diff options
Diffstat (limited to 'drivers/nand')
| -rw-r--r-- | drivers/nand/Makefile | 16 | ||||
| -rw-r--r-- | drivers/nand/diskonchip.c | 1785 | ||||
| -rw-r--r-- | drivers/nand/nand.c | 76 | ||||
| -rw-r--r-- | drivers/nand/nand_base.c | 2664 | ||||
| -rw-r--r-- | drivers/nand/nand_bbt.c | 1055 | ||||
| -rw-r--r-- | drivers/nand/nand_ecc.c | 247 | ||||
| -rw-r--r-- | drivers/nand/nand_ids.c | 131 | 
7 files changed, 5974 insertions, 0 deletions
| diff --git a/drivers/nand/Makefile b/drivers/nand/Makefile new file mode 100644 index 000000000..96f67dfca --- /dev/null +++ b/drivers/nand/Makefile @@ -0,0 +1,16 @@ +include $(TOPDIR)/config.mk + +LIB := libnand.a + +OBJS := nand.o nand_base.o nand_ids.o nand_ecc.o nand_bbt.o +all:	$(LIB) + +$(LIB):	$(OBJS) +	$(AR) crv $@ $(OBJS) + +######################################################################### + +.depend:	Makefile $(OBJS:.o=.c) +		$(CC) -M $(CFLAGS) $(OBJS:.o=.c) > $@ + +sinclude .depend diff --git a/drivers/nand/diskonchip.c b/drivers/nand/diskonchip.c new file mode 100644 index 000000000..07e254935 --- /dev/null +++ b/drivers/nand/diskonchip.c @@ -0,0 +1,1785 @@ +/* + * drivers/mtd/nand/diskonchip.c + * + * (C) 2003 Red Hat, Inc. + * (C) 2004 Dan Brown <dan_brown@ieee.org> + * (C) 2004 Kalev Lember <kalev@smartlink.ee> + * + * Author: David Woodhouse <dwmw2@infradead.org> + * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> + * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> + * + * Error correction code lifted from the old docecc code + * Author: Fabrice Bellard (fabrice.bellard@netgem.com) + * Copyright (C) 2000 Netgem S.A. + * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> + * + * Interface to generic NAND code for M-Systems DiskOnChip devices + * + * $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $ + */ + +#include <common.h> +#ifdef CONFIG_NEW_NAND_CODE +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/rslib.h> +#include <linux/moduleparam.h> +#include <asm/io.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/doc2000.h> +#include <linux/mtd/compatmac.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/inftl.h> + +/* Where to look for the devices? */ +#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS +#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0 +#endif + +static unsigned long __initdata doc_locations[] = { +#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) +#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH +	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, +	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, +	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, +	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, +	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, +#else /*  CONFIG_MTD_DOCPROBE_HIGH */ +	0xc8000, 0xca000, 0xcc000, 0xce000, +	0xd0000, 0xd2000, 0xd4000, 0xd6000, +	0xd8000, 0xda000, 0xdc000, 0xde000, +	0xe0000, 0xe2000, 0xe4000, 0xe6000, +	0xe8000, 0xea000, 0xec000, 0xee000, +#endif /*  CONFIG_MTD_DOCPROBE_HIGH */ +#elif defined(__PPC__) +	0xe4000000, +#elif defined(CONFIG_MOMENCO_OCELOT) +	0x2f000000, +	0xff000000, +#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C) +	0xff000000, +##else +#warning Unknown architecture for DiskOnChip. No default probe locations defined +#endif +	0xffffffff }; + +static struct mtd_info *doclist = NULL; + +struct doc_priv { +	void __iomem *virtadr; +	unsigned long physadr; +	u_char ChipID; +	u_char CDSNControl; +	int chips_per_floor; /* The number of chips detected on each floor */ +	int curfloor; +	int curchip; +	int mh0_page; +	int mh1_page; +	struct mtd_info *nextdoc; +}; + +/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL +   MediaHeader.  The spec says to just keep going, I think, but that's just +   silly. */ +#define MAX_MEDIAHEADER_SCAN 8 + +/* This is the syndrome computed by the HW ecc generator upon reading an empty +   page, one with all 0xff for data and stored ecc code. */ +static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a }; +/* This is the ecc value computed by the HW ecc generator upon writing an empty +   page, one with all 0xff for data. */ +static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; + +#define INFTL_BBT_RESERVED_BLOCKS 4 + +#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) +#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) +#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) + +static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd); +static void doc200x_select_chip(struct mtd_info *mtd, int chip); + +static int debug=0; +module_param(debug, int, 0); + +static int try_dword=1; +module_param(try_dword, int, 0); + +static int no_ecc_failures=0; +module_param(no_ecc_failures, int, 0); + +#ifdef CONFIG_MTD_PARTITIONS +static int no_autopart=0; +module_param(no_autopart, int, 0); +#endif + +#ifdef MTD_NAND_DISKONCHIP_BBTWRITE +static int inftl_bbt_write=1; +#else +static int inftl_bbt_write=0; +#endif +module_param(inftl_bbt_write, int, 0); + +static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS; +module_param(doc_config_location, ulong, 0); +MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); + + +/* Sector size for HW ECC */ +#define SECTOR_SIZE 512 +/* The sector bytes are packed into NB_DATA 10 bit words */ +#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) +/* Number of roots */ +#define NROOTS 4 +/* First consective root */ +#define FCR 510 +/* Number of symbols */ +#define NN 1023 + +/* the Reed Solomon control structure */ +static struct rs_control *rs_decoder; + +/* + * The HW decoder in the DoC ASIC's provides us a error syndrome, + * which we must convert to a standard syndrom usable by the generic + * Reed-Solomon library code. + * + * Fabrice Bellard figured this out in the old docecc code. I added + * some comments, improved a minor bit and converted it to make use + * of the generic Reed-Solomon libary. tglx + */ +static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc) +{ +	int i, j, nerr, errpos[8]; +	uint8_t parity; +	uint16_t ds[4], s[5], tmp, errval[8], syn[4]; + +	/* Convert the ecc bytes into words */ +	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); +	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); +	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); +	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); +	parity = ecc[1]; + +	/* Initialize the syndrom buffer */ +	for (i = 0; i < NROOTS; i++) +		s[i] = ds[0]; +	/* +	 *  Evaluate +	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] +	 *  where x = alpha^(FCR + i) +	 */ +	for(j = 1; j < NROOTS; j++) { +		if(ds[j] == 0) +			continue; +		tmp = rs->index_of[ds[j]]; +		for(i = 0; i < NROOTS; i++) +			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; +	} + +	/* Calc s[i] = s[i] / alpha^(v + i) */ +	for (i = 0; i < NROOTS; i++) { +		if (syn[i]) + 			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); +	} +	/* Call the decoder library */ +	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); + +	/* Incorrectable errors ? */ +	if (nerr < 0) +		return nerr; + +	/* +	 * Correct the errors. The bitpositions are a bit of magic, +	 * but they are given by the design of the de/encoder circuit +	 * in the DoC ASIC's. +	 */ +	for(i = 0;i < nerr; i++) { +		int index, bitpos, pos = 1015 - errpos[i]; +		uint8_t val; +		if (pos >= NB_DATA && pos < 1019) +			continue; +		if (pos < NB_DATA) { +			/* extract bit position (MSB first) */ +			pos = 10 * (NB_DATA - 1 - pos) - 6; +			/* now correct the following 10 bits. At most two bytes +			   can be modified since pos is even */ +			index = (pos >> 3) ^ 1; +			bitpos = pos & 7; +			if ((index >= 0 && index < SECTOR_SIZE) || +			    index == (SECTOR_SIZE + 1)) { +				val = (uint8_t) (errval[i] >> (2 + bitpos)); +				parity ^= val; +				if (index < SECTOR_SIZE) +					data[index] ^= val; +			} +			index = ((pos >> 3) + 1) ^ 1; +			bitpos = (bitpos + 10) & 7; +			if (bitpos == 0) +				bitpos = 8; +			if ((index >= 0 && index < SECTOR_SIZE) || +			    index == (SECTOR_SIZE + 1)) { +				val = (uint8_t)(errval[i] << (8 - bitpos)); +				parity ^= val; +				if (index < SECTOR_SIZE) +					data[index] ^= val; +			} +		} +	} +	/* If the parity is wrong, no rescue possible */ +	return parity ? -1 : nerr; +} + +static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) +{ +	volatile char dummy; +	int i; + +	for (i = 0; i < cycles; i++) { +		if (DoC_is_Millennium(doc)) +			dummy = ReadDOC(doc->virtadr, NOP); +		else if (DoC_is_MillenniumPlus(doc)) +			dummy = ReadDOC(doc->virtadr, Mplus_NOP); +		else +			dummy = ReadDOC(doc->virtadr, DOCStatus); +	} + +} + +#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) + +/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ +static int _DoC_WaitReady(struct doc_priv *doc) +{ +	void __iomem *docptr = doc->virtadr; +	unsigned long timeo = jiffies + (HZ * 10); + +	if(debug) printk("_DoC_WaitReady...\n"); +	/* Out-of-line routine to wait for chip response */ +	if (DoC_is_MillenniumPlus(doc)) { +		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { +			if (time_after(jiffies, timeo)) { +				printk("_DoC_WaitReady timed out.\n"); +				return -EIO; +			} +			udelay(1); +			cond_resched(); +		} +	} else { +		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { +			if (time_after(jiffies, timeo)) { +				printk("_DoC_WaitReady timed out.\n"); +				return -EIO; +			} +			udelay(1); +			cond_resched(); +		} +	} + +	return 0; +} + +static inline int DoC_WaitReady(struct doc_priv *doc) +{ +	void __iomem *docptr = doc->virtadr; +	int ret = 0; + +	if (DoC_is_MillenniumPlus(doc)) { +		DoC_Delay(doc, 4); + +		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) +			/* Call the out-of-line routine to wait */ +			ret = _DoC_WaitReady(doc); +	} else { +		DoC_Delay(doc, 4); + +		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) +			/* Call the out-of-line routine to wait */ +			ret = _DoC_WaitReady(doc); +		DoC_Delay(doc, 2); +	} + +	if(debug) printk("DoC_WaitReady OK\n"); +	return ret; +} + +static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; + +	if(debug)printk("write_byte %02x\n", datum); +	WriteDOC(datum, docptr, CDSNSlowIO); +	WriteDOC(datum, docptr, 2k_CDSN_IO); +} + +static u_char doc2000_read_byte(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	u_char ret; + +	ReadDOC(docptr, CDSNSlowIO); +	DoC_Delay(doc, 2); +	ret = ReadDOC(docptr, 2k_CDSN_IO); +	if (debug) printk("read_byte returns %02x\n", ret); +	return ret; +} + +static void doc2000_writebuf(struct mtd_info *mtd, +			     const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int i; +	if (debug)printk("writebuf of %d bytes: ", len); +	for (i=0; i < len; i++) { +		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); +		if (debug && i < 16) +			printk("%02x ", buf[i]); +	} +	if (debug) printk("\n"); +} + +static void doc2000_readbuf(struct mtd_info *mtd, +			    u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; + 	int i; + +	if (debug)printk("readbuf of %d bytes: ", len); + +	for (i=0; i < len; i++) { +		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); +	} +} + +static void doc2000_readbuf_dword(struct mtd_info *mtd, +			    u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; + 	int i; + +	if (debug) printk("readbuf_dword of %d bytes: ", len); + +	if (unlikely((((unsigned long)buf)|len) & 3)) { +		for (i=0; i < len; i++) { +			*(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); +		} +	} else { +		for (i=0; i < len; i+=4) { +			*(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); +		} +	} +} + +static int doc2000_verifybuf(struct mtd_info *mtd, +			      const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int i; + +	for (i=0; i < len; i++) +		if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO)) +			return -EFAULT; +	return 0; +} + +static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	uint16_t ret; + +	doc200x_select_chip(mtd, nr); +	doc200x_hwcontrol(mtd, NAND_CTL_SETCLE); +	this->write_byte(mtd, NAND_CMD_READID); +	doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE); +	doc200x_hwcontrol(mtd, NAND_CTL_SETALE); +	this->write_byte(mtd, 0); +	doc200x_hwcontrol(mtd, NAND_CTL_CLRALE); + +	ret = this->read_byte(mtd) << 8; +	ret |= this->read_byte(mtd); + +	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { +		/* First chip probe. See if we get same results by 32-bit access */ +		union { +			uint32_t dword; +			uint8_t byte[4]; +		} ident; +		void __iomem *docptr = doc->virtadr; + +		doc200x_hwcontrol(mtd, NAND_CTL_SETCLE); +		doc2000_write_byte(mtd, NAND_CMD_READID); +		doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE); +		doc200x_hwcontrol(mtd, NAND_CTL_SETALE); +		doc2000_write_byte(mtd, 0); +		doc200x_hwcontrol(mtd, NAND_CTL_CLRALE); + +		ident.dword = readl(docptr + DoC_2k_CDSN_IO); +		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { +			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); +			this->read_buf = &doc2000_readbuf_dword; +		} +	} + +	return ret; +} + +static void __init doc2000_count_chips(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	uint16_t mfrid; +	int i; + +	/* Max 4 chips per floor on DiskOnChip 2000 */ +	doc->chips_per_floor = 4; + +	/* Find out what the first chip is */ +	mfrid = doc200x_ident_chip(mtd, 0); + +	/* Find how many chips in each floor. */ +	for (i = 1; i < 4; i++) { +		if (doc200x_ident_chip(mtd, i) != mfrid) +			break; +	} +	doc->chips_per_floor = i; +	printk(KERN_DEBUG "Detected %d chips per floor.\n", i); +} + +static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state) +{ +	struct doc_priv *doc = this->priv; + +	int status; + +	DoC_WaitReady(doc); +	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); +	DoC_WaitReady(doc); +	status = (int)this->read_byte(mtd); + +	return status; +} + +static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; + +	WriteDOC(datum, docptr, CDSNSlowIO); +	WriteDOC(datum, docptr, Mil_CDSN_IO); +	WriteDOC(datum, docptr, WritePipeTerm); +} + +static u_char doc2001_read_byte(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; + +	/*ReadDOC(docptr, CDSNSlowIO); */ +	/* 11.4.5 -- delay twice to allow extended length cycle */ +	DoC_Delay(doc, 2); +	ReadDOC(docptr, ReadPipeInit); +	/*return ReadDOC(docptr, Mil_CDSN_IO); */ +	return ReadDOC(docptr, LastDataRead); +} + +static void doc2001_writebuf(struct mtd_info *mtd, +			     const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int i; + +	for (i=0; i < len; i++) +		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); +	/* Terminate write pipeline */ +	WriteDOC(0x00, docptr, WritePipeTerm); +} + +static void doc2001_readbuf(struct mtd_info *mtd, +			    u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int i; + +	/* Start read pipeline */ +	ReadDOC(docptr, ReadPipeInit); + +	for (i=0; i < len-1; i++) +		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); + +	/* Terminate read pipeline */ +	buf[i] = ReadDOC(docptr, LastDataRead); +} + +static int doc2001_verifybuf(struct mtd_info *mtd, +			     const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int i; + +	/* Start read pipeline */ +	ReadDOC(docptr, ReadPipeInit); + +	for (i=0; i < len-1; i++) +		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { +			ReadDOC(docptr, LastDataRead); +			return i; +		} +	if (buf[i] != ReadDOC(docptr, LastDataRead)) +		return i; +	return 0; +} + +static u_char doc2001plus_read_byte(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	u_char ret; + +	ReadDOC(docptr, Mplus_ReadPipeInit); +	ReadDOC(docptr, Mplus_ReadPipeInit); +	ret = ReadDOC(docptr, Mplus_LastDataRead); +	if (debug) printk("read_byte returns %02x\n", ret); +	return ret; +} + +static void doc2001plus_writebuf(struct mtd_info *mtd, +			     const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int i; + +	if (debug)printk("writebuf of %d bytes: ", len); +	for (i=0; i < len; i++) { +		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); +		if (debug && i < 16) +			printk("%02x ", buf[i]); +	} +	if (debug) printk("\n"); +} + +static void doc2001plus_readbuf(struct mtd_info *mtd, +			    u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int i; + +	if (debug)printk("readbuf of %d bytes: ", len); + +	/* Start read pipeline */ +	ReadDOC(docptr, Mplus_ReadPipeInit); +	ReadDOC(docptr, Mplus_ReadPipeInit); + +	for (i=0; i < len-2; i++) { +		buf[i] = ReadDOC(docptr, Mil_CDSN_IO); +		if (debug && i < 16) +			printk("%02x ", buf[i]); +	} + +	/* Terminate read pipeline */ +	buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead); +	if (debug && i < 16) +		printk("%02x ", buf[len-2]); +	buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead); +	if (debug && i < 16) +		printk("%02x ", buf[len-1]); +	if (debug) printk("\n"); +} + +static int doc2001plus_verifybuf(struct mtd_info *mtd, +			     const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int i; + +	if (debug)printk("verifybuf of %d bytes: ", len); + +	/* Start read pipeline */ +	ReadDOC(docptr, Mplus_ReadPipeInit); +	ReadDOC(docptr, Mplus_ReadPipeInit); + +	for (i=0; i < len-2; i++) +		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { +			ReadDOC(docptr, Mplus_LastDataRead); +			