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); +	E1000_WRITE_FLUSH(hw); +	udelay(2); +} + +/****************************************************************************** +* Lowers the Management Data Clock +* +* hw - Struct containing variables accessed by shared code +* ctrl - Device control register's current value +******************************************************************************/ +static void +e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) +{ +	/* Lower the clock input to the Management Data Clock (by clearing the MDC +	 * bit), and then delay 2 microseconds. +	 */ +	E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); +	E1000_WRITE_FLUSH(hw); +	udelay(2); +} + +/****************************************************************************** +* Shifts data bits out to the PHY +* +* hw - Struct containing variables accessed by shared code +* data - Data to send out to the PHY +* count - Number of bits to shift out +* +* Bits are shifted out in MSB to LSB order. +******************************************************************************/ +static void +e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) +{ +	uint32_t ctrl; +	uint32_t mask; + +	/* We need to shift "count" number of bits out to the PHY. So, the value +	 * in the "data" parameter will be shifted out to the PHY one bit at a +	 * time. In order to do this, "data" must be broken down into bits. +	 */ +	mask = 0x01; +	mask <<= (count - 1); + +	ctrl = E1000_READ_REG(hw, CTRL); + +	/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ +	ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); + +	while (mask) { +		/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and +		 * then raising and lowering the Management Data Clock. A "0" is +		 * shifted out to the PHY by setting the MDIO bit to "0" and then +		 * raising and lowering the clock. +		 */ +		if (data & mask) +			ctrl |= E1000_CTRL_MDIO; +		else +			ctrl &= ~E1000_CTRL_MDIO; + +		E1000_WRITE_REG(hw, CTRL, ctrl); +		E1000_WRITE_FLUSH(hw); + +		udelay(2); + +		e1000_raise_mdi_clk(hw, &ctrl); +		e1000_lower_mdi_clk(hw, &ctrl); + +		mask = mask >> 1; +	} +} + +/****************************************************************************** +* Shifts data bits in from the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Bits are shifted in in MSB to LSB order. +******************************************************************************/ +static uint16_t +e1000_shift_in_mdi_bits(struct e1000_hw *hw) +{ +	uint32_t ctrl; +	uint16_t data = 0; +	uint8_t i; + +	/* In order to read a register from the PHY, we need to shift in a total +	 * of 18 bits from the PHY. The first two bit (turnaround) times are used +	 * to avoid contention on the MDIO pin when a read operation is performed. +	 * These two bits are ignored by us and thrown away. Bits are "shifted in" +	 * by raising the input to the Management Data Clock (setting the MDC bit), +	 * and then reading the value of the MDIO bit. +	 */ +	ctrl = E1000_READ_REG(hw, CTRL); + +	/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ +	ctrl &= ~E1000_CTRL_MDIO_DIR; +	ctrl &= ~E1000_CTRL_MDIO; + +	E1000_WRITE_REG(hw, CTRL, ctrl); +	E1000_WRITE_FLUSH(hw); + +	/* Raise and Lower the clock before reading in the data. This accounts for +	 * the turnaround bits. The first clock occurred when we clocked out the +	 * last bit of the Register Address. +	 */ +	e1000_raise_mdi_clk(hw, &ctrl); +	e1000_lower_mdi_clk(hw, &ctrl); + +	for (data = 0, i = 0; i < 16; i++) { +		data = data << 1; +		e1000_raise_mdi_clk(hw, &ctrl); +		ctrl = E1000_READ_REG(hw, CTRL); +		/* Check to see if we shifted in a "1". */ +		if (ctrl & E1000_CTRL_MDIO) +			data |= 1; +		e1000_lower_mdi_clk(hw, &ctrl); +	} + +	e1000_raise_mdi_clk(hw, &ctrl); +	e1000_lower_mdi_clk(hw, &ctrl); + +	return data; +} + +/***************************************************************************** +* Reads the value from a PHY register +* +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to read +******************************************************************************/ +static int +e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data) +{ +	uint32_t i; +	uint32_t mdic = 0; +	const uint32_t phy_addr = 1; + +	if (reg_addr > MAX_PHY_REG_ADDRESS) { +		DEBUGOUT("PHY Address %d is out of range\n", reg_addr); +		return -E1000_ERR_PARAM; +	} + +	if (hw->mac_type > e1000_82543) { +		/* Set up Op-code, Phy Address, and register address in the MDI +		 * Control register.  