ReadDOC(docptr, Mplus_LastDataRead); +			return i; +		} +	if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead)) +		return len-2; +	if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead)) +		return len-1; +	return 0; +} + +static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int floor = 0; + +	if(debug)printk("select chip (%d)\n", chip); + +	if (chip == -1) { +		/* Disable flash internally */ +		WriteDOC(0, docptr, Mplus_FlashSelect); +		return; +	} + +	floor = chip / doc->chips_per_floor; +	chip -= (floor *  doc->chips_per_floor); + +	/* Assert ChipEnable and deassert WriteProtect */ +	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); +	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + +	doc->curchip = chip; +	doc->curfloor = floor; +} + +static void doc200x_select_chip(struct mtd_info *mtd, int chip) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int floor = 0; + +	if(debug)printk("select chip (%d)\n", chip); + +	if (chip == -1) +		return; + +	floor = chip / doc->chips_per_floor; +	chip -= (floor *  doc->chips_per_floor); + +	/* 11.4.4 -- deassert CE before changing chip */ +	doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE); + +	WriteDOC(floor, docptr, FloorSelect); +	WriteDOC(chip, docptr, CDSNDeviceSelect); + +	doc200x_hwcontrol(mtd, NAND_CTL_SETNCE); + +	doc->curchip = chip; +	doc->curfloor = floor; +} + +static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; + +	switch(cmd) { +	case NAND_CTL_SETNCE: +		doc->CDSNControl |= CDSN_CTRL_CE; +		break; +	case NAND_CTL_CLRNCE: +		doc->CDSNControl &= ~CDSN_CTRL_CE; +		break; +	case NAND_CTL_SETCLE: +		doc->CDSNControl |= CDSN_CTRL_CLE; +		break; +	case NAND_CTL_CLRCLE: +		doc->CDSNControl &= ~CDSN_CTRL_CLE; +		break; +	case NAND_CTL_SETALE: +		doc->CDSNControl |= CDSN_CTRL_ALE; +		break; +	case NAND_CTL_CLRALE: +		doc->CDSNControl &= ~CDSN_CTRL_ALE; +		break; +	case NAND_CTL_SETWP: +		doc->CDSNControl |= CDSN_CTRL_WP; +		break; +	case NAND_CTL_CLRWP: +		doc->CDSNControl &= ~CDSN_CTRL_WP; +		break; +	} +	if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); +	WriteDOC(doc->CDSNControl, docptr, CDSNControl); +	/* 11.4.3 -- 4 NOPs after CSDNControl write */ +	DoC_Delay(doc, 4); +} + +static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; + +	/* +	 * Must terminate write pipeline before sending any commands +	 * to the device. +	 */ +	if (command == NAND_CMD_PAGEPROG) { +		WriteDOC(0x00, docptr, Mplus_WritePipeTerm); +		WriteDOC(0x00, docptr, Mplus_WritePipeTerm); +	} + +	/* +	 * Write out the command to the device. +	 */ +	if (command == NAND_CMD_SEQIN) { +		int readcmd; + +		if (column >= mtd->oobblock) { +			/* OOB area */ +			column -= mtd->oobblock; +			readcmd = NAND_CMD_READOOB; +		} else if (column < 256) { +			/* First 256 bytes --> READ0 */ +			readcmd = NAND_CMD_READ0; +		} else { +			column -= 256; +			readcmd = NAND_CMD_READ1; +		} +		WriteDOC(readcmd, docptr, Mplus_FlashCmd); +	} +	WriteDOC(command, docptr, Mplus_FlashCmd); +	WriteDOC(0, docptr, Mplus_WritePipeTerm); +	WriteDOC(0, docptr, Mplus_WritePipeTerm); + +	if (column != -1 || page_addr != -1) { +		/* Serially input address */ +		if (column != -1) { +			/* Adjust columns for 16 bit buswidth */ +			if (this->options & NAND_BUSWIDTH_16) +				column >>= 1; +			WriteDOC(column, docptr, Mplus_FlashAddress); +		} +		if (page_addr != -1) { +			WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress); +			WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); +			/* One more address cycle for higher density devices */ +			if (this->chipsize & 0x0c000000) { +				WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); +				printk("high density\n"); +			} +		} +		WriteDOC(0, docptr, Mplus_WritePipeTerm); +		WriteDOC(0, docptr, Mplus_WritePipeTerm); +		/* deassert ALE */ +		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID) +			WriteDOC(0, docptr, Mplus_FlashControl); +	} + +	/* +	 * program and erase have their own busy handlers +	 * status and sequential in needs no delay +	*/ +	switch (command) { + +	case NAND_CMD_PAGEPROG: +	case NAND_CMD_ERASE1: +	case NAND_CMD_ERASE2: +	case NAND_CMD_SEQIN: +	case NAND_CMD_STATUS: +		return; + +	case NAND_CMD_RESET: +		if (this->dev_ready) +			break; +		udelay(this->chip_delay); +		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); +		WriteDOC(0, docptr, Mplus_WritePipeTerm); +		WriteDOC(0, docptr, Mplus_WritePipeTerm); +		while ( !(this->read_byte(mtd) & 0x40)); +		return; + +	/* This applies to read commands */ +	default: +		/* +		 * If we don't have access to the busy pin, we apply the given +		 * command delay +		*/ +		if (!this->dev_ready) { +			udelay (this->chip_delay); +			return; +		} +	} + +	/* Apply this short delay always to ensure that we do wait tWB in +	 * any case on any machine. */ +	ndelay (100); +	/* wait until command is processed */ +	while (!this->dev_ready(mtd)); +} + +static int doc200x_dev_ready(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; + +	if (DoC_is_MillenniumPlus(doc)) { +		/* 11.4.2 -- must NOP four times before checking FR/B# */ +		DoC_Delay(doc, 4); +		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { +			if(debug) +				printk("not ready\n"); +			return 0; +		} +		if (debug)printk("was ready\n"); +		return 1; +	} else { +		/* 11.4.2 -- must NOP four times before checking FR/B# */ +		DoC_Delay(doc, 4); +		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { +			if(debug) +				printk("not ready\n"); +			return 0; +		} +		/* 11.4.2 -- Must NOP twice if it's ready */ +		DoC_Delay(doc, 2); +		if (debug)printk("was ready\n"); +		return 1; +	} +} + +static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ +	/* This is our last resort if we couldn't find or create a BBT.  Just +	   pretend all blocks are good. */ +	return 0; +} + +static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; + +	/* Prime the ECC engine */ +	switch(mode) { +	case NAND_ECC_READ: +		WriteDOC(DOC_ECC_RESET, docptr, ECCConf); +		WriteDOC(DOC_ECC_EN, docptr, ECCConf); +		break; +	case NAND_ECC_WRITE: +		WriteDOC(DOC_ECC_RESET, docptr, ECCConf); +		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); +		break; +	} +} + +static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; + +	/* Prime the ECC engine */ +	switch(mode) { +	case NAND_ECC_READ: +		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); +		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); +		break; +	case NAND_ECC_WRITE: +		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); +		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); +		break; +	} +} + +/* This code is only called on write */ +static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, +				 unsigned char *ecc_code) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	int i; +	int emptymatch = 1; + +	/* flush the pipeline */ +	if (DoC_is_2000(doc)) { +		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); +		WriteDOC(0, docptr, 2k_CDSN_IO); +		WriteDOC(0, docptr, 2k_CDSN_IO); +		WriteDOC(0, docptr, 2k_CDSN_IO); +		WriteDOC(doc->CDSNControl, docptr, CDSNControl); +	} else if (DoC_is_MillenniumPlus(doc)) { +		WriteDOC(0, docptr, Mplus_NOP); +		WriteDOC(0, docptr, Mplus_NOP); +		WriteDOC(0, docptr, Mplus_NOP); +	} else { +		WriteDOC(0, docptr, NOP); +		WriteDOC(0, docptr, NOP); +		WriteDOC(0, docptr, NOP); +	} + +	for (i = 0; i < 6; i++) { +		if (DoC_is_MillenniumPlus(doc)) +			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); +		else +			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); +		if (ecc_code[i] != empty_write_ecc[i]) +			emptymatch = 0; +	} +	if (DoC_is_MillenniumPlus(doc)) +		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); +	else +		WriteDOC(DOC_ECC_DIS, docptr, ECCConf); +#if 0 +	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */ +	if (emptymatch) { +		/* Note: this somewhat expensive test should not be triggered +		   often.  It could be optimized away by examining the data in +		   the writebuf routine, and remembering the result. */ +		for (i = 0; i < 512; i++) { +			if (dat[i] == 0xff) continue; +			emptymatch = 0; +			break; +		} +	} +	/* If emptymatch still =1, we do have an all-0xff data buffer. +	   Return all-0xff ecc value instead of the computed one, so +	   it'll look just like a freshly-erased page. */ +	if (emptymatch) memset(ecc_code, 0xff, 6); +#endif +	return 0; +} + +static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) +{ +	int i, ret = 0; +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	void __iomem *docptr = doc->virtadr; +	volatile u_char dummy; +	int emptymatch = 1; + +	/* flush the pipeline */ +	if (DoC_is_2000(doc)) { +		dummy = ReadDOC(docptr, 2k_ECCStatus); +		dummy = ReadDOC(docptr, 2k_ECCStatus); +		dummy = ReadDOC(docptr, 2k_ECCStatus); +	} else if (DoC_is_MillenniumPlus(doc)) { +		dummy = ReadDOC(docptr, Mplus_ECCConf); +		dummy = ReadDOC(docptr, Mplus_ECCConf); +		dummy = ReadDOC(docptr, Mplus_ECCConf); +	} else { +		dummy = ReadDOC(docptr, ECCConf); +		dummy = ReadDOC(docptr, ECCConf); +		dummy = ReadDOC(docptr, ECCConf); +	} + +	/* Error occured ? */ +	if (dummy & 0x80) { +		for (i = 0; i < 6; i++) { +			if (DoC_is_MillenniumPlus(doc)) +				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); +			else +				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); +			if (calc_ecc[i] != empty_read_syndrome[i]) +				emptymatch = 0; +		} +		/* If emptymatch=1, the read syndrome is consistent with an +		   all-0xff data and stored ecc block.  Check the stored ecc. */ +		if (emptymatch) { +			for (i = 0; i < 6; i++) { +				if (read_ecc[i] == 0xff) continue; +				emptymatch = 0; +				break; +			} +		} +		/* If emptymatch still =1, check the data block. */ +		if (emptymatch) { +		/* Note: this somewhat expensive test should not be triggered +		   often.  It could be optimized away by examining the data in +		   the readbuf routine, and remembering the result. */ +			for (i = 0; i < 512; i++) { +				if (dat[i] == 0xff) continue; +				emptymatch = 0; +				break; +			} +		} +		/* If emptymatch still =1, this is almost certainly a freshly- +		   erased block, in which case the ECC will not come out right. +		   We'll suppress the error and tell the caller everything's +		   OK.  Because it is. */ +		if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc); +		if (ret > 0) +			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); +	} +	if (DoC_is_MillenniumPlus(doc)) +		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); +	else +		WriteDOC(DOC_ECC_DIS, docptr, ECCConf); +	if (no_ecc_failures && (ret == -1)) { +		printk(KERN_ERR "suppressing ECC failure\n"); +		ret = 0; +	} +	return ret; +} + +/*u_char mydatabuf[528]; */ + +static struct nand_oobinfo doc200x_oobinfo = { +	.useecc = MTD_NANDECC_AUTOPLACE, +	.eccbytes = 6, +	.eccpos = {0, 1, 2, 3, 4, 5}, +	.oobfree = { {8, 8} } +}; + +/* Find the (I)NFTL Media Header, and optionally also the mirror media header. +   On sucessful return, buf will contain a copy of the media header for +   further processing.  id is the string to scan for, and will presumably be +   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media +   header.  The page #s of the found media headers are placed in mh0_page and +   mh1_page in the DOC private structure. */ +static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, +				     const char *id, int findmirror) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift); +	int ret; +	size_t retlen; + +	end = min(end, mtd->size); /* paranoia */ +	for (offs = 0; offs < end; offs += mtd->erasesize) { +		ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf); +		if (retlen != mtd->oobblock) continue; +		if (ret) { +			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", +				offs); +		} +		if (memcmp(buf, id, 6)) continue; +		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); +		if (doc->mh0_page == -1) { +			doc->mh0_page = offs >> this->page_shift; +			if (!findmirror) return 1; +			continue; +		} +		doc->mh1_page = offs >> this->page_shift; +		return 2; +	} +	if (doc->mh0_page == -1) { +		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); +		return 0; +	} +	/* Only one mediaheader was found.  We want buf to contain a +	   mediaheader on return, so we'll have to re-read the one we found. */ +	offs = doc->mh0_page << this->page_shift; +	ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf); +	if (retlen != mtd->oobblock) { +		/* Insanity.  Give up. */ +		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); +		return 0; +	} +	return 1; +} + +static inline int __init nftl_partscan(struct mtd_info *mtd, +				struct mtd_partition *parts) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	int ret = 0; +	u_char *buf; +	struct NFTLMediaHeader *mh; +	const unsigned psize = 1 << this->page_shift; +	unsigned blocks, maxblocks; +	int offs, numheaders; + +	buf = kmalloc(mtd->oobblock, GFP_KERNEL); +	if (!buf) { +		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); +		return 0; +	} +	if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out; +	mh = (struct NFTLMediaHeader *) buf; + +/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */ +/*	if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */ +	printk(KERN_INFO "    DataOrgID        = %s\n" +			 "    NumEraseUnits    = %d\n" +			 "    FirstPhysicalEUN = %d\n" +			 "    FormattedSize    = %d\n" +			 "    UnitSizeFactor   = %d\n", +		mh->DataOrgID, mh->NumEraseUnits, +		mh->FirstPhysicalEUN, mh->FormattedSize, +		mh->UnitSizeFactor); +/*#endif */ + +	blocks = mtd->size >> this->phys_erase_shift; +	maxblocks = min(32768U, mtd->erasesize - psize); + +	if (mh->UnitSizeFactor == 0x00) { +		/* Auto-determine UnitSizeFactor.  The constraints are: +		   - There can be at most 32768 virtual blocks. +		   - There can be at most (virtual block size - page size) +		     virtual blocks (because MediaHeader+BBT must fit in 1). +		*/ +		mh->UnitSizeFactor = 0xff; +		while (blocks > maxblocks) { +			blocks >>= 1; +			maxblocks = min(32768U, (maxblocks << 1) + psize); +			mh->UnitSizeFactor--; +		} +		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); +	} + +	/* NOTE: The lines below modify internal variables of the NAND and MTD +	   layers; variables with have already been configured by nand_scan. +	   Unfortunately, we didn't know before this point what these values +	   should be.  Thus, this code is somewhat dependant on the exact +	   implementation of the NAND layer.  */ +	if (mh->UnitSizeFactor != 0xff) { +		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); +		mtd->erasesize <<= (0xff - mh->UnitSizeFactor); +		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); +		blocks = mtd->size >> this->bbt_erase_shift; +		maxblocks = min(32768U, mtd->erasesize - psize); +	} + +	if (blocks > maxblocks) { +		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor); +		goto out; +	} + +	/* Skip past the media headers. */ +	offs = max(doc->mh0_page, doc->mh1_page); +	offs <<= this->page_shift; +	offs += mtd->erasesize; + +	/*parts[0].name = " DiskOnChip Boot / Media Header partition"; */ +	/*parts[0].offset = 0; */ +	/*parts[0].size = offs; */ + +	parts[0].name = " DiskOnChip BDTL partition"; +	parts[0].offset = offs; +	parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; + +	offs += parts[0].size; +	if (offs < mtd->size) { +		parts[1].name = " DiskOnChip Remainder partition"; +		parts[1].offset = offs; +		parts[1].size = mtd->size - offs; +		ret = 2; +		goto out; +	} +	ret = 1; +out: +	kfree(buf); +	return ret; +} + +/* This is a stripped-down copy of the code in inftlmount.c */ +static inline int __init inftl_partscan(struct mtd_info *mtd, +				 struct mtd_partition *parts) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	int ret = 0; +	u_char *buf; +	struct INFTLMediaHeader *mh; +	struct INFTLPartition *ip; +	int numparts = 0; +	int blocks; +	int vshift, lastvunit = 0; +	int i; +	int end = mtd->size; + +	if (inftl_bbt_write) +		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); + +	buf = kmalloc(mtd->oobblock, GFP_KERNEL); +	if (!buf) { +		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); +		return 0; +	} + +	if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out; +	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); +	mh = (struct INFTLMediaHeader *) buf; + +	mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks); +	mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions); +	mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions); +	mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits); +	mh->FormatFlags = le32_to_cpu(mh->FormatFlags); +	mh->PercentUsed = le32_to_cpu(mh->PercentUsed); + +/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */ +/*	if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */ +	printk(KERN_INFO "    bootRecordID          = %s\n" +			 "    NoOfBootImageBlocks   = %d\n" +			 "    NoOfBinaryPartitions  = %d\n" +			 "    NoOfBDTLPartitions    = %d\n" +			 "    BlockMultiplerBits    = %d\n" +			 "    FormatFlgs            = %d\n" +			 "    OsakVersion           = %d.%d.%d.%d\n" +			 "    PercentUsed           = %d\n", +		mh->bootRecordID, mh->NoOfBootImageBlocks, +		mh->NoOfBinaryPartitions, +		mh->NoOfBDTLPartitions, +		mh->BlockMultiplierBits, mh->FormatFlags, +		((unsigned char *) &mh->OsakVersion)[0] & 0xf, +		((unsigned char *) &mh->OsakVersion)[1] & 0xf, +		((unsigned char *) &mh->OsakVersion)[2] & 0xf, +		((unsigned char *) &mh->OsakVersion)[3] & 0xf, +		mh->PercentUsed); +/*#endif */ + +	vshift = this->phys_erase_shift + mh->BlockMultiplierBits; + +	blocks = mtd->size >> vshift; +	if (blocks > 32768) { +		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits); +		goto out; +	} + +	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); +	if (inftl_bbt_write && (blocks > mtd->erasesize)) { +		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n"); +		goto out; +	} + +	/* Scan the partitions */ +	for (i = 0; (i < 4); i++) { +		ip = &(mh->Partitions[i]); +		ip->virtualUnits = le32_to_cpu(ip->virtualUnits); +		ip->firstUnit = le32_to_cpu(ip->firstUnit); +		ip->lastUnit = le32_to_cpu(ip->lastUnit); +		ip->flags = le32_to_cpu(ip->flags); +		ip->spareUnits = le32_to_cpu(ip->spareUnits); +		ip->Reserved0 = le32_to_cpu(ip->Reserved0); + +/*#ifdef CONFIG_MTD_DEBUG_VERBOSE */ +/*		if (CONFIG_MTD_DEBUG_VERBOSE >= 2) */ +		printk(KERN_INFO	"    PARTITION[%d] ->\n" +			"        virtualUnits    = %d\n" +			"        firstUnit       = %d\n" +			"        lastUnit        = %d\n" +			"        flags           = 0x%x\n" +			"        spareUnits      = %d\n", +			i, ip->virtualUnits, ip->firstUnit, +			ip->lastUnit, ip->flags, +			ip->spareUnits); +/*#endif */ + +/* +		if ((i == 0) && (ip->firstUnit > 0)) { +			parts[0].name = " DiskOnChip IPL / Media Header partition"; +			parts[0].offset = 0; +			parts[0].size = mtd->erasesize * ip->firstUnit; +			numparts = 1; +		} +*/ + +		if (ip->flags & INFTL_BINARY) +			parts[numparts].name = " DiskOnChip BDK partition"; +		else +			parts[numparts].name = " DiskOnChip BDTL partition"; +		parts[numparts].offset = ip->firstUnit << vshift; +		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; +		numparts++; +		if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit; +		if (ip->flags & INFTL_LAST) break; +	} +	lastvunit++; +	if ((lastvunit << vshift) < end) { +		parts[numparts].name = " DiskOnChip Remainder partition"; +		parts[numparts].offset = lastvunit << vshift; +		parts[numparts].size = end - parts[numparts].offset; +		numparts++; +	} +	ret = numparts; +out: +	kfree(buf); +	return ret; +} + +static int __init nftl_scan_bbt(struct mtd_info *mtd) +{ +	int ret, numparts; +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	struct mtd_partition parts[2]; + +	memset((char *) parts, 0, sizeof(parts)); +	/* On NFTL, we have to find the media headers before we can read the +	   BBTs, since they're stored in the media header eraseblocks. */ +	numparts = nftl_partscan(mtd, parts); +	if (!numparts) return -EIO; +	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | +				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | +				NAND_BBT_VERSION; +	this->bbt_td->veroffs = 7; +	this->bbt_td->pages[0] = doc->mh0_page + 1; +	if (doc->mh1_page != -1) { +		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | +					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | +					NAND_BBT_VERSION; +		this->bbt_md->veroffs = 7; +		this->bbt_md->pages[0] = doc->mh1_page + 1; +	} else { +		this->bbt_md = NULL; +	} + +	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. +	   At least as nand_bbt.c is currently written. */ +	if ((ret = nand_scan_bbt(mtd, NULL))) +		return ret; +	add_mtd_device(mtd); +#ifdef CONFIG_MTD_PARTITIONS +	if (!no_autopart) +		add_mtd_partitions(mtd, parts, numparts); +#endif +	return 0; +} + +static int __init inftl_scan_bbt(struct mtd_info *mtd) +{ +	int ret, numparts; +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	struct mtd_partition parts[5]; + +	if (this->numchips > doc->chips_per_floor) { +		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); +		return -EIO; +	} + +	if (DoC_is_MillenniumPlus(doc)) { +		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; +		if (inftl_bbt_write) +			this->bbt_td->options |= NAND_BBT_WRITE; +		this->bbt_td->pages[0] = 2; +		this->bbt_md = NULL; +	} else { +		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | +					NAND_BBT_VERSION; +		if (inftl_bbt_write) +			this->bbt_td->options |= NAND_BBT_WRITE; +		this->bbt_td->offs = 8; +		this->bbt_td->len = 8; +		this->bbt_td->veroffs = 7; +		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; +		this->bbt_td->reserved_block_code = 0x01; +		this->bbt_td->pattern = "MSYS_BBT"; + +		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | +					NAND_BBT_VERSION; +		if (inftl_bbt_write) +			this->bbt_md->options |= NAND_BBT_WRITE; +		this->bbt_md->offs = 8; +		this->bbt_md->len = 8; +		this->bbt_md->veroffs = 7; +		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; +		this->bbt_md->reserved_block_code = 0x01; +		this->bbt_md->pattern = "TBB_SYSM"; +	} + +	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. +	   At least as nand_bbt.c is currently written. */ +	if ((ret = nand_scan_bbt(mtd, NULL))) +		return ret; +	memset((char *) parts, 0, sizeof(parts)); +	numparts = inftl_partscan(mtd, parts); +	/* At least for now, require the INFTL Media Header.  We could probably +	   do without it for non-INFTL use, since all it gives us is +	   autopartitioning, but I want to give it more thought. */ +	if (!numparts) return -EIO; +	add_mtd_device(mtd); +#ifdef CONFIG_MTD_PARTITIONS +	if (!no_autopart) +		add_mtd_partitions(mtd, parts, numparts); +#endif +	return 0; +} + +static inline int __init doc2000_init(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; + +	this->write_byte = doc2000_write_byte; +	this->read_byte = doc2000_read_byte; +	this->write_buf = doc2000_writebuf; +	this->read_buf = doc2000_readbuf; +	this->verify_buf = doc2000_verifybuf; +	this->scan_bbt = nftl_scan_bbt; + +	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; +	doc2000_count_chips(mtd); +	mtd->name = "DiskOnChip 2000 (NFTL Model)"; +	return (4 * doc->chips_per_floor); +} + +static inline int __init doc2001_init(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; + +	this->write_byte = doc2001_write_byte; +	this->read_byte = doc2001_read_byte; +	this->write_buf = doc2001_writebuf; +	this->read_buf = doc2001_readbuf; +	this->verify_buf = doc2001_verifybuf; + +	ReadDOC(doc->virtadr, ChipID); +	ReadDOC(doc->virtadr, ChipID); +	ReadDOC(doc->virtadr, ChipID); +	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { +		/* It's not a Millennium; it's one of the newer +		   DiskOnChip 2000 units with a similar ASIC. +		   Treat it like a Millennium, except that it +		   can have multiple chips. */ +		doc2000_count_chips(mtd); +		mtd->name = "DiskOnChip 2000 (INFTL Model)"; +		this->scan_bbt = inftl_scan_bbt; +		return (4 * doc->chips_per_floor); +	} else { +		/* Bog-standard Millennium */ +		doc->chips_per_floor = 1; +		mtd->name = "DiskOnChip Millennium"; +		this->scan_bbt = nftl_scan_bbt; +		return 1; +	} +} + +static inline int __init doc2001plus_init(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; + +	this->write_byte = NULL; +	this->read_byte = doc2001plus_read_byte; +	this->write_buf = doc2001plus_writebuf; +	this->read_buf = doc2001plus_readbuf; +	this->verify_buf = doc2001plus_verifybuf; +	this->scan_bbt = inftl_scan_bbt; +	this->hwcontrol = NULL; +	this->select_chip = doc2001plus_select_chip; +	this->cmdfunc = doc2001plus_command; +	this->enable_hwecc = doc2001plus_enable_hwecc; + +	doc->chips_per_floor = 1; +	mtd->name = "DiskOnChip Millennium Plus"; + +	return 1; +} + +static inline int __init doc_probe(unsigned long physadr) +{ +	unsigned char ChipID; +	struct mtd_info *mtd; +	struct nand_chip *nand; +	struct doc_priv *doc; +	void __iomem *virtadr; +	unsigned char save_control; +	unsigned char tmp, tmpb, tmpc; +	int reg, len, numchips; +	int ret = 0; + +	virtadr = ioremap(physadr, DOC_IOREMAP_LEN); +	if (!virtadr) { +		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); +		return -EIO; +	} + +	/* It's not possible to cleanly detect the DiskOnChip - the +	 * bootup procedure will put the device into reset mode, and +	 * it's not possible to talk to it without actually writing +	 * to the DOCControl register. So we store the current contents +	 * of the DOCControl register's location, in case we later decide +	 * that it's not a DiskOnChip, and want to put it back how we +	 * found it. +	 */ +	save_control = ReadDOC(virtadr, DOCControl); + +	/* Reset the DiskOnChip ASIC */ +	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, +		 virtadr, DOCControl); +	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, +		 virtadr, DOCControl); + +	/* Enable the DiskOnChip ASIC */ +	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, +		 virtadr, DOCControl); +	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, +		 virtadr, DOCControl); + +	ChipID = ReadDOC(virtadr, ChipID); + +	switch(ChipID) { +	case DOC_ChipID_Doc2k: +		reg = DoC_2k_ECCStatus; +		break; +	case DOC_ChipID_DocMil: +		reg = DoC_ECCConf; +		break; +	case DOC_ChipID_DocMilPlus16: +	case DOC_ChipID_DocMilPlus32: +	case 0: +		/* Possible Millennium Plus, need to do more checks */ +		/* Possibly release from power down mode */ +		for (tmp = 0; (tmp < 4); tmp++) +			ReadDOC(virtadr, Mplus_Power); + +		/* Reset the Millennium Plus ASIC */ +		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | +			DOC_MODE_BDECT; +		WriteDOC(tmp, virtadr, Mplus_DOCControl); +		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); + +		mdelay(1); +		/* Enable the Millennium Plus ASIC */ +		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | +			DOC_MODE_BDECT; +		WriteDOC(tmp, virtadr, Mplus_DOCControl); +		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); +		mdelay(1); + +		ChipID = ReadDOC(virtadr, ChipID); + +		switch (ChipID) { +		case DOC_ChipID_DocMilPlus16: +			reg = DoC_Mplus_Toggle; +			break; +		case DOC_ChipID_DocMilPlus32: +			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); +		default: +			ret = -ENODEV; +			goto notfound; +		} +		break; + +	default: +		ret = -ENODEV; +		goto notfound; +	} +	/* Check the TOGGLE bit in the ECC register */ +	tmp  = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; +	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; +	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; +	if ((tmp == tmpb) || (tmp != tmpc)) { +		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); +		ret = -ENODEV; +		goto notfound; +	} + +	for (mtd = doclist; mtd; mtd = doc->nextdoc) { +		unsigned char oldval; +		unsigned char newval; +		nand = mtd->priv; +		doc = nand->priv; +		/* Use the alias resolution register to determine if this is +		   in fact the same DOC aliased to a new address.  If writes +		   to one chip's alias resolution register change the value on +		   the other chip, they're the same chip. */ +		if (ChipID == DOC_ChipID_DocMilPlus16) { +			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); +			newval = ReadDOC(virtadr, Mplus_AliasResolution); +		} else { +			oldval = ReadDOC(doc->virtadr, AliasResolution); +			newval = ReadDOC(virtadr, AliasResolution); +		} +		if (oldval != newval) +			continue; +		if (ChipID == DOC_ChipID_DocMilPlus16) { +			WriteDOC(~newval, virtadr, Mplus_AliasResolution); +			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); +			WriteDOC(newval, virtadr, Mplus_AliasResolution); /* restore it */ +		} else { +			WriteDOC(~newval, virtadr, AliasResolution); +			oldval = ReadDOC(doc->virtadr, AliasResolution); +			WriteDOC(newval, virtadr, AliasResolution); /* restore it */ +		} +		newval = ~newval; +		if (oldval == newval) { +			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); +			goto notfound; +		} +	} + +	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); + +	len = sizeof(struct mtd_info) + +	      sizeof(struct nand_chip) + +	      sizeof(struct doc_priv) + +	      (2 * sizeof(struct nand_bbt_descr)); +	mtd =  kmalloc(len, GFP_KERNEL); +	if (!mtd) { +		printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len); +		ret = -ENOMEM; +		goto fail; +	} +	memset(mtd, 0, len); + +	nand			= (struct nand_chip *) (mtd + 1); +	doc			= (struct doc_priv *) (nand + 1); +	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1); +	nand->bbt_md		= nand->bbt_td + 1; + +	mtd->priv		= nand; +	mtd->owner		= THIS_MODULE; + +	nand->priv		= doc; +	nand->select_chip	= doc200x_select_chip; +	nand->hwcontrol		= doc200x_hwcontrol; +	nand->dev_ready		= doc200x_dev_ready; +	nand->waitfunc		= doc200x_wait; +	nand->block_bad		= doc200x_block_bad; +	nand->enable_hwecc	= doc200x_enable_hwecc; +	nand->calculate_ecc	= doc200x_calculate_ecc; +	nand->correct_data	= doc200x_correct_data; + +	nand->autooob		= &doc200x_oobinfo; +	nand->eccmode		= NAND_ECC_HW6_512; +	nand->options		= NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME; + +	doc->physadr		= physadr; +	doc->virtadr		= virtadr; +	doc->ChipID		= ChipID; +	doc->curfloor		= -1; +	doc->curchip		= -1; +	doc->mh0_page		= -1; +	doc->mh1_page		= -1; +	doc->nextdoc		= doclist; + +	if (ChipID == DOC_ChipID_Doc2k) +		numchips = doc2000_init(mtd); +	else if (ChipID == DOC_ChipID_DocMilPlus16) +		numchips = doc2001plus_init(mtd); +	else +		numchips = doc2001_init(mtd); + +	if ((ret = nand_scan(mtd, numchips))) { +		/* DBB note: i believe nand_release is necessary here, as +		   buffers may have been allocated in nand_base.  Check with +		   Thomas. FIX ME! */ +		/* nand_release will call del_mtd_device, but we haven't yet +		   added it.  This is handled without incident by +		   del_mtd_device, as far as I can tell. */ +		nand_release(mtd); +		kfree(mtd); +		goto fail; +	} + +	/* Success! */ +	doclist = mtd; +	return 0; + +notfound: +	/* Put back the contents of the DOCControl register, in case it's not +	   actually a DiskOnChip.  */ +	WriteDOC(save_control, virtadr, DOCControl); +fail: +	iounmap(virtadr); +	return ret; +} + +static void release_nanddoc(void) +{ + 	struct mtd_info *mtd, *nextmtd; +	struct nand_chip *nand; +	struct doc_priv *doc; + +	for (mtd = doclist; mtd; mtd = nextmtd) { +		nand = mtd->priv; +		doc = nand->priv; + +		nextmtd = doc->nextdoc; +		nand_release(mtd); +		iounmap(doc->virtadr); +		kfree(mtd); +	} +} + +static int __init init_nanddoc(void) +{ +	int i, ret = 0; + +	/* We could create the decoder on demand, if memory is a concern. +	 * This way we have it handy, if an error happens +	 * +	 * Symbolsize is 10 (bits) +	 * Primitve polynomial is x^10+x^3+1 +	 * first consecutive root is 510 +	 * primitve element to generate roots = 1 +	 * generator polinomial degree = 4 +	 */ +	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); + 	if (!rs_decoder) { +		printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); +		return -ENOMEM; +	} + +	if (doc_config_location) { +		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); +		ret = doc_probe(doc_config_location); +		if (ret < 0) +			goto outerr; +	} else { +		for (i=0; (doc_locations[i] != 0xffffffff); i++) { +			doc_probe(doc_locations[i]); +		} +	} +	/* No banner message any more. Print a message if no DiskOnChip +	   found, so the user knows we at least tried. */ +	if (!doclist) { +		printk(KERN_INFO "No valid DiskOnChip devices found\n"); +		ret = -ENODEV; +		goto outerr; +	} +	return 0; +outerr: +	free_rs(rs_decoder); +	return ret; +} + +static void __exit cleanup_nanddoc(void) +{ +	/* Cleanup the nand/DoC resources */ +	release_nanddoc(); + +	/* Free the reed solomon resources */ +	if (rs_decoder) { +		free_rs(rs_decoder); +	} +} + +module_init(init_nanddoc); +module_exit(cleanup_nanddoc); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n"); +#endif /* CONFIG_NEW_NAND_CODE */ diff --git a/drivers/nand/nand.c b/drivers/nand/nand.c new file mode 100644 index 000000000..bc85005b2 --- /dev/null +++ b/drivers/nand/nand.c @@ -0,0 +1,76 @@ +/* + * (C) Copyright 2005 + * 2N Telekomunikace, a.s. <www.2n.cz> + * Ladislav Michl <michl@2n.cz> + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + */ + +#include <common.h> + +#ifdef CONFIG_NEW_NAND_CODE +#if (CONFIG_COMMANDS & CFG_CMD_NAND) + +#include <nand.h> + +#ifndef CFG_NAND_BASE_LIST +#define CFG_NAND_BASE_LIST { CFG_NAND_BASE } +#endif + +int nand_curr_device = -1; +nand_info_t nand_info[CFG_MAX_NAND_DEVICE]; + +static struct nand_chip nand_chip[CFG_MAX_NAND_DEVICE]; +static ulong base_address[CFG_MAX_NAND_DEVICE] = CFG_NAND_BASE_LIST; + +static const char default_nand_name[] = "nand"; + +extern void board_nand_init(struct nand_chip *nand); + +static void nand_init_chip(struct mtd_info *mtd, struct nand_chip *nand, +			   ulong base_addr) +{ +	mtd->priv = nand; + +	nand->IO_ADDR_R = nand->IO_ADDR_W = (void  __iomem *)base_addr; +	board_nand_init(nand); + +	if (nand_scan(mtd, 1) == 0) { +		if (!mtd->name) +			mtd->name = (char *)default_nand_name; +	} else +		mtd->name = NULL; + +} + +void nand_init(void) +{ +	int i; +	unsigned int size = 0; +	for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) { +		nand_init_chip(&nand_info[i], &nand_chip[i], base_address[i]); +		size += nand_info[i].size; +		if (nand_curr_device == -1) +			nand_curr_device = i; +} +	printf("%lu MiB\n", size / (1024 * 1024)); +} + +#endif +#endif /* CONFIG_NEW_NAND_CODE */ + diff --git a/drivers/nand/nand_base.c b/drivers/nand/nand_base.c new file mode 100644 index 000000000..b039c3cd8 --- /dev/null +++ b/drivers/nand/nand_base.c @@ -0,0 +1,2664 @@ +/* + *  drivers/mtd/nand.c + * + *  Overview: + *   This is the generic MTD driver for NAND flash devices. It should be + *   capable of working with almost all NAND chips currently available. + *   Basic support for AG-AND chips is provided. + * + *	Additional technical information is available on + *	http://www.linux-mtd.infradead.org/tech/nand.html + * + *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * 		  2002 Thomas Gleixner (tglx@linutronix.de) + * + *  02-08-2004  tglx: support for strange chips, which cannot auto increment + *		pages on read / read_oob + * + *  03-17-2004  tglx: Check ready before auto increment check. Simon Bayes + *		pointed this out, as he marked an auto increment capable chip + *		as NOAUTOINCR in the board driver. + *		Make reads over block boundaries work too + * + *  04-14-2004	tglx: first working version for 2k page size chips + * + *  05-19-2004  tglx: Basic support for Renesas AG-AND chips + * + *  09-24-2004  tglx: add support for hardware controllers (e.g. ECC) shared + *		among multiple independend devices. Suggestions and initial patch + *		from Ben Dooks <ben-mtd@fluff.org> + * + * Credits: + *	David Woodhouse for adding multichip support + * + *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the + *	rework for 2K page size chips + * + * TODO: + *	Enable cached programming for 2k page size chips + *	Check, if mtd->ecctype should be set to MTD_ECC_HW + *	if we have HW ecc support. + *	The AG-AND chips have nice features for speed improvement, + *	which are not supported yet. Read / program 4 pages in one go. + * + * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +/* XXX U-BOOT XXX */ +#if 0 +#include <linux/delay.h> +#include <linux/errno.