The MAC will take care of interfacing with the +		 * PHY to retrieve the desired data. +		 */ +		mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | +			(phy_addr << E1000_MDIC_PHY_SHIFT) | +			(E1000_MDIC_OP_READ)); + +		E1000_WRITE_REG(hw, MDIC, mdic); + +		/* Poll the ready bit to see if the MDI read completed */ +		for (i = 0; i < 64; i++) { +			udelay(10); +			mdic = E1000_READ_REG(hw, MDIC); +			if (mdic & E1000_MDIC_READY) +				break; +		} +		if (!(mdic & E1000_MDIC_READY)) { +			DEBUGOUT("MDI Read did not complete\n"); +			return -E1000_ERR_PHY; +		} +		if (mdic & E1000_MDIC_ERROR) { +			DEBUGOUT("MDI Error\n"); +			return -E1000_ERR_PHY; +		} +		*phy_data = (uint16_t) mdic; +	} else { +		/* We must first send a preamble through the MDIO pin to signal the +		 * beginning of an MII instruction.  This is done by sending 32 +		 * consecutive "1" bits. +		 */ +		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + +		/* Now combine the next few fields that are required for a read +		 * operation.  We use this method instead of calling the +		 * e1000_shift_out_mdi_bits routine five different times. The format of +		 * a MII read instruction consists of a shift out of 14 bits and is +		 * defined as follows: +		 *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr> +		 * followed by a shift in of 18 bits.  This first two bits shifted in +		 * are TurnAround bits used to avoid contention on the MDIO pin when a +		 * READ operation is performed.  These two bits are thrown away +		 * followed by a shift in of 16 bits which contains the desired data. +		 */ +		mdic = ((reg_addr) | (phy_addr << 5) | +			(PHY_OP_READ << 10) | (PHY_SOF << 12)); + +		e1000_shift_out_mdi_bits(hw, mdic, 14); + +		/* Now that we've shifted out the read command to the MII, we need to +		 * "shift in" the 16-bit value (18 total bits) of the requested PHY +		 * register address. +		 */ +		*phy_data = e1000_shift_in_mdi_bits(hw); +	} +	return 0; +} + +/****************************************************************************** +* Writes a value to a PHY register +* +* hw - Struct containing variables accessed by shared code +* reg_addr - address of the PHY register to write +* data - data to write to the PHY +******************************************************************************/ +static int +e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) +{ +	uint32_t i; +	uint32_t mdic = 0; +	const uint32_t phy_addr = 1; + +	if (reg_addr > MAX_PHY_REG_ADDRESS) { +		DEBUGOUT("PHY Address %d is out of range\n", reg_addr); +		return -E1000_ERR_PARAM; +	} + +	if (hw->mac_type > e1000_82543) { +		/* Set up Op-code, Phy Address, register address, and data intended +		 * for the PHY register in the MDI Control register.  The MAC will take +		 * care of interfacing with the PHY to send the desired data. +		 */ +		mdic = (((uint32_t) phy_data) | +			(reg_addr << E1000_MDIC_REG_SHIFT) | +			(phy_addr << E1000_MDIC_PHY_SHIFT) | +			(E1000_MDIC_OP_WRITE)); + +		E1000_WRITE_REG(hw, MDIC, mdic); + +		/* Poll the ready bit to see if the MDI read completed */ +		for (i = 0; i < 64; i++) { +			udelay(10); +			mdic = E1000_READ_REG(hw, MDIC); +			if (mdic & E1000_MDIC_READY) +				break; +		} +		if (!(mdic & E1000_MDIC_READY)) { +			DEBUGOUT("MDI Write did not complete\n"); +			return -E1000_ERR_PHY; +		} +	} else { +		/* We'll need to use the SW defined pins to shift the write command +		 * out to the PHY. We first send a preamble to the PHY to signal the +		 * beginning of the MII instruction.  