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/types.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/compatmac.h> +#include <linux/interrupt.h> +#include <linux/bitops.h> +#include <asm/io.h> + +#ifdef CONFIG_MTD_PARTITIONS +#include <linux/mtd/partitions.h> +#endif + +#endif + +#include <common.h> +#ifdef CONFIG_NEW_NAND_CODE + +#if (CONFIG_COMMANDS & CFG_CMD_NAND) + +#include <malloc.h> +#include <watchdog.h> +#include <linux/mtd/compat.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> + +#include <asm/io.h> +#include <asm/errno.h> + +#ifdef CONFIG_JFFS2_NAND +#include <jffs2/jffs2.h> +#endif + +/* Define default oob placement schemes for large and small page devices */ +static struct nand_oobinfo nand_oob_8 = { +	.useecc = MTD_NANDECC_AUTOPLACE, +	.eccbytes = 3, +	.eccpos = {0, 1, 2}, +	.oobfree = { {3, 2}, {6, 2} } +}; + +static struct nand_oobinfo nand_oob_16 = { +	.useecc = MTD_NANDECC_AUTOPLACE, +	.eccbytes = 6, +	.eccpos = {0, 1, 2, 3, 6, 7}, +	.oobfree = { {8, 8} } +}; + +static struct nand_oobinfo nand_oob_64 = { +	.useecc = MTD_NANDECC_AUTOPLACE, +	.eccbytes = 24, +	.eccpos = { +		40, 41, 42, 43, 44, 45, 46, 47, +		48, 49, 50, 51, 52, 53, 54, 55, +		56, 57, 58, 59, 60, 61, 62, 63}, +	.oobfree = { {2, 38} } +}; + +/* This is used for padding purposes in nand_write_oob */ +static u_char ffchars[] = { +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +}; + +/* + * NAND low-level MTD interface functions + */ +static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len); +static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len); +static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len); + +static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf); +static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, +			  size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel); +static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf); +static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf); +static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, +			   size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel); +static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf); +/* XXX U-BOOT XXX */ +#if 0 +static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, +			unsigned long count, loff_t to, size_t * retlen); +static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, +			unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel); +#endif +static int nand_erase (struct mtd_info *mtd, struct erase_info *instr); +static void nand_sync (struct mtd_info *mtd); + +/* Some internal functions */ +static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf, +		struct nand_oobinfo *oobsel, int mode); +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE +static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, +	u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode); +#else +#define nand_verify_pages(...) (0) +#endif + +static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state); + +/** + * nand_release_device - [GENERIC] release chip + * @mtd:	MTD device structure + * + * Deselect, release chip lock and wake up anyone waiting on the device + */ +/* XXX U-BOOT XXX */ +#if 0 +static void nand_release_device (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; + +	/* De-select the NAND device */ +	this->select_chip(mtd, -1); +	/* Do we have a hardware controller ? */ +	if (this->controller) { +		spin_lock(&this->controller->lock); +		this->controller->active = NULL; +		spin_unlock(&this->controller->lock); +	} +	/* Release the chip */ +	spin_lock (&this->chip_lock); +	this->state = FL_READY; +	wake_up (&this->wq); +	spin_unlock (&this->chip_lock); +} +#else +static void nand_release_device (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	this->select_chip(mtd, -1);	/* De-select the NAND device */ +} +#endif + +/** + * nand_read_byte - [DEFAULT] read one byte from the chip + * @mtd:	MTD device structure + * + * Default read function for 8bit buswith + */ +static u_char nand_read_byte(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	return readb(this->IO_ADDR_R); +} + +/** + * nand_write_byte - [DEFAULT] write one byte to the chip + * @mtd:	MTD device structure + * @byte:	pointer to data byte to write + * + * Default write function for 8it buswith + */ +static void nand_write_byte(struct mtd_info *mtd, u_char byte) +{ +	struct nand_chip *this = mtd->priv; +	writeb(byte, this->IO_ADDR_W); +} + +/** + * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip + * @mtd:	MTD device structure + * + * Default read function for 16bit buswith with + * endianess conversion + */ +static u_char nand_read_byte16(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	return (u_char) cpu_to_le16(readw(this->IO_ADDR_R)); +} + +/** + * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip + * @mtd:	MTD device structure + * @byte:	pointer to data byte to write + * + * Default write function for 16bit buswith with + * endianess conversion + */ +static void nand_write_byte16(struct mtd_info *mtd, u_char byte) +{ +	struct nand_chip *this = mtd->priv; +	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W); +} + +/** + * nand_read_word - [DEFAULT] read one word from the chip + * @mtd:	MTD device structure + * + * Default read function for 16bit buswith without + * endianess conversion + */ +static u16 nand_read_word(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	return readw(this->IO_ADDR_R); +} + +/** + * nand_write_word - [DEFAULT] write one word to the chip + * @mtd:	MTD device structure + * @word:	data word to write + * + * Default write function for 16bit buswith without + * endianess conversion + */ +static void nand_write_word(struct mtd_info *mtd, u16 word) +{ +	struct nand_chip *this = mtd->priv; +	writew(word, this->IO_ADDR_W); +} + +/** + * nand_select_chip - [DEFAULT] control CE line + * @mtd:	MTD device structure + * @chip:	chipnumber to select, -1 for deselect + * + * Default select function for 1 chip devices. + */ +static void nand_select_chip(struct mtd_info *mtd, int chip) +{ +	struct nand_chip *this = mtd->priv; +	switch(chip) { +	case -1: +		this->hwcontrol(mtd, NAND_CTL_CLRNCE); +		break; +	case 0: +		this->hwcontrol(mtd, NAND_CTL_SETNCE); +		break; + +	default: +		BUG(); +	} +} + +/** + * nand_write_buf - [DEFAULT] write buffer to chip + * @mtd:	MTD device structure + * @buf:	data buffer + * @len:	number of bytes to write + * + * Default write function for 8bit buswith + */ +static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; + +	for (i=0; i<len; i++) +		writeb(buf[i], this->IO_ADDR_W); +} + +/** + * nand_read_buf - [DEFAULT] read chip data into buffer + * @mtd:	MTD device structure + * @buf:	buffer to store date + * @len:	number of bytes to read + * + * Default read function for 8bit buswith + */ +static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; + +	for (i=0; i<len; i++) +		buf[i] = readb(this->IO_ADDR_R); +} + +/** + * nand_verify_buf - [DEFAULT] Verify chip data against buffer + * @mtd:	MTD device structure + * @buf:	buffer containing the data to compare + * @len:	number of bytes to compare + * + * Default verify function for 8bit buswith + */ +static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; + +	for (i=0; i<len; i++) +		if (buf[i] != readb(this->IO_ADDR_R)) +			return -EFAULT; + +	return 0; +} + +/** + * nand_write_buf16 - [DEFAULT] write buffer to chip + * @mtd:	MTD device structure + * @buf:	data buffer + * @len:	number of bytes to write + * + * Default write function for 16bit buswith + */ +static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; +	u16 *p = (u16 *) buf; +	len >>= 1; + +	for (i=0; i<len; i++) +		writew(p[i], this->IO_ADDR_W); + +} + +/** + * nand_read_buf16 - [DEFAULT] read chip data into buffer + * @mtd:	MTD device structure + * @buf:	buffer to store date + * @len:	number of bytes to read + * + * Default read function for 16bit buswith + */ +static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; +	u16 *p = (u16 *) buf; +	len >>= 1; + +	for (i=0; i<len; i++) +		p[i] = readw(this->IO_ADDR_R); +} + +/** + * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer + * @mtd:	MTD device structure + * @buf:	buffer containing the data to compare + * @len:	number of bytes to compare + * + * Default verify function for 16bit buswith + */ +static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; +	u16 *p = (u16 *) buf; +	len >>= 1; + +	for (i=0; i<len; i++) +		if (p[i] != readw(this->IO_ADDR_R)) +			return -EFAULT; + +	return 0; +} + +/** + * nand_block_bad - [DEFAULT] Read bad block marker from the chip + * @mtd:	MTD device structure + * @ofs:	offset from device start + * @getchip:	0, if the chip is already selected + * + * Check, if the block is bad. + */ +static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ +	int page, chipnr, res = 0; +	struct nand_chip *this = mtd->priv; +	u16 bad; + +	if (getchip) { +		page = (int)(ofs >> this->page_shift); +		chipnr = (int)(ofs >> this->chip_shift); + +		/* Grab the lock and see if the device is available */ +		nand_get_device (this, mtd, FL_READING); + +		/* Select the NAND device */ +		this->select_chip(mtd, chipnr); +	} else +		page = (int) ofs; + +	if (this->options & NAND_BUSWIDTH_16) { +		this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask); +		bad = cpu_to_le16(this->read_word(mtd)); +		if (this->badblockpos & 0x1) +			bad >>= 1; +		if ((bad & 0xFF) != 0xff) +			res = 1; +	} else { +		this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask); +		if (this->read_byte(mtd) != 0xff) +			res = 1; +	} + +	if (getchip) { +		/* Deselect and wake up anyone waiting on the device */ +		nand_release_device(mtd); +	} + +	return res; +} + +/** + * nand_default_block_markbad - [DEFAULT] mark a block bad + * @mtd:	MTD device structure + * @ofs:	offset from device start + * + * This is the default implementation, which can be overridden by + * a hardware specific driver. +*/ +static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ +	struct nand_chip *this = mtd->priv; +	u_char buf[2] = {0, 0}; +	size_t	retlen; +	int block; + +	/* Get block number */ +	block = ((int) ofs) >> this->bbt_erase_shift; +	this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + +	/* Do we have a flash based bad block table ? */ +	if (this->options & NAND_USE_FLASH_BBT) +		return nand_update_bbt (mtd, ofs); + +	/* We write two bytes, so we dont have to mess with 16 bit access */ +	ofs += mtd->oobsize + (this->badblockpos & ~0x01); +	return nand_write_oob (mtd, ofs , 2, &retlen, buf); +} + +/** + * nand_check_wp - [GENERIC] check if the chip is write protected + * @mtd:	MTD device structure + * Check, if the device is write protected + * + * The function expects, that the device is already selected + */ +static int nand_check_wp (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	/* Check the WP bit */ +	this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1); +	return (this->read_byte(mtd) & 0x80) ? 0 : 1; +} + +/** + * nand_block_checkbad - [GENERIC] Check if a block is marked bad + * @mtd:	MTD device structure + * @ofs:	offset from device start + * @getchip:	0, if the chip is already selected + * @allowbbt:	1, if its allowed to access the bbt area + * + * Check, if the block is bad. Either by reading the bad block table or + * calling of the scan function. + */ +static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt) +{ +	struct nand_chip *this = mtd->priv; + +	if (!this->bbt) +		return this->block_bad(mtd, ofs, getchip); + +	/* Return info from the table */ +	return nand_isbad_bbt (mtd, ofs, allowbbt); +} + +/** + * nand_command - [DEFAULT] Send command to NAND device + * @mtd:	MTD device structure + * @command:	the command to be sent + * @column:	the column address for this command, -1 if none + * @page_addr:	the page address for this command, -1 if none + * + * Send command to NAND device. This function is used for small page + * devices (256/512 Bytes per page) + */ +static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ +	register struct nand_chip *this = mtd->priv; + +	/* Begin command latch cycle */ +	this->hwcontrol(mtd, NAND_CTL_SETCLE); +	/* +	 * Write out the command to the device. +	 */ +	if (command == NAND_CMD_SEQIN) { +		int readcmd; + +		if (column >= mtd->oobblock) { +			/* OOB area */ +			column -= mtd->oobblock; +			readcmd = NAND_CMD_READOOB; +		} else if (column < 256) { +			/* First 256 bytes --> READ0 */ +			readcmd = NAND_CMD_READ0; +		} else { +			column -= 256; +			readcmd = NAND_CMD_READ1; +		} +		this->write_byte(mtd, readcmd); +	} +	this->write_byte(mtd, command); + +	/* Set ALE and clear CLE to start address cycle */ +	this->hwcontrol(mtd, NAND_CTL_CLRCLE); + +	if (column != -1 || page_addr != -1) { +		this->hwcontrol(mtd, NAND_CTL_SETALE); + +		/* Serially input address */ +		if (column != -1) { +			/* Adjust columns for 16 bit buswidth */ +			if (this->options & NAND_BUSWIDTH_16) +				column >>= 1; +			this->write_byte(mtd, column); +		} +		if (page_addr != -1) { +			this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); +			this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); +			/* One more address cycle for devices > 32MiB */ +			if (this->chipsize > (32 << 20)) +				this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f)); +		} +		/* Latch in address */ +		this->hwcontrol(mtd, NAND_CTL_CLRALE); +	} + +	/* +	 * program and erase have their own busy handlers +	 * status and sequential in needs no delay +	*/ +	switch (command) { + +	case NAND_CMD_PAGEPROG: +	case NAND_CMD_ERASE1: +	case NAND_CMD_ERASE2: +	case NAND_CMD_SEQIN: +	case NAND_CMD_STATUS: +		return; + +	case NAND_CMD_RESET: +		if (this->dev_ready) +			break; +		udelay(this->chip_delay); +		this->hwcontrol(mtd, NAND_CTL_SETCLE); +		this->write_byte(mtd, NAND_CMD_STATUS); +		this->hwcontrol(mtd, NAND_CTL_CLRCLE); +		while ( !(this->read_byte(mtd) & 0x40)); +		return; + +	/* This applies to read commands */ +	default: +		/* +		 * If we don't have access to the busy pin, we apply the given +		 * command delay +		*/ +		if (!this->dev_ready) { +			udelay (this->chip_delay); +			return; +		} +	} + +	/* Apply this short delay always to ensure that we do wait tWB in +	 * any case on any machine. */ +	ndelay (100); +	/* wait until command is processed */ +	while (!this->dev_ready(mtd)); +} + +/** + * nand_command_lp - [DEFAULT] Send command to NAND large page device + * @mtd:	MTD device structure + * @command:	the command to be sent + * @column:	the column address for this command, -1 if none + * @page_addr:	the page address for this command, -1 if none + * + * Send command to NAND device. This is the version for the new large page devices + * We dont have the seperate regions as we have in the small page devices. + * We must emulate NAND_CMD_READOOB to keep the code compatible. + * + */ +static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ +	register struct nand_chip *this = mtd->priv; + +	/* Emulate NAND_CMD_READOOB */ +	if (command == NAND_CMD_READOOB) { +		column += mtd->oobblock; +		command = NAND_CMD_READ0; +	} + + +	/* Begin command latch cycle */ +	this->hwcontrol(mtd, NAND_CTL_SETCLE); +	/* Write out the command to the device. */ +	this->write_byte(mtd, command); +	/* End command latch cycle */ +	this->hwcontrol(mtd, NAND_CTL_CLRCLE); + +	if (column != -1 || page_addr != -1) { +		this->hwcontrol(mtd, NAND_CTL_SETALE); + +		/* Serially input address */ +		if (column != -1) { +			/* Adjust columns for 16 bit buswidth */ +			if (this->options & NAND_BUSWIDTH_16) +				column >>= 1; +			this->write_byte(mtd, column & 0xff); +			this->write_byte(mtd, column >> 8); +		} +		if (page_addr != -1) { +			this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); +			this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); +			/* One more address cycle for devices > 128MiB */ +			if (this->chipsize > (128 << 20)) +				this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff)); +		} +		/* Latch in address */ +		this->hwcontrol(mtd, NAND_CTL_CLRALE); +	} + +	/* +	 * program and erase have their own busy handlers +	 * status and sequential in needs no delay +	*/ +	switch (command) { + +	case NAND_CMD_CACHEDPROG: +	case NAND_CMD_PAGEPROG: +	case NAND_CMD_ERASE1: +	case NAND_CMD_ERASE2: +	case NAND_CMD_SEQIN: +	case NAND_CMD_STATUS: +		return; + + +	case NAND_CMD_RESET: +		if (this->dev_ready) +			break; +		udelay(this->chip_delay); +		this->hwcontrol(mtd, NAND_CTL_SETCLE); +		this->write_byte(mtd, NAND_CMD_STATUS); +		this->hwcontrol(mtd, NAND_CTL_CLRCLE); +		while ( !(this->read_byte(mtd) & 0x40)); +		return; + +	case NAND_CMD_READ0: +		/* Begin command latch cycle */ +		this->hwcontrol(mtd, NAND_CTL_SETCLE); +		/* Write out the start read command */ +		this->write_byte(mtd, NAND_CMD_READSTART); +		/* End command latch cycle */ +		this->hwcontrol(mtd, NAND_CTL_CLRCLE); +		/* Fall through into ready check */ + +	/* This applies to read commands */ +	default: +		/* +		 * If we don't have access to the busy pin, we apply the given +		 * command delay +		*/ +		if (!this->dev_ready) { +			udelay (this->chip_delay); +			return; +		} +	} + +	/* Apply this short delay always to ensure that we do wait tWB in +	 * any case on any machine. */ +	ndelay (100); +	/* wait until command is processed */ +	while (!this->dev_ready(mtd)); +} + +/** + * nand_get_device - [GENERIC] Get chip for selected access + * @this:	the nand chip descriptor + * @mtd:	MTD device structure + * @new_state:	the state which is requested + * + * Get the device and lock it for exclusive access + */ +/* XXX U-BOOT XXX */ +#if 0 +static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) +{ +	struct nand_chip *active = this; + +	DECLARE_WAITQUEUE (wait, current); + +	/* +	 * Grab the lock and see if the device is available +	*/ +retry: +	/* Hardware controller shared among independend devices */ +	if (this->controller) { +		spin_lock (&this->controller->lock); +		if (this->controller->active) +			active = this->controller->active; +		else +			this->controller->active = this; +		spin_unlock (&this->controller->lock); +	} + +	if (active == this) { +		spin_lock (&this->chip_lock); +		if (this->state == FL_READY) { +			this->state = new_state; +			spin_unlock (&this->chip_lock); +			return; +		} +	} +	set_current_state (TASK_UNINTERRUPTIBLE); +	add_wait_queue (&active->wq, &wait); +	spin_unlock (&active->chip_lock); +	schedule (); +	remove_wait_queue (&active->wq, &wait); +	goto retry; +} +#else +static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) {} +#endif + +/** + * nand_wait - [DEFAULT]  wait until the command is done + * @mtd:	MTD device structure + * @this:	NAND chip structure + * @state:	state to select the max. timeout value + * + * Wait for command done. This applies to erase and program only + * Erase can take up to 400ms and program up to 20ms according to + * general NAND and SmartMedia specs + * +*/ +/* XXX U-BOOT XXX */ +#if 0 +static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state) +{ +	unsigned long	timeo = jiffies; +	int	status; + +	if (state == FL_ERASING) +		 timeo += (HZ * 400) / 1000; +	else +		 timeo += (HZ * 20) / 1000; + +	/* Apply this short delay always to ensure that we do wait tWB in +	 * any case on any machine. */ +	ndelay (100); + +	if ((state == FL_ERASING) && (this->options & NAND_IS_AND)) +		this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1); +	else +		this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1); + +	while (time_before(jiffies, timeo)) { +		/* Check, if we were interrupted */ +		if (this->state != state) +			return 0; + +		if (this->dev_ready) { +			if (this->dev_ready(mtd)) +				break; +		} else { +			if (this->read_byte(mtd) & NAND_STATUS_READY) +				break; +		} +		yield (); +	} +	status = (int) this->read_byte(mtd); +	return status; + +	return 0; +} +#else +static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state) +{ +	unsigned long	timeo; + +	if (state == FL_ERASING) +		timeo = CFG_HZ * 400; +	else +		timeo = CFG_HZ * 20; + +	if ((state == FL_ERASING) && (this->options & NAND_IS_AND)) +		this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1); +	else +		this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); + +	reset_timer(); + +	while (1) { +		if (get_timer(0) > timeo) { +			printf("Timeout!"); +			return 0; +			} + +		if (this->dev_ready) { +			if (this->dev_ready(mtd)) +				break; +		} else { +			if (this->read_byte(mtd) & NAND_STATUS_READY) +				break; +		} +	} + +	/* XXX nand device 1 on dave (PPChameleonEVB) needs more time */ +	reset_timer(); +	while (get_timer(0) < 10); + +	return this->read_byte(mtd); +} +#endif + +/** + * nand_write_page - [GENERIC] write one page + * @mtd:	MTD device structure + * @this:	NAND chip structure + * @page: 	startpage inside the chip, must be called with (page & this->pagemask) + * @oob_buf:	out of band data buffer + * @oobsel:	out of band selecttion structre + * @cached:	1 = enable cached programming if supported by chip + * + * Nand_page_program function is used for write and writev ! + * This function will always program a full page of data + * If you call it with a non page aligned buffer, you're lost :) + * + * Cached programming is not supported yet. + */ +static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, +	u_char *oob_buf,  struct nand_oobinfo *oobsel, int cached) +{ +	int 	i, status; +	u_char	ecc_code[32]; +	int	eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE; +	int  	*oob_config = oobsel->eccpos; +	int	datidx = 0, eccidx = 0, eccsteps = this->eccsteps; +	int	eccbytes = 0; + +	/* FIXME: Enable cached programming */ +	cached = 0; + +	/* Send command to begin auto page programming */ +	this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page); + +	/* Write out complete page of data, take care of eccmode */ +	switch (eccmode) { +	/* No ecc, write all */ +	case NAND_ECC_NONE: +		printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n"); +		this->write_buf(mtd, this->data_poi, mtd->oobblock); +		break; + +	/* Software ecc 3/256, write all */ +	case NAND_ECC_SOFT: +		for (; eccsteps; eccsteps--) { +			this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code); +			for (i = 0; i < 3; i++, eccidx++) +				oob_buf[oob_config[eccidx]] = ecc_code[i]; +			datidx += this->eccsize; +		} +		this->write_buf(mtd, this->data_poi, mtd->oobblock); +		break; +	default: +		eccbytes = this->eccbytes; +		for (; eccsteps; eccsteps--) { +			/* enable hardware ecc logic for write */ +			this->enable_hwecc(mtd, NAND_ECC_WRITE); +			this->write_buf(mtd, &this->data_poi[datidx], this->eccsize); +			this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code); +			for (i = 0; i < eccbytes; i++, eccidx++) +				oob_buf[oob_config[eccidx]] = ecc_code[i]; +			/* If the hardware ecc provides syndromes then +			 * the ecc code must be written immidiately after +			 * the data bytes (words) */ +			if (this->options & NAND_HWECC_SYNDROME) +				this->write_buf(mtd, ecc_code, eccbytes); +			datidx += this->eccsize; +		} +		break; +	} + +	/* Write out OOB data */ +	if (this->options & NAND_HWECC_SYNDROME) +		this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes); +	else +		this->write_buf(mtd, oob_buf, mtd->oobsize); + +	/* Send command to actually program the data */ +	this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1); + +	if (!cached) { +		/* call wait ready function */ +		status = this->waitfunc (mtd, this, FL_WRITING); +		/* See if device thinks it succeeded */ +		if (status & 0x01) { +			DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page); +			return -EIO; +		} +	} else { +		/* FIXME: Implement cached programming ! */ +		/* wait until cache is ready*/ +		/* status = this->waitfunc (mtd, this, FL_CACHEDRPG); */ +	} +	return 0; +} + +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE +/** + * nand_verify_pages - [GENERIC] verify the chip contents after a write + * @mtd:	MTD device structure + * @this:	NAND chip structure + * @page: 	startpage inside the chip, must be called with (page & this->pagemask) + * @numpages:	number of pages to verify + * @oob_buf:	out of band data buffer + * @oobsel:	out of band selecttion structre + * @chipnr:	number of the current chip + * @oobmode:	1 = full buffer verify, 0 = ecc only + * + * The NAND device assumes that it is always writing to a cleanly erased page. + * Hence, it performs its internal write verification only on bits that + * transitioned from 1 to 0. The device does NOT verify the whole page on a + * byte by byte basis. It is possible that the page was not completely erased + * or the page is becoming unusable due to wear. The read with ECC would catch + * the error later when the ECC page check fails, but we would rather catch + * it early in the page write stage. Better to write no data than invalid data. + */ +static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, +	u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode) +{ +	int 	i, j, datidx = 0, oobofs = 0, res = -EIO; +	int	eccsteps = this->eccsteps; +	int	hweccbytes; +	u_char 	oobdata[64]; + +	hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0; + +	/* Send command to read back the first page */ +	this->cmdfunc (mtd, NAND_CMD_READ0, 0, page); + +	for(;;) { +		for (j = 0; j < eccsteps; j++) { +			/* Loop through and verify the data */ +			if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) { +				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); +				goto out; +			} +			datidx += mtd->eccsize; +			/* Have we a hw generator layout ? */ +			if (!hweccbytes) +				continue; +			if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) { +				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); +				goto out; +			} +			oobofs += hweccbytes; +		} + +		/* check, if we must compare all data or if we just have to +		 * compare the ecc bytes +		 */ +		if (oobmode) { +			if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) { +				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); +				goto out; +			} +		} else { +			/* Read always, else autoincrement fails */ +			this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps); + +			if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) { +				int ecccnt = oobsel->eccbytes; + +				for (i = 0; i < ecccnt; i++) { +					int idx = oobsel->eccpos[i]; +					if (oobdata[idx] != oob_buf[oobofs + idx] ) { +						DEBUG (MTD_DEBUG_LEVEL0, +					       	"%s: Failed ECC write " +						"verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i); +						goto out; +					} +				} +			} +		} +		oobofs += mtd->oobsize - hweccbytes * eccsteps; +		page++; +		numpages--; + +		/* Apply delay or wait for ready/busy pin +		 * Do this before the AUTOINCR check, so no problems +		 * arise if a chip which does auto increment +		 * is marked as NOAUTOINCR by the board driver. +		 * Do this also before returning, so the chip is +		 * ready for the next command. +		*/ +		if (!this->dev_ready) +			udelay (this->chip_delay); +		else +			while (!this->dev_ready(mtd)); + +		/* All done, return happy */ +		if (!numpages) +			return 0; + + +		/* Check, if the chip supports auto page increment */ +		if (!NAND_CANAUTOINCR(this)) +			this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page); +	} +	/* +	 * Terminate the read command. We come here in case of an error +	 * So we must issue a reset command. +	 */ +out: +	this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1); +	return res; +} +#endif + +/** + * nand_read - [MTD Interface] MTD compability function for nand_read_ecc + * @mtd:	MTD device structure + * @from:	offset to read from + * @len:	number of bytes to read + * @retlen:	pointer to variable to store the number of read bytes + * @buf:	the databuffer to put data + * + * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL +*/ +static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) +{ +	return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL); +} + + +/** + * nand_read_ecc - [MTD Interface] Read data with ECC + * @mtd:	MTD device structure + * @from:	offset to read from + * @len:	number of bytes to read + * @retlen:	pointer to variable to store the number of read bytes + * @buf:	the databuffer to put data + * @oob_buf:	filesystem supplied oob data buffer + * @oobsel:	oob selection structure + * + * NAND read with ECC + */ +static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, +			  size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel) +{ +	int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1; +	int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0; +	struct nand_chip *this = mtd->priv; +	u_char *data_poi, *oob_data = oob_buf; +	u_char ecc_calc[32]; +	u_char ecc_code[32]; +	int eccmode, eccsteps; +	int	*oob_config, datidx; +	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; +	int	eccbytes; +	int	compareecc = 1; +	int	oobreadlen; + + +	DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); + +	/* Do not allow reads past end of device */ +	if ((from + len) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n"); +		*retlen = 0; +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd ,FL_READING); + +	/* use userspace supplied oobinfo, if zero */ +	if (oobsel == NULL) +		oobsel = &mtd->oobinfo; + +	/* Autoplace of oob data ? Use the default placement scheme */ +	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) +		oobsel = this->autooob; + +	eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE; +	oob_config = oobsel->eccpos; + +	/* Select the NAND device */ +	chipnr = (int)(from >> this->chip_shift); +	this->select_chip(mtd, chipnr); + +	/* First we calculate the starting page */ +	realpage = (int) (from >> this->page_shift); +	page = realpage & this->pagemask; + +	/* Get raw starting column */ +	col = from & (mtd->oobblock - 1); + +	end = mtd->oobblock; +	ecc = this->eccsize; +	eccbytes = this->eccbytes; + +	if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME)) +		compareecc = 0; + +	oobreadlen = mtd->oobsize; +	if (this->options & NAND_HWECC_SYNDROME) +		oobreadlen -= oobsel->eccbytes; + +	/* Loop until all data read */ +	while (read < len) { + +		int aligned = (!col && (len - read) >= end); +		/* +		 * If the read is not page aligned, we have to read into data buffer +		 * due to ecc, else we read into return buffer direct +		 */ +		if (aligned) +			data_poi = &buf[read]; +		else +			data_poi = this->data_buf; + +		/* Check, if we have this page in the buffer +		 * +		 * FIXME: Make it work when we must provide oob data too, +		 * check the usage of data_buf oob field +		 */ +		if (realpage == this->pagebuf && !oob_buf) { +			/* aligned read ? */ +			if (aligned) +				memcpy (data_poi, this->data_buf, end); +			goto readdata; +		} + +		/* Check, if we must send the read command */ +		if (sndcmd) { +			this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page); +			sndcmd = 0; +		} + +		/* get oob area, if we have no oob buffer from fs-driver */ +		if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE || +			oobsel->useecc == MTD_NANDECC_AUTOPL_USR) +			oob_data = &this->data_buf[end]; + +		eccsteps = this->eccsteps; + +		switch (eccmode) { +		case NAND_ECC_NONE: {	/* No ECC, Read in a page */ +/* XXX U-BOOT XXX */ +#if 0 +			static unsigned long lastwhinge = 0; +			if ((lastwhinge / HZ) != (jiffies / HZ)) { +				printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n"); +				lastwhinge = jiffies; +			} +#else +			puts("Reading data from NAND FLASH without ECC is not recommended\n"); +#endif +			this->read_buf(mtd, data_poi, end); +			break; +		} + +		case NAND_ECC_SOFT:	/* Software ECC 3/256: Read in a page + oob data */ +			this->read_buf(mtd, data_poi, end); +			for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc) +				this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]); +			break; + +		default: +			for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) { +				this->enable_hwecc(mtd, NAND_ECC_READ); +				this->read_buf(mtd, &data_poi[datidx], ecc); + +				/* HW ecc with syndrome calculation must read the +				 * syndrome from flash immidiately after the data */ +				if (!compareecc) { +					/* Some hw ecc generators need to know when the +					 * syndrome is read from flash */ +					this->enable_hwecc(mtd, NAND_ECC_READSYN); +					