This is done by sending 32 +		 * consecutive "1" bits. +		 */ +		e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); + +		/* Now combine the remaining required fields that will indicate a +		 * write operation. We use this method instead of calling the +		 * e1000_shift_out_mdi_bits routine for each field in the command. The +		 * format of a MII write instruction is as follows: +		 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. +		 */ +		mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | +			(PHY_OP_WRITE << 12) | (PHY_SOF << 14)); +		mdic <<= 16; +		mdic |= (uint32_t) phy_data; + +		e1000_shift_out_mdi_bits(hw, mdic, 32); +	} +	return 0; +} + +/****************************************************************************** +* Returns the PHY to the power-on reset state +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static void +e1000_phy_hw_reset(struct e1000_hw *hw) +{ +	uint32_t ctrl; +	uint32_t ctrl_ext; + +	DEBUGFUNC(); + +	DEBUGOUT("Resetting Phy...\n"); + +	if (hw->mac_type > e1000_82543) { +		/* Read the device control register and assert the E1000_CTRL_PHY_RST +		 * bit. Then, take it out of reset. +		 */ +		ctrl = E1000_READ_REG(hw, CTRL); +		E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); +		E1000_WRITE_FLUSH(hw); +		mdelay(10); +		E1000_WRITE_REG(hw, CTRL, ctrl); +		E1000_WRITE_FLUSH(hw); +	} else { +		/* Read the Extended Device Control Register, assert the PHY_RESET_DIR +		 * bit to put the PHY into reset. Then, take it out of reset. +		 */ +		ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); +		ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; +		ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; +		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); +		E1000_WRITE_FLUSH(hw); +		mdelay(10); +		ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; +		E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); +		E1000_WRITE_FLUSH(hw); +	} +	udelay(150); +} + +/****************************************************************************** +* Resets the PHY +* +* hw - Struct containing variables accessed by shared code +* +* Sets bit 15 of the MII Control regiser +******************************************************************************/ +static int +e1000_phy_reset(struct e1000_hw *hw) +{ +	uint16_t phy_data; + +	DEBUGFUNC(); + +	if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	phy_data |= MII_CR_RESET; +	if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { +		DEBUGOUT("PHY Write Error\n"); +		return -E1000_ERR_PHY; +	} +	udelay(1); +	return 0; +} + +/****************************************************************************** +* Probes the expected PHY address for known PHY IDs +* +* hw - Struct containing variables accessed by shared code +******************************************************************************/ +static int +e1000_detect_gig_phy(struct e1000_hw *hw) +{ +	uint16_t phy_id_high, phy_id_low; +	int match = FALSE; + +	DEBUGFUNC(); + +	/* Read the PHY ID Registers to identify which PHY is onboard. */ +	if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	hw->phy_id = (uint32_t) (phy_id_high << 16); +	udelay(2); +	if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) { +		DEBUGOUT("PHY Read Error\n"); +		return -E1000_ERR_PHY; +	} +	hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); + +	switch (hw->mac_type) { +	case e1000_82543: +		if (hw->phy_id == M88E1000_E_PHY_ID) +			match = TRUE; +		break; +	case e1000_82544: +		if (hw->phy_id == M88E1000_I_PHY_ID) +			match = TRUE; +		break; +	case e1000_82540: +	case e1000_82545: +	case e1000_82546: +		if (hw->phy_id == M88E1011_I_PHY_ID) +			match = TRUE; +		break; +	default: +		DEBUGOUT("Invalid MAC type %d\n", hw->mac_type); +		return -E1000_ERR_CONFIG; +	} +	if (match) { +		DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id); +		return 0; +	} +	DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id); +	return -E1000_ERR_PHY; +} + +/** + * e1000_sw_init - Initialize general software structures (struct e1000_adapter) + * + * e1000_sw_init initializes the Adapter private data structure. + * Fields are initialized based on PCI device information and + * OS network device settings (MTU size). + **/ + +static int +e1000_sw_init(struct eth_device *nic, int cardnum) +{ +	struct e1000_hw *hw = (typeof(hw)) nic->priv; +	int result; + +	/* PCI config space info */ +	pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); +	pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); +	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID, +			     &hw->subsystem_vendor_id); +	pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); + +	pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); +	pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); + +	/* identify the MAC */ +	result = e1000_set_mac_type(hw); +	if (result) { +		E1000_ERR("Unknown MAC Type\n"); +		return result; +	} + +	/* lan a vs. lan b settings */ +	if (hw->mac_type == e1000_82546) +		/*this also works w/ multiple 82546 cards */ +		/*but not if they're intermingled /w other e1000s */ +		hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a; +	else +		hw->lan_loc = e1000_lan_a; + +	/* flow control settings */ +	hw->fc_high_water = E1000_FC_HIGH_THRESH; +	hw->fc_low_water = E1000_FC_LOW_THRESH; +	hw->fc_pause_time = E1000_FC_PAUSE_TIME; +	hw->fc_send_xon = 1; + +	/* Media type - copper or fiber */ + +	if (hw->mac_type >= e1000_82543) { +		uint32_t status = E1000_READ_REG(hw, STATUS); + +		if (status & E1000_STATUS_TBIMODE) { +			DEBUGOUT("fiber interface\n"); +			hw->media_type = e1000_media_type_fiber; +		} else { +			DEBUGOUT("copper interface\n"); +			hw->media_type = e1000_media_type_copper; +		} +	} else { +		hw->media_type = e1000_media_type_fiber; +	} + +	if (hw->mac_type < e1000_82543) +		hw->report_tx_early = 0; +	else +		hw->report_tx_early = 1; + +	hw->tbi_compatibility_en = TRUE; +#if 0 +	hw->wait_autoneg_complete = FALSE; +	hw->adaptive_ifs = TRUE; + +	/* Copper options */ +	if (hw->media_type == e1000_media_type_copper) { +		hw->mdix = AUTO_ALL_MODES; +		hw->disable_polarity_correction = FALSE; +	} +#endif +	return E1000_SUCCESS; +} + +void +fill_rx(struct e1000_hw *hw) +{ +	struct e1000_rx_desc *rd; + +	rx_last = rx_tail; +	rd = rx_base + rx_tail; +	rx_tail = (rx_tail + 1) % 8; +	memset(rd, 0, 16); +	rd->buffer_addr = cpu_to_le64((u32) & packet); +	E1000_WRITE_REG(hw, RDT, rx_tail); +} + +/** + * e1000_configure_tx - Configure 8254x Transmit Unit after Reset + * @adapter: board private structure + * + * Configure the Tx unit of the MAC after a reset. + **/ + +static void +e1000_configure_tx(struct e1000_hw *hw) +{ +	unsigned long ptr; +	unsigned long tctl; +	unsigned long tipg; + +	ptr = (u32) tx_pool; +	if (ptr & 0xf) +		ptr = (ptr + 0x10) & (~0xf); + +	tx_base = (typeof(tx_base)) ptr; + +	E1000_WRITE_REG(hw, TDBAL, (u32) tx_base); +	E1000_WRITE_REG(hw, TDBAH, 0); + +	E1000_WRITE_REG(hw, TDLEN, 128); + +	/* Setup the HW Tx Head and Tail descriptor pointers */ +	E1000_WRITE_REG(hw, TDH, 0); +	E1000_WRITE_REG(hw, TDT, 0); +	tx_tail = 0; + +	/* Set the default values for the Tx Inter Packet Gap timer */ +	switch (hw->mac_type) { +	case e1000_82542_rev2_0: +	case e1000_82542_rev2_1: +		tipg = DEFAULT_82542_TIPG_IPGT; +		tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; +		tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; +		break; +	default: +		if (hw->media_type == e1000_media_type_fiber) +			tipg = DEFAULT_82543_TIPG_IPGT_FIBER; +		else +			tipg = DEFAULT_82543_TIPG_IPGT_COPPER; +		tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; +		tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; +	} +	E1000_WRITE_REG(hw, TIPG, tipg); +#if 0 +	/* Set the Tx Interrupt Delay register */ +	E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); +	if (hw->mac_type >= e1000_82540) +		E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); +#endif +	/* Program the Transmit Control Register */ +	tctl = E1000_READ_REG(hw, TCTL); +	tctl &= ~E1000_TCTL_CT; +	tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | +	    (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); +	E1000_WRITE_REG(hw, TCTL, tctl); + +	e1000_config_collision_dist(hw); +#if 0 +	/* Setup Transmit Descriptor Settings for this adapter */ +	adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE; + +	if (adapter->hw.report_tx_early == 1) +		adapter->txd_cmd |= E1000_TXD_CMD_RS; +	else +		adapter->txd_cmd |= E1000_TXD_CMD_RPS; +#endif +} + +/** + * e1000_setup_rctl - configure the receive control register + * @adapter: Board private structure + **/ +static void +e1000_setup_rctl(struct e1000_hw *hw) +{ +	uint32_t rctl; + +	rctl = E1000_READ_REG(hw, RCTL); + +	rctl &= ~(3 << E1000_RCTL_MO_SHIFT); + +	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF;	/* | +												   (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ + +	if (hw->tbi_compatibility_on == 1) +		rctl |= E1000_RCTL_SBP; +	else +		rctl &= ~E1000_RCTL_SBP; + +	rctl &= ~(E1000_RCTL_SZ_4096); +#if 0 +	switch (adapter->rx_buffer_len) { +	case E1000_RXBUFFER_2048: +	default: +#endif +		rctl |= E1000_RCTL_SZ_2048; +		rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); +#if 0 +		break; +	case E1000_RXBUFFER_4096: +		rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE; +		break; +	case E1000_RXBUFFER_8192: +		rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE; +		break; +	case E1000_RXBUFFER_16384: +		rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE; +		break; +	} +#endif +	E1000_WRITE_REG(hw, RCTL, rctl); +} + +/** + * e1000_configure_rx - Configure 8254x Receive Unit after Reset + * @adapter: board private structure + * + * Configure the Rx unit of the MAC after a reset. + **/ +static void +e1000_configure_rx(struct e1000_hw *hw) +{ +	unsigned long ptr; +	unsigned long rctl; +#if 0 +	unsigned long rxcsum; +#endif +	rx_tail = 0; +	/* make sure receives are disabled while setting up the descriptors */ +	rctl = E1000_READ_REG(hw, RCTL); +	E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); +#if 0 +	/* set the Receive Delay Timer Register */ + +	E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); +#endif +	if (hw->mac_type >= e1000_82540) { +#if 0 +		E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); +#endif +		/* Set the interrupt throttling rate.  Value is calculated +		 * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ +#define MAX_INTS_PER_SEC        8000 +#define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256) +		E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); +	} + +	/* Setup the Base and Length of the Rx Descriptor Ring */ +	ptr = (u32) rx_pool; +	if (ptr & 0xf) +		ptr = (ptr + 0x10) & (~0xf); +	rx_base = (typeof(rx_base)) ptr; +	E1000_WRITE_REG(hw, RDBAL, (u32) rx_base); +	E1000_WRITE_REG(hw, RDBAH, 0); + +	E1000_WRITE_REG(hw, RDLEN, 128); + +	/* Setup the HW Rx Head and Tail Descriptor Pointers */ +	E1000_WRITE_REG(hw, RDH, 0); +	E1000_WRITE_REG(hw, RDT, 0); +#if 0 +	/* Enable 82543 Receive Checksum Offload for TCP and UDP */ +	if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) { +		rxcsum = E1000_READ_REG(hw, RXCSUM); +		rxcsum |= E1000_RXCSUM_TUOFL; +		E1000_WRITE_REG(hw, RXCSUM, rxcsum); +	} +#endif +	/* Enable Receives */ + +	E1000_WRITE_REG(hw, RCTL, rctl); +	fill_rx(hw); +} + +/************************************************************************** +POLL - Wait for a frame +***************************************************************************/ +static int +e1000_poll(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; +	struct e1000_rx_desc *rd; +	/* return true if there's an ethernet packet ready to read */ +	rd = rx_base + rx_last; +	if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) +		return 0; +	/*DEBUGOUT("recv: packet len=%d \n", rd->length); */ +	NetReceive((uchar *)packet, le32_to_cpu(rd->length)); +	fill_rx(hw); +	return 1; +} + +/************************************************************************** +TRANSMIT - Transmit a frame +***************************************************************************/ +static int +e1000_transmit(struct eth_device *nic, volatile void *packet, int length) +{ +	struct e1000_hw *hw = nic->priv; +	struct e1000_tx_desc *txp; +	int i = 0; + +	txp = tx_base + tx_tail; +	tx_tail = (tx_tail + 1) % 8; + +	txp->buffer_addr = cpu_to_le64(virt_to_bus(packet)); +	txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | +				      E1000_TXD_CMD_IFCS | length); +	txp->upper.data = 0; +	E1000_WRITE_REG(hw, TDT, tx_tail); + +	while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) { +		if (i++ > TOUT_LOOP) { +			DEBUGOUT("e1000: tx timeout\n"); +			return 0; +		} +		udelay(10);	/* give the nic a chance to write to the register */ +	} +	return 1; +} + +/*reset function*/ +static inline int +e1000_reset(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; + +	