this->read_buf(mtd, &oob_data[i], eccbytes); +					/* We calc error correction directly, it checks the hw +					 * generator for an error, reads back the syndrome and +					 * does the error correction on the fly */ +					if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) { +						DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " +							"Failed ECC read, page 0x%08x on chip %d\n", page, chipnr); +						ecc_failed++; +					} +				} else { +					this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]); +				} +			} +			break; +		} + +		/* read oobdata */ +		this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen); + +		/* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */ +		if (!compareecc) +			goto readoob; + +		/* Pick the ECC bytes out of the oob data */ +		for (j = 0; j < oobsel->eccbytes; j++) +			ecc_code[j] = oob_data[oob_config[j]]; + +		/* correct data, if neccecary */ +		for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) { +			ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]); + +			/* Get next chunk of ecc bytes */ +			j += eccbytes; + +			/* Check, if we have a fs supplied oob-buffer, +			 * This is the legacy mode. Used by YAFFS1 +			 * Should go away some day +			 */ +			if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) { +				int *p = (int *)(&oob_data[mtd->oobsize]); +				p[i] = ecc_status; +			} + +			if (ecc_status == -1) { +				DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page); +				ecc_failed++; +			} +		} + +	readoob: +		/* check, if we have a fs supplied oob-buffer */ +		if (oob_buf) { +			/* without autoplace. Legacy mode used by YAFFS1 */ +			switch(oobsel->useecc) { +			case MTD_NANDECC_AUTOPLACE: +			case MTD_NANDECC_AUTOPL_USR: +				/* Walk through the autoplace chunks */ +				for (i = 0, j = 0; j < mtd->oobavail; i++) { +					int from = oobsel->oobfree[i][0]; +					int num = oobsel->oobfree[i][1]; +					memcpy(&oob_buf[oob], &oob_data[from], num); +					j+= num; +				} +				oob += mtd->oobavail; +				break; +			case MTD_NANDECC_PLACE: +				/* YAFFS1 legacy mode */ +				oob_data += this->eccsteps * sizeof (int); +			default: +				oob_data += mtd->oobsize; +			} +		} +	readdata: +		/* Partial page read, transfer data into fs buffer */ +		if (!aligned) { +			for (j = col; j < end && read < len; j++) +				buf[read++] = data_poi[j]; +			this->pagebuf = realpage; +		} else +			read += mtd->oobblock; + +		/* Apply delay or wait for ready/busy pin +		 * Do this before the AUTOINCR check, so no problems +		 * arise if a chip which does auto increment +		 * is marked as NOAUTOINCR by the board driver. +		*/ +		if (!this->dev_ready) +			udelay (this->chip_delay); +		else +			while (!this->dev_ready(mtd)); + +		if (read == len) +			break; + +		/* For subsequent reads align to page boundary. */ +		col = 0; +		/* Increment page address */ +		realpage++; + +		page = realpage & this->pagemask; +		/* Check, if we cross a chip boundary */ +		if (!page) { +			chipnr++; +			this->select_chip(mtd, -1); +			this->select_chip(mtd, chipnr); +		} +		/* Check, if the chip supports auto page increment +		 * or if we have hit a block boundary. +		*/ +		if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) +			sndcmd = 1; +	} + +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	/* +	 * Return success, if no ECC failures, else -EBADMSG +	 * fs driver will take care of that, because +	 * retlen == desired len and result == -EBADMSG +	 */ +	*retlen = read; +	return ecc_failed ? -EBADMSG : 0; +} + +/** + * nand_read_oob - [MTD Interface] NAND read out-of-band + * @mtd:	MTD device structure + * @from:	offset to read from + * @len:	number of bytes to read + * @retlen:	pointer to variable to store the number of read bytes + * @buf:	the databuffer to put data + * + * NAND read out-of-band data from the spare area + */ +static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) +{ +	int i, col, page, chipnr; +	struct nand_chip *this = mtd->priv; +	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; + +	DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); + +	/* Shift to get page */ +	page = (int)(from >> this->page_shift); +	chipnr = (int)(from >> this->chip_shift); + +	/* Mask to get column */ +	col = from & (mtd->oobsize - 1); + +	/* Initialize return length value */ +	*retlen = 0; + +	/* Do not allow reads past end of device */ +	if ((from + len) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n"); +		*retlen = 0; +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd , FL_READING); + +	/* Select the NAND device */ +	this->select_chip(mtd, chipnr); + +	/* Send the read command */ +	this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask); +	/* +	 * Read the data, if we read more than one page +	 * oob data, let the device transfer the data ! +	 */ +	i = 0; +	while (i < len) { +		int thislen = mtd->oobsize - col; +		thislen = min_t(int, thislen, len); +		this->read_buf(mtd, &buf[i], thislen); +		i += thislen; + +		/* Apply delay or wait for ready/busy pin +		 * Do this before the AUTOINCR check, so no problems +		 * arise if a chip which does auto increment +		 * is marked as NOAUTOINCR by the board driver. +		*/ +		if (!this->dev_ready) +			udelay (this->chip_delay); +		else +			while (!this->dev_ready(mtd)); + +		/* Read more ? */ +		if (i < len) { +			page++; +			col = 0; + +			/* Check, if we cross a chip boundary */ +			if (!(page & this->pagemask)) { +				chipnr++; +				this->select_chip(mtd, -1); +				this->select_chip(mtd, chipnr); +			} + +			/* Check, if the chip supports auto page increment +			 * or if we have hit a block boundary. +			*/ +			if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) { +				/* For subsequent page reads set offset to 0 */ +				this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask); +			} +		} +	} + +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	/* Return happy */ +	*retlen = len; +	return 0; +} + +/** + * nand_read_raw - [GENERIC] Read raw data including oob into buffer + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @from:	offset to read from + * @len:	number of bytes to read + * @ooblen:	number of oob data bytes to read + * + * Read raw data including oob into buffer + */ +int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen) +{ +	struct nand_chip *this = mtd->priv; +	int page = (int) (from >> this->page_shift); +	int chip = (int) (from >> this->chip_shift); +	int sndcmd = 1; +	int cnt = 0; +	int pagesize = mtd->oobblock + mtd->oobsize; +	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; + +	/* Do not allow reads past end of device */ +	if ((from + len) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n"); +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd , FL_READING); + +	this->select_chip (mtd, chip); + +	/* Add requested oob length */ +	len += ooblen; + +	while (len) { +		if (sndcmd) +			this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask); +		sndcmd = 0; + +		this->read_buf (mtd, &buf[cnt], pagesize); + +		len -= pagesize; +		cnt += pagesize; +		page++; + +		if (!this->dev_ready) +			udelay (this->chip_delay); +		else +			while (!this->dev_ready(mtd)); + +		/* Check, if the chip supports auto page increment */ +		if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) +			sndcmd = 1; +	} + +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); +	return 0; +} + + +/** + * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer + * @mtd:	MTD device structure + * @fsbuf:	buffer given by fs driver + * @oobsel:	out of band selection structre + * @autoplace:	1 = place given buffer into the oob bytes + * @numpages:	number of pages to prepare + * + * Return: + * 1. Filesystem buffer available and autoplacement is off, + *    return filesystem buffer + * 2. No filesystem buffer or autoplace is off, return internal + *    buffer + * 3. Filesystem buffer is given and autoplace selected + *    put data from fs buffer into internal buffer and + *    retrun internal buffer + * + * Note: The internal buffer is filled with 0xff. This must + * be done only once, when no autoplacement happens + * Autoplacement sets the buffer dirty flag, which + * forces the 0xff fill before using the buffer again. + * +*/ +static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel, +		int autoplace, int numpages) +{ +	struct nand_chip *this = mtd->priv; +	int i, len, ofs; + +	/* Zero copy fs supplied buffer */ +	if (fsbuf && !autoplace) +		return fsbuf; + +	/* Check, if the buffer must be filled with ff again */ +	if (this->oobdirty) { +		memset (this->oob_buf, 0xff, +			mtd->oobsize << (this->phys_erase_shift - this->page_shift)); +		this->oobdirty = 0; +	} + +	/* If we have no autoplacement or no fs buffer use the internal one */ +	if (!autoplace || !fsbuf) +		return this->oob_buf; + +	/* Walk through the pages and place the data */ +	this->oobdirty = 1; +	ofs = 0; +	while (numpages--) { +		for (i = 0, len = 0; len < mtd->oobavail; i++) { +			int to = ofs + oobsel->oobfree[i][0]; +			int num = oobsel->oobfree[i][1]; +			memcpy (&this->oob_buf[to], fsbuf, num); +			len += num; +			fsbuf += num; +		} +		ofs += mtd->oobavail; +	} +	return this->oob_buf; +} + +#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0 + +/** + * nand_write - [MTD Interface] compability function for nand_write_ecc + * @mtd:	MTD device structure + * @to:		offset to write to + * @len:	number of bytes to write + * @retlen:	pointer to variable to store the number of written bytes + * @buf:	the data to write + * + * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL + * +*/ +static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) +{ +	return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL)); +} + +/** + * nand_write_ecc - [MTD Interface] NAND write with ECC + * @mtd:	MTD device structure + * @to:		offset to write to + * @len:	number of bytes to write + * @retlen:	pointer to variable to store the number of written bytes + * @buf:	the data to write + * @eccbuf:	filesystem supplied oob data buffer + * @oobsel:	oob selection structure + * + * NAND write with ECC + */ +static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, +			   size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel) +{ +	int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr; +	int autoplace = 0, numpages, totalpages; +	struct nand_chip *this = mtd->priv; +	u_char *oobbuf, *bufstart; +	int	ppblock = (1 << (this->phys_erase_shift - this->page_shift)); + +	DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); + +	/* Initialize retlen, in case of early exit */ +	*retlen = 0; + +	/* Do not allow write past end of device */ +	if ((to + len) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n"); +		return -EINVAL; +	} + +	/* reject writes, which are not page aligned */ +	if (NOTALIGNED (to) || NOTALIGNED(len)) { +		printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n"); +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd, FL_WRITING); + +	/* Calculate chipnr */ +	chipnr = (int)(to >> this->chip_shift); +	/* Select the NAND device */ +	this->select_chip(mtd, chipnr); + +	/* Check, if it is write protected */ +	if (nand_check_wp(mtd)) +		goto out; + +	/* if oobsel is NULL, use chip defaults */ +	if (oobsel == NULL) +		oobsel = &mtd->oobinfo; + +	/* Autoplace of oob data ? Use the default placement scheme */ +	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { +		oobsel = this->autooob; +		autoplace = 1; +	} +	if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR) +		autoplace = 1; + +	/* Setup variables and oob buffer */ +	totalpages = len >> this->page_shift; +	page = (int) (to >> this->page_shift); +	/* Invalidate the page cache, if we write to the cached page */ +	if (page <= this->pagebuf && this->pagebuf < (page + totalpages)) +		this->pagebuf = -1; + +	/* Set it relative to chip */ +	page &= this->pagemask; +	startpage = page; +	/* Calc number of pages we can write in one go */ +	numpages = min (ppblock - (startpage  & (ppblock - 1)), totalpages); +	oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages); +	bufstart = (u_char *)buf; + +	/* Loop until all data is written */ +	while (written < len) { + +		this->data_poi = (u_char*) &buf[written]; +		/* Write one page. If this is the last page to write +		 * or the last page in this block, then use the +		 * real pageprogram command, else select cached programming +		 * if supported by the chip. +		 */ +		ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0)); +		if (ret) { +			DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret); +			goto out; +		} +		/* Next oob page */ +		oob += mtd->oobsize; +		/* Update written bytes count */ +		written += mtd->oobblock; +		if (written == len) +			goto cmp; + +		/* Increment page address */ +		page++; + +		/* Have we hit a block boundary ? Then we have to verify and +		 * if verify is ok, we have to setup the oob buffer for +		 * the next pages. +		*/ +		if (!(page & (ppblock - 1))){ +			int ofs; +			this->data_poi = bufstart; +			ret = nand_verify_pages (mtd, this, startpage, +				page - startpage, +				oobbuf, oobsel, chipnr, (eccbuf != NULL)); +			if (ret) { +				DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret); +				goto out; +			} +			*retlen = written; + +			ofs = autoplace ? mtd->oobavail : mtd->oobsize; +			if (eccbuf) +				eccbuf += (page - startpage) * ofs; +			totalpages -= page - startpage; +			numpages = min (totalpages, ppblock); +			page &= this->pagemask; +			startpage = page; +			oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, +					autoplace, numpages); +			/* Check, if we cross a chip boundary */ +			if (!page) { +				chipnr++; +				this->select_chip(mtd, -1); +				this->select_chip(mtd, chipnr); +			} +		} +	} +	/* Verify the remaining pages */ +cmp: +	this->data_poi = bufstart; + 	ret = nand_verify_pages (mtd, this, startpage, totalpages, +		oobbuf, oobsel, chipnr, (eccbuf != NULL)); +	if (!ret) +		*retlen = written; +	else +		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret); + +out: +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	return ret; +} + + +/** + * nand_write_oob - [MTD Interface] NAND write out-of-band + * @mtd:	MTD device structure + * @to:		offset to write to + * @len:	number of bytes to write + * @retlen:	pointer to variable to store the number of written bytes + * @buf:	the data to write + * + * NAND write out-of-band + */ +static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) +{ +	int column, page, status, ret = -EIO, chipnr; +	struct nand_chip *this = mtd->priv; + +	DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); + +	/* Shift to get page */ +	page = (int) (to >> this->page_shift); +	chipnr = (int) (to >> this->chip_shift); + +	/* Mask to get column */ +	column = to & (mtd->oobsize - 1); + +	/* Initialize return length value */ +	*retlen = 0; + +	/* Do not allow write past end of page */ +	if ((column + len) > mtd->oobsize) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n"); +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd, FL_WRITING); + +	/* Select the NAND device */ +	this->select_chip(mtd, chipnr); + +	/* Reset the chip. Some chips (like the Toshiba TC5832DC found +	   in one of my DiskOnChip 2000 test units) will clear the whole +	   data page too if we don't do this. I have no clue why, but +	   I seem to have 'fixed' it in the doc2000 driver in +	   August 1999.  dwmw2. */ +	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + +	/* Check, if it is write protected */ +	if (nand_check_wp(mtd)) +		goto out; + +	/* Invalidate the page cache, if we write to the cached page */ +	if (page == this->pagebuf) +		this->pagebuf = -1; + +	if (NAND_MUST_PAD(this)) { +		/* Write out desired data */ +		this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask); +		/* prepad 0xff for partial programming */ +		this->write_buf(mtd, ffchars, column); +		/* write data */ +		this->write_buf(mtd, buf, len); +		/* postpad 0xff for partial programming */ +		this->write_buf(mtd, ffchars, mtd->oobsize - (len+column)); +	} else { +		/* Write out desired data */ +		this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask); +		/* write data */ +		this->write_buf(mtd, buf, len); +	} +	/* Send command to program the OOB data */ +	this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1); + +	status = this->waitfunc (mtd, this, FL_WRITING); + +	/* See if device thinks it succeeded */ +	if (status & 0x01) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page); +		ret = -EIO; +		goto out; +	} +	/* Return happy */ +	*retlen = len; + +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE +	/* Send command to read back the data */ +	this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask); + +	if (this->verify_buf(mtd, buf, len)) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page); +		ret = -EIO; +		goto out; +	} +#endif +	ret = 0; +out: +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	return ret; +} + +/* XXX U-BOOT XXX */ +#if 0 +/** + * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc + * @mtd:	MTD device structure + * @vecs:	the iovectors to write + * @count:	number of vectors + * @to:		offset to write to + * @retlen:	pointer to variable to store the number of written bytes + * + * NAND write with kvec. This just calls the ecc function + */ +static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, +		loff_t to, size_t * retlen) +{ +	return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL)); +} + +/** + * nand_writev_ecc - [MTD Interface] write with iovec with ecc + * @mtd:	MTD device structure + * @vecs:	the iovectors to write + * @count:	number of vectors + * @to:		offset to write to + * @retlen:	pointer to variable to store the number of written bytes + * @eccbuf:	filesystem supplied oob data buffer + * @oobsel:	oob selection structure + * + * NAND write with iovec with ecc + */ +static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, +		loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel) +{ +	int i, page, len, total_len, ret = -EIO, written = 0, chipnr; +	int oob, numpages, autoplace = 0, startpage; +	struct nand_chip *this = mtd->priv; +	int	ppblock = (1 << (this->phys_erase_shift - this->page_shift)); +	u_char *oobbuf, *bufstart; + +	/* Preset written len for early exit */ +	*retlen = 0; + +	/* Calculate total length of data */ +	total_len = 0; +	for (i = 0; i < count; i++) +		total_len += (int) vecs[i].iov_len; + +	DEBUG (MTD_DEBUG_LEVEL3, +	       "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count); + +	/* Do not allow write past end of page */ +	if ((to + total_len) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n"); +		return -EINVAL; +	} + +	/* reject writes, which are not page aligned */ +	if (NOTALIGNED (to) || NOTALIGNED(total_len)) { +		printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n"); +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd, FL_WRITING); + +	/* Get the current chip-nr */ +	chipnr = (int) (to >> this->chip_shift); +	/* Select the NAND device */ +	this->select_chip(mtd, chipnr); + +	/* Check, if it is write protected */ +	if (nand_check_wp(mtd)) +		goto out; + +	/* if oobsel is NULL, use chip defaults */ +	if (oobsel == NULL) +		oobsel = &mtd->oobinfo; + +	/* Autoplace of oob data ? Use the default placement scheme */ +	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { +		oobsel = this->autooob; +		autoplace = 1; +	} +	if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR) +		autoplace = 1; + +	/* Setup start page */ +	page = (int) (to >> this->page_shift); +	/* Invalidate the page cache, if we write to the cached page */ +	if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift)) +		this->pagebuf = -1; + +	startpage = page & this->pagemask; + +	/* Loop until all kvec' data has been written */ +	len = 0; +	while (count) { +		/* If the given tuple is >= pagesize then +		 * write it out from the iov +		 */ +		if ((vecs->iov_len - len) >= mtd->oobblock) { +			/* Calc number of pages we can write +			 * out of this iov in one go */ +			numpages = (vecs->iov_len - len) >> this->page_shift; +			/* Do not cross block boundaries */ +			numpages = min (ppblock - (startpage & (ppblock - 1)), numpages); +			oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages); +			bufstart = (u_char *)vecs->iov_base; +			bufstart += len; +			this->data_poi = bufstart; +			oob = 0; +			for (i = 1; i <= numpages; i++) { +				/* Write one page. If this is the last page to write +				 * then use the real pageprogram command, else select +				 * cached programming if supported by the chip. +				 */ +				ret = nand_write_page (mtd, this, page & this->pagemask, +					&oobbuf[oob], oobsel, i != numpages); +				if (ret) +					goto out; +				this->data_poi += mtd->oobblock; +				len += mtd->oobblock; +				oob += mtd->oobsize; +				page++; +			} +			/* Check, if we have to switch to the next tuple */ +			if (len >= (int) vecs->iov_len) { +				vecs++; +				len = 0; +				count--; +			} +		} else { +			/* We must use the internal buffer, read data out of each +			 * tuple until we have a full page to write +			 */ +			int cnt = 0; +			while (cnt < mtd->oobblock) { +				if (vecs->iov_base != NULL && vecs->iov_len) +					this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++]; +				/* Check, if we have to switch to the next tuple */ +				if (len >= (int) vecs->iov_len) { +					vecs++; +					len = 0; +					count--; +				} +			} +			this->pagebuf = page; +			this->data_poi = this->data_buf; +			bufstart = this->data_poi; +			numpages = 1; +			oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages); +			ret = nand_write_page (mtd, this, page & this->pagemask, +				oobbuf, oobsel, 0); +			if (ret) +				goto out; +			page++; +		} + +		this->data_poi = bufstart; +		ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0); +		if (ret) +			goto out; + +		written += mtd->oobblock * numpages; +		/* All done ? */ +		if (!count) +			break; + +		startpage = page & this->pagemask; +		/* Check, if we cross a chip boundary */ +		if (!startpage) { +			chipnr++; +			this->select_chip(mtd, -1); +			this->select_chip(mtd, chipnr); +		} +	} +	ret = 0; +out: +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	*retlen = written; +	return ret; +} +#endif + +/** + * single_erease_cmd - [GENERIC] NAND standard block erase command function + * @mtd:	MTD device structure + * @page:	the page address of the block which will be erased + * + * Standard erase command for NAND chips + */ +static void single_erase_cmd (struct mtd_info *mtd, int page) +{ +	struct nand_chip *this = mtd->priv; +	/* Send commands to erase a block */ +	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page); +	this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1); +} + +/** + * multi_erease_cmd - [GENERIC] AND specific block erase command function + * @mtd:	MTD device structure + * @page:	the page address of the block which will be erased + * + * AND multi block erase command function + * Erase 4 consecutive blocks + */ +static void multi_erase_cmd (struct mtd_info *mtd, int page) +{ +	struct nand_chip *this = mtd->priv; +	/* Send commands to erase a block */ +	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); +	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); +	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); +	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page); +	this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1); +} + +/** + * nand_erase - [MTD Interface] erase block(s) + * @mtd:	MTD device structure + * @instr:	erase instruction + * + * Erase one ore more blocks + */ +static int nand_erase (struct mtd_info *mtd, struct erase_info *instr) +{ +	return nand_erase_nand (mtd, instr, 0); +} + +/** + * nand_erase_intern - [NAND Interface] erase block(s) + * @mtd:	MTD device structure + * @instr:	erase instruction + * @allowbbt:	allow erasing the bbt area + * + * Erase one ore more blocks + */ +int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt) +{ +	int page, len, status, pages_per_block, ret, chipnr; +	struct nand_chip *this = mtd->priv; + +	DEBUG (MTD_DEBUG_LEVEL3, +	       "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len); + +	/* Start address must align on block boundary */ +	if (instr->addr & ((1 << this->phys_erase_shift) - 1)) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n"); +		return -EINVAL; +	} + +	/* Length must align on block boundary */ +	if (instr->len & ((1 << this->phys_erase_shift) - 1)) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n"); +		return -EINVAL; +	} + +	/* Do not allow erase past end of device */ +	if ((instr->len + instr->addr) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n"); +		return -EINVAL; +	} + +	instr->fail_addr = 0xffffffff; + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd, FL_ERASING); + +	/* Shift to get first page */ +	page = (int) (instr->addr >> this->page_shift); +	chipnr = (int) (instr->addr >> this->chip_shift); + +	/* Calculate pages in each block */ +	pages_per_block = 1 << (this->phys_erase_shift - this->page_shift); + +	/* Select the NAND device */ +	this->select_chip(mtd, chipnr); + +	/* Check the WP bit */ +	/* Check, if it is write protected */ +	if (nand_check_wp(mtd)) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n"); +		instr->state = MTD_ERASE_FAILED; +		goto erase_exit; +	} + +	/* Loop through the pages */ +	len = instr->len; + +	instr->state = MTD_ERASING; + +	while (len) { +		/* Check if we have a bad block, we do not erase bad blocks ! */ +		if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) { +			printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page); +			instr->state = MTD_ERASE_FAILED; +			goto erase_exit; +		} + +		/* Invalidate the page cache, if we erase the block which contains +		   the current cached page */ +		if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block)) +			this->pagebuf = -1; + +		this->erase_cmd (mtd, page & this->pagemask); + +		status = this->waitfunc (mtd, this, FL_ERASING); + +		/* See if block erase succeeded */ +		if (status & 0x01) { +			DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page); +			instr->state = MTD_ERASE_FAILED; +			instr->fail_addr = (page << this->page_shift); +			goto erase_exit; +		} + +		/* Increment page address and decrement length */ +		len -= (1 << this->phys_erase_shift); +		page += pages_per_block; + +		/* Check, if we cross a chip boundary */ +		if (len && !(page & this->pagemask)) { +			chipnr++; +			this->select_chip(mtd, -1); +			this->select_chip(mtd, chipnr); +		} +	} +	instr->state = MTD_ERASE_DONE; + +erase_exit: + +	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; +	/* Do call back function */ +	if (!ret) +		mtd_erase_callback(instr); + +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	/* Return more or less happy */ +	return ret; +} + +/** + * nand_sync - [MTD Interface] sync + * @mtd:	MTD device structure + * + * Sync is actually a wait for chip ready function + */ +static void nand_sync (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; + +	DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n"); + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd, FL_SYNCING); +	/* Release it and go back */ +	nand_release_device (mtd); +} + + +/** + * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad + * @mtd:	MTD device structure + * @ofs:	offset relative to mtd start + */ +static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs) +{ +	/* Check for invalid offset */ +	if (ofs > mtd->size) +		return -EINVAL; + +	return nand_block_checkbad (mtd, ofs, 1, 0); +} + +/** + * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad + * @mtd:	MTD device structure + * @ofs:	offset relative to mtd start + */ +static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs) +{ +	struct nand_chip *this = mtd->priv; +	int ret; + +	if ((ret = nand_block_isbad(mtd, ofs))) { +		/* If it was bad already, return success and do nothing. */ +		if (ret > 0) +			return 0; +		return ret; +	} + +	return this->block_markbad(mtd, ofs); +} + +/** + * nand_scan - [NAND Interface] Scan for the NAND device + * @mtd:	MTD device structure + * @maxchips:	Number of chips to scan for + * + * This fills out all the not initialized function pointers + * with the defaults. + * The flash ID is read and the mtd/chip structures are + * filled with the appropriate values. Buffers are allocated if + * they are not provided by the board driver + * + */ +int nand_scan (struct mtd_info *mtd, int maxchips) +{ +	int i, j, nand_maf_id, nand_dev_id, busw; +	struct nand_chip *this = mtd->priv; + +	/* Get buswidth to select the correct functions*/ +	busw = this->options & NAND_BUSWIDTH_16; + +	/* check for proper chip_delay setup, set 20us if not */ +	if (!this->chip_delay) +		this->chip_delay = 20; + +	/* check, if a user supplied command function given */ +	if (this->cmdfunc == NULL) +		this->cmdfunc = nand_command; + +	/* check, if a user supplied wait function given */ +	if (this->waitfunc == NULL) +		this->waitfunc = nand_wait; + +	if (!this->select_chip) +		this->select_chip = nand_select_chip; +	if (!this->write_byte) +		this->write_byte = busw ? nand_write_byte16 : nand_write_byte; +	if (!this->read_byte) +		this->read_byte = busw ? nand_read_byte16 : nand_read_byte; +	if (!this->write_word) +		this->write_word = nand_write_word; +	if (!this->read_word) +		this->read_word = nand_read_word; +	if (!this->block_bad) +		this->block_bad = nand_block_bad; +	if (!this->block_markbad) +		this->block_markbad = nand_default_block_markbad; +	if (!this->write_buf) +		this->write_buf = busw ? nand_write_buf16 : nand_write_buf; +	if (!this->read_buf) +		this->read_buf = busw ? nand_read_buf16 : nand_read_buf; +	if (!this->verify_buf) +		this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; +	if (!this->scan_bbt) +		this->scan_bbt = nand_default_bbt; + +	/* Select the device */ +	this->select_chip(mtd, 0); + +	/* Send the command for reading device ID */ +	this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1); + +	/* Read manufacturer and device IDs */ +	nand_maf_id = this->read_byte(mtd); +	nand_dev_id = this->read_byte(mtd); + +	/* Print and store flash device information */ +	for (i = 0; nand_flash_ids[i].name != NULL; i++) { + +		if (nand_dev_id != nand_flash_ids[i].id) +			continue; + +		if (!mtd->name) mtd->name = nand_flash_ids[i].name; +		this->chipsize = nand_flash_ids[i].chipsize << 20; + +		/* New devices have all the information in additional id bytes */ +		if (!nand_flash_ids[i].pagesize) { +			int extid; +			/* The 3rd id byte contains non relevant data ATM */ +			extid = this->read_byte(mtd); +			/* The 4th id byte is the important one */ +			extid = this->read_byte(mtd); +			/* Calc pagesize */ +			mtd->oobblock = 1024 << (extid & 0x3); +			extid >>= 2; +			/* Calc oobsize */ +			mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512); +			extid >>= 2; +			/* Calc blocksize. Blocksize is multiples of 64KiB */ +			mtd->erasesize = (64 * 1024)  << (extid & 0x03); +			extid >>= 2; +			/* Get buswidth information */ +			busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; + +		} else { +			/* Old devices have this data hardcoded in the +			 * device id table */ +			mtd->erasesize = nand_flash_ids[i].erasesize; +			mtd->oobblock = nand_flash_ids[i].pagesize; +			mtd->oobsize = mtd->oobblock / 32; +			busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16; +		} + +		/* Check, if buswidth is correct. Hardware drivers should set +		 * this correct ! */ +		if (busw != (this->options & NAND_BUSWIDTH_16)) { +			printk (KERN_INFO "NAND device: Manufacturer ID:" +				" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, +				nand_manuf_ids[i].name , mtd->name); +			printk (KERN_WARNING +				"NAND bus width %d instead %d bit\n", +					(this->options & NAND_BUSWIDTH_16) ? 16 : 8, +					busw ? 16 : 8); +			this->select_chip(mtd, -1); +			return 1; +		} + +		/* Calculate the address shift from the page size */ +		this->page_shift = ffs(mtd->oobblock) - 1; +		this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1; +		this->chip_shift = ffs(this->chipsize) - 1; + +		/* Set the bad block position */ +		this->badblockpos = mtd->oobblock > 512 ? +			NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS; + +		/* Get chip options, preserve non chip based options */ +		this->options &= ~NAND_CHIPOPTIONS_MSK; +		this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK; +		/* Set this as a default. Board drivers can override it, if neccecary */ +		this->options |= NAND_NO_AUTOINCR; +		/* Check if this is a not a samsung device. Do not clear the options +		 * for chips which are not having an extended id. +		 */ +		if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize) +			this->options &= ~NAND_SAMSUNG_LP_OPTIONS; + +		/* Check for AND chips with 4 page planes */ +		if (this->options & NAND_4PAGE_ARRAY) +			this->erase_cmd = multi_erase_cmd; +		else +			this->erase_cmd = single_erase_cmd; + +		/* Do not replace user supplied command function ! */ +		if (mtd->oobblock > 512 && this->cmdfunc == nand_command) +			this->cmdfunc = nand_command_lp; + +		/* Try to identify manufacturer */ +		for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { +			if (nand_manuf_ids[j].id == nand_maf_id) +				break; +		} +		break; +	} + +	if (!nand_flash_ids[i].name) { +		printk (KERN_WARNING "No NAND device found!!!