e1000_reset_hw(hw); +	if (hw->mac_type >= e1000_82544) { +		E1000_WRITE_REG(hw, WUC, 0); +	} +	return e1000_init_hw(nic); +} + +/************************************************************************** +DISABLE - Turn off ethernet interface +***************************************************************************/ +static void +e1000_disable(struct eth_device *nic) +{ +	struct e1000_hw *hw = nic->priv; + +	/* Turn off the ethernet interface */ +	E1000_WRITE_REG(hw, RCTL, 0); +	E1000_WRITE_REG(hw, TCTL, 0); + +	/* Clear the transmit ring */ +	E1000_WRITE_REG(hw, TDH, 0); +	E1000_WRITE_REG(hw, TDT, 0); + +	/* Clear the receive ring */ +	E1000_WRITE_REG(hw, RDH, 0); +	E1000_WRITE_REG(hw, RDT, 0); + +	/* put the card in its initial state */ +#if 0 +	E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST); +#endif +	mdelay(10); + +} + +/************************************************************************** +INIT - set up ethernet interface(s) +***************************************************************************/ +static int +e1000_init(struct eth_device *nic, bd_t * bis) +{ +	struct e1000_hw *hw = nic->priv; +	int ret_val = 0; + +	ret_val = e1000_reset(nic); +	if (ret_val < 0) { +		if ((ret_val == -E1000_ERR_NOLINK) || +		    (ret_val == -E1000_ERR_TIMEOUT)) { +			E1000_ERR("Valid Link not detected\n"); +		} else { +			E1000_ERR("Hardware Initialization Failed\n"); +		} +		return 0; +	} +	e1000_configure_tx(hw); +	e1000_setup_rctl(hw); +	e1000_configure_rx(hw); +	return 1; +} + +/************************************************************************** +PROBE - Look for an adapter, this routine's visible to the outside +You should omit the last argument struct pci_device * for a non-PCI NIC +***************************************************************************/ +int +e1000_initialize(bd_t * bis) +{ +	pci_dev_t devno; +	int card_number = 0; +	struct eth_device *nic = NULL; +	struct e1000_hw *hw = NULL; +	u32 iobase; +	int idx = 0; +	u32 PciCommandWord; + +	while (1) {		/* Find PCI device(s) */ +		if ((devno = pci_find_devices(supported, idx++)) < 0) { +			break; +		} + +		pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase); +		iobase &= ~0xf;	/* Mask the bits that say "this is an io addr" */ +		DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase); + +		pci_write_config_dword(devno, PCI_COMMAND, +				       PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); +		/* Check if I/O accesses and Bus Mastering are enabled. */ +		pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord); +		if (!(PciCommandWord & PCI_COMMAND_MEMORY)) { +			printf("Error: Can not enable MEM access.\n"); +			continue; +		} else if (!(PciCommandWord & PCI_COMMAND_MASTER)) { +			printf("Error: Can not enable Bus Mastering.\n"); +			continue; +		} + +		nic = (struct eth_device *) malloc(sizeof (*nic)); +		hw = (struct e1000_hw *) malloc(sizeof (*hw)); +		hw->pdev = devno; +		nic->priv = hw; +		nic->iobase = bus_to_phys(devno, iobase); + +		sprintf(nic->name, "e1000#%d", card_number); + +		/* Are these variables needed? */ +#if 0 +		hw->fc = e1000_fc_none; +		hw->original_fc = e1000_fc_none; +#else +		hw->fc = e1000_fc_default; +		hw->original_fc = e1000_fc_default; +#endif +		hw->autoneg_failed = 0; +		hw->get_link_status = TRUE; +		hw->hw_addr = (typeof(hw->hw_addr)) iobase; +		hw->mac_type = e1000_undefined; + +		/* MAC and Phy settings */ +		if (e1000_sw_init(nic, card_number) < 0) { +			free(hw); +			free(nic); +			return 0; +		} +#ifndef CONFIG_AP1000 +		if (e1000_validate_eeprom_checksum(nic) < 0) { +			printf("The EEPROM Checksum Is Not Valid\n"); +			free(hw); +			free(nic); +			return 0; +		} +#endif +		e1000_read_mac_addr(nic); + +		E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA); + +		printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n", +		       nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2], +		       nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]); + +		nic->init = e1000_init; +		nic->recv = e1000_poll; +		nic->send = e1000_transmit; +		nic->halt = e1000_disable; + +		eth_register(nic); + +		card_number++; +	} +	return 1; +} + +#endif |