\n"); +		this->select_chip(mtd, -1); +		return 1; +	} + +	for (i=1; i < maxchips; i++) { +		this->select_chip(mtd, i); + +		/* Send the command for reading device ID */ +		this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1); + +		/* Read manufacturer and device IDs */ +		if (nand_maf_id != this->read_byte(mtd) || +		    nand_dev_id != this->read_byte(mtd)) +			break; +	} +	if (i > 1) +		printk(KERN_INFO "%d NAND chips detected\n", i); + +	/* Allocate buffers, if neccecary */ +	if (!this->oob_buf) { +		size_t len; +		len = mtd->oobsize << (this->phys_erase_shift - this->page_shift); +		this->oob_buf = kmalloc (len, GFP_KERNEL); +		if (!this->oob_buf) { +			printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n"); +			return -ENOMEM; +		} +		this->options |= NAND_OOBBUF_ALLOC; +	} + +	if (!this->data_buf) { +		size_t len; +		len = mtd->oobblock + mtd->oobsize; +		this->data_buf = kmalloc (len, GFP_KERNEL); +		if (!this->data_buf) { +			if (this->options & NAND_OOBBUF_ALLOC) +				kfree (this->oob_buf); +			printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n"); +			return -ENOMEM; +		} +		this->options |= NAND_DATABUF_ALLOC; +	} + +	/* Store the number of chips and calc total size for mtd */ +	this->numchips = i; +	mtd->size = i * this->chipsize; +	/* Convert chipsize to number of pages per chip -1. */ +	this->pagemask = (this->chipsize >> this->page_shift) - 1; +	/* Preset the internal oob buffer */ +	memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift)); + +	/* If no default placement scheme is given, select an +	 * appropriate one */ +	if (!this->autooob) { +		/* Select the appropriate default oob placement scheme for +		 * placement agnostic filesystems */ +		switch (mtd->oobsize) { +		case 8: +			this->autooob = &nand_oob_8; +			break; +		case 16: +			this->autooob = &nand_oob_16; +			break; +		case 64: +			this->autooob = &nand_oob_64; +			break; +		default: +			printk (KERN_WARNING "No oob scheme defined for oobsize %d\n", +				mtd->oobsize); +/*			BUG(); */ +		} +	} + +	/* The number of bytes available for the filesystem to place fs dependend +	 * oob data */ +	if (this->options & NAND_BUSWIDTH_16) { +		mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2); +		if (this->autooob->eccbytes & 0x01) +			mtd->oobavail--; +	} else +		mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1); + +	/* +	 * check ECC mode, default to software +	 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize +	 * fallback to software ECC +	*/ +	this->eccsize = 256;	/* set default eccsize */ +	this->eccbytes = 3; + +	switch (this->eccmode) { +	case NAND_ECC_HW12_2048: +		if (mtd->oobblock < 2048) { +			printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", +			       mtd->oobblock); +			this->eccmode = NAND_ECC_SOFT; +			this->calculate_ecc = nand_calculate_ecc; +			this->correct_data = nand_correct_data; +		} else +			this->eccsize = 2048; +		break; + +	case NAND_ECC_HW3_512: +	case NAND_ECC_HW6_512: +	case NAND_ECC_HW8_512: +		if (mtd->oobblock == 256) { +			printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n"); +			this->eccmode = NAND_ECC_SOFT; +			this->calculate_ecc = nand_calculate_ecc; +			this->correct_data = nand_correct_data; +		} else +			this->eccsize = 512; /* set eccsize to 512 */ +		break; + +	case NAND_ECC_HW3_256: +		break; + +	case NAND_ECC_NONE: +		printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n"); +		this->eccmode = NAND_ECC_NONE; +		break; + +	case NAND_ECC_SOFT: +		this->calculate_ecc = nand_calculate_ecc; +		this->correct_data = nand_correct_data; +		break; + +	default: +		printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode); +/*		BUG(); */ +	} + +	/* Check hardware ecc function availability and adjust number of ecc bytes per +	 * calculation step +	*/ +	switch (this->eccmode) { +	case NAND_ECC_HW12_2048: +		this->eccbytes += 4; +	case NAND_ECC_HW8_512: +		this->eccbytes += 2; +	case NAND_ECC_HW6_512: +		this->eccbytes += 3; +	case NAND_ECC_HW3_512: +	case NAND_ECC_HW3_256: +		if (this->calculate_ecc && this->correct_data && this->enable_hwecc) +			break; +		printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n"); +/*		BUG();	*/ +	} + +	mtd->eccsize = this->eccsize; + +	/* Set the number of read / write steps for one page to ensure ECC generation */ +	switch (this->eccmode) { +	case NAND_ECC_HW12_2048: +		this->eccsteps = mtd->oobblock / 2048; +		break; +	case NAND_ECC_HW3_512: +	case NAND_ECC_HW6_512: +	case NAND_ECC_HW8_512: +		this->eccsteps = mtd->oobblock / 512; +		break; +	case NAND_ECC_HW3_256: +	case NAND_ECC_SOFT: +		this->eccsteps = mtd->oobblock / 256; +		break; + +	case NAND_ECC_NONE: +		this->eccsteps = 1; +		break; +	} + +/* XXX U-BOOT XXX */ +#if 0 +	/* Initialize state, waitqueue and spinlock */ +	this->state = FL_READY; +	init_waitqueue_head (&this->wq); +	spin_lock_init (&this->chip_lock); +#endif + +	/* De-select the device */ +	this->select_chip(mtd, -1); + +	/* Invalidate the pagebuffer reference */ +	this->pagebuf = -1; + +	/* Fill in remaining MTD driver data */ +	mtd->type = MTD_NANDFLASH; +	mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC; +	mtd->ecctype = MTD_ECC_SW; +	mtd->erase = nand_erase; +	mtd->point = NULL; +	mtd->unpoint = NULL; +	mtd->read = nand_read; +	mtd->write = nand_write; +	mtd->read_ecc = nand_read_ecc; +	mtd->write_ecc = nand_write_ecc; +	mtd->read_oob = nand_read_oob; +	mtd->write_oob = nand_write_oob; +/* XXX U-BOOT XXX */ +#if 0 +	mtd->readv = NULL; +	mtd->writev = nand_writev; +	mtd->writev_ecc = nand_writev_ecc; +#endif +	mtd->sync = nand_sync; +/* XXX U-BOOT XXX */ +#if 0 +	mtd->lock = NULL; +	mtd->unlock = NULL; +	mtd->suspend = NULL; +	mtd->resume = NULL; +#endif +	mtd->block_isbad = nand_block_isbad; +	mtd->block_markbad = nand_block_markbad; + +	/* and make the autooob the default one */ +	memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo)); +/* XXX U-BOOT XXX */ +#if 0 +	mtd->owner = THIS_MODULE; +#endif +	/* Build bad block table */ +	return this->scan_bbt (mtd); +} + +/** + * nand_release - [NAND Interface] Free resources held by the NAND device + * @mtd:	MTD device structure + */ +void nand_release (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; + +#ifdef CONFIG_MTD_PARTITIONS +	/* Deregister partitions */ +	del_mtd_partitions (mtd); +#endif +	/* Deregister the device */ +/* XXX U-BOOT XXX */ +#if 0 +	del_mtd_device (mtd); +#endif +	/* Free bad block table memory, if allocated */ +	if (this->bbt) +		kfree (this->bbt); +	/* Buffer allocated by nand_scan ? */ +	if (this->options & NAND_OOBBUF_ALLOC) +		kfree (this->oob_buf); +	/* Buffer allocated by nand_scan ? */ +	if (this->options & NAND_DATABUF_ALLOC) +		kfree (this->data_buf); +} + +#endif +#endif /* CONFIG_NEW_NAND_CODE */ + diff --git a/drivers/nand/nand_bbt.c b/drivers/nand/nand_bbt.c new file mode 100644 index 000000000..f4813088b --- /dev/null +++ b/drivers/nand/nand_bbt.c @@ -0,0 +1,1055 @@ +/* + *  drivers/mtd/nand_bbt.c + * + *  Overview: + *   Bad block table support for the NAND driver + * + *  Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) + * + * $Id: nand_bbt.c,v 1.28 2004/11/13 10:19:09 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Description: + * + * When nand_scan_bbt is called, then it tries to find the bad block table + * depending on the options in the bbt descriptor(s). If a bbt is found + * then the contents are read and the memory based bbt is created. If a + * mirrored bbt is selected then the mirror is searched too and the + * versions are compared. If the mirror has a greater version number + * than the mirror bbt is used to build the memory based bbt. + * If the tables are not versioned, then we "or" the bad block information. + * If one of the bbt's is out of date or does not exist it is (re)created. + * If no bbt exists at all then the device is scanned for factory marked + * good / bad blocks and the bad block tables are created. + * + * For manufacturer created bbts like the one found on M-SYS DOC devices + * the bbt is searched and read but never created + * + * The autogenerated bad block table is located in the last good blocks + * of the device. The table is mirrored, so it can be updated eventually. + * The table is marked in the oob area with an ident pattern and a version + * number which indicates which of both tables is more up to date. + * + * The table uses 2 bits per block + * 11b: 	block is good + * 00b: 	block is factory marked bad + * 01b, 10b: 	block is marked bad due to wear + * + * The memory bad block table uses the following scheme: + * 00b:		block is good + * 01b:		block is marked bad due to wear + * 10b:		block is reserved (to protect the bbt area) + * 11b:		block is factory marked bad + * + * Multichip devices like DOC store the bad block info per floor. + * + * Following assumptions are made: + * - bbts start at a page boundary, if autolocated on a block boundary + * - the space neccecary for a bbt in FLASH does not exceed a block boundary + * + */ + +#include <common.h> + +#ifdef CONFIG_NEW_NAND_CODE +#if (CONFIG_COMMANDS & CFG_CMD_NAND) + +#include <malloc.h> +#include <linux/mtd/compat.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> + +#include <asm/errno.h> + +/** + * check_pattern - [GENERIC] check if a pattern is in the buffer + * @buf:	the buffer to search + * @len:	the length of buffer to search + * @paglen:	the pagelength + * @td:		search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block + * tables and good / bad block identifiers. + * If the SCAN_EMPTY option is set then check, if all bytes except the + * pattern area contain 0xff + * +*/ +static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) +{ +	int i, end; +	uint8_t *p = buf; + +	end = paglen + td->offs; +	if (td->options & NAND_BBT_SCANEMPTY) { +		for (i = 0; i < end; i++) { +			if (p[i] != 0xff) +				return -1; +		} +	} +	p += end; + +	/* Compare the pattern */ +	for (i = 0; i < td->len; i++) { +		if (p[i] != td->pattern[i]) +			return -1; +	} + +	p += td->len; +	end += td->len; +	if (td->options & NAND_BBT_SCANEMPTY) { +		for (i = end; i < len; i++) { +			if (*p++ != 0xff) +				return -1; +		} +	} +	return 0; +} + +/** + * read_bbt - [GENERIC] Read the bad block table starting from page + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @page:	the starting page + * @num:	the number of bbt descriptors to read + * @bits:	number of bits per block + * @offs:	offset in the memory table + * @reserved_block_code:	Pattern to identify reserved blocks + * + * Read the bad block table starting from page. + * + */ +static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num, +	int bits, int offs, int reserved_block_code) +{ +	int res, i, j, act = 0; +	struct nand_chip *this = mtd->priv; +	size_t retlen, len, totlen; +	loff_t from; +	uint8_t msk = (uint8_t) ((1 << bits) - 1); + +	totlen = (num * bits) >> 3; +	from = ((loff_t)page) << this->page_shift; + +	while (totlen) { +		len = min (totlen, (size_t) (1 << this->bbt_erase_shift)); +		res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob); +		if (res < 0) { +			if (retlen != len) { +				printk (KERN_INFO "nand_bbt: Error reading bad block table\n"); +				return res; +			} +			printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n"); +		} + +		/* Analyse data */ +		for (i = 0; i < len; i++) { +			uint8_t dat = buf[i]; +			for (j = 0; j < 8; j += bits, act += 2) { +				uint8_t tmp = (dat >> j) & msk; +				if (tmp == msk) +					continue; +				if (reserved_block_code && +				    (tmp == reserved_block_code)) { +					printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n", +						((offs << 2) + (act >> 1)) << this->bbt_erase_shift); +					this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06); +					continue; +				} +				/* Leave it for now, if its matured we can move this +				 * message to MTD_DEBUG_LEVEL0 */ +				printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n", +					((offs << 2) + (act >> 1)) << this->bbt_erase_shift); +				/* Factory marked bad or worn out ? */ +				if (tmp == 0) +					this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06); +				else +					this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06); +			} +		} +		totlen -= len; +		from += len; +	} +	return 0; +} + +/** + * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @td:		descriptor for the bad block table + * @chip:	read the table for a specific chip, -1 read all chips. + *		Applies only if NAND_BBT_PERCHIP option is set + * + * Read the bad block table for all chips starting at a given page + * We assume that the bbt bits are in consecutive order. +*/ +static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) +{ +	struct nand_chip *this = mtd->priv; +	int res = 0, i; +	int bits; + +	bits = td->options & NAND_BBT_NRBITS_MSK; +	if (td->options & NAND_BBT_PERCHIP) { +		int offs = 0; +		for (i = 0; i < this->numchips; i++) { +			if (chip == -1 || chip == i) +				res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code); +			if (res) +				return res; +			offs += this->chipsize >> (this->bbt_erase_shift + 2); +		} +	} else { +		res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code); +		if (res) +			return res; +	} +	return 0; +} + +/** + * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @td:		descriptor for the bad block table + * @md:		descriptor for the bad block table mirror + * + * Read the bad block table(s) for all chips starting at a given page + * We assume that the bbt bits are in consecutive order. + * +*/ +static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, +	struct nand_bbt_descr *md) +{ +	struct nand_chip *this = mtd->priv; + +	/* Read the primary version, if available */ +	if (td->options & NAND_BBT_VERSION) { +		nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); +		td->version[0] = buf[mtd->oobblock + td->veroffs]; +		printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]); +	} + +	/* Read the mirror version, if available */ +	if (md && (md->options & NAND_BBT_VERSION)) { +		nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); +		md->version[0] = buf[mtd->oobblock + md->veroffs]; +		printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]); +	} + +	return 1; +} + +/** + * create_bbt - [GENERIC] Create a bad block table by scanning the device + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @bd:		descriptor for the good/bad block search pattern + * @chip:	create the table for a specific chip, -1 read all chips. + *		Applies only if NAND_BBT_PERCHIP option is set + * + * Create a bad block table by scanning the device + * for the given good/bad block identify pattern + */ +static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) +{ +	struct nand_chip *this = mtd->priv; +	int i, j, numblocks, len, scanlen; +	int startblock; +	loff_t from; +	size_t readlen, ooblen; + +	if (bd->options & NAND_BBT_SCANALLPAGES) +		len = 1 << (this->bbt_erase_shift - this->page_shift); +	else { +		if (bd->options & NAND_BBT_SCAN2NDPAGE) +			len = 2; +		else +			len = 1; +	} +	scanlen	= mtd->oobblock + mtd->oobsize; +	readlen = len * mtd->oobblock; +	ooblen = len * mtd->oobsize; + +	if (chip == -1) { +		/* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it +		 * makes shifting and masking less painful */ +		numblocks = mtd->size >> (this->bbt_erase_shift - 1); +		startblock = 0; +		from = 0; +	} else { +		if (chip >= this->numchips) { +			printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n", +				chip + 1, this->numchips); +			return; +		} +		numblocks = this->chipsize >> (this->bbt_erase_shift - 1); +		startblock = chip * numblocks; +		numblocks += startblock; +		from = startblock << (this->bbt_erase_shift - 1); +	} + +	for (i = startblock; i < numblocks;) { +		nand_read_raw (mtd, buf, from, readlen, ooblen); +		for (j = 0; j < len; j++) { +			if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) { +				this->bbt[i >> 3] |= 0x03 << (i & 0x6); +				break; +			} +		} +		i += 2; +		from += (1 << this->bbt_erase_shift); +	} +} + +/** + * search_bbt - [GENERIC] scan the device for a specific bad block table + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @td:		descriptor for the bad block table + * + * Read the bad block table by searching for a given ident pattern. + * Search is preformed either from the beginning up or from the end of + * the device downwards. The search starts always at the start of a + * block. + * If the option NAND_BBT_PERCHIP is given, each chip is searched + * for a bbt, which contains the bad block information of this chip. + * This is neccecary to provide support for certain DOC devices. + * + * The bbt ident pattern resides in the oob area of the first page + * in a block. + */ +static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) +{ +	struct nand_chip *this = mtd->priv; +	int i, chips; +	int bits, startblock, block, dir; +	int scanlen = mtd->oobblock + mtd->oobsize; +	int bbtblocks; + +	/* Search direction top -> down ? */ +	if (td->options & NAND_BBT_LASTBLOCK) { +		startblock = (mtd->size >> this->bbt_erase_shift) -1; +		dir = -1; +	} else { +		startblock = 0; +		dir = 1; +	} + +	/* Do we have a bbt per chip ? */ +	if (td->options & NAND_BBT_PERCHIP) { +		chips = this->numchips; +		bbtblocks = this->chipsize >> this->bbt_erase_shift; +		startblock &= bbtblocks - 1; +	} else { +		chips = 1; +		bbtblocks = mtd->size >> this->bbt_erase_shift; +	} + +	/* Number of bits for each erase block in the bbt */ +	bits = td->options & NAND_BBT_NRBITS_MSK; + +	for (i = 0; i < chips; i++) { +		/* Reset version information */ +		td->version[i] = 0; +		td->pages[i] = -1; +		/* Scan the maximum number of blocks */ +		for (block = 0; block < td->maxblocks; block++) { +			int actblock = startblock + dir * block; +			/* Read first page */ +			nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize); +			if (!check_pattern(buf, scanlen, mtd->oobblock, td)) { +				td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift); +				if (td->options & NAND_BBT_VERSION) { +					td->version[i] = buf[mtd->oobblock + td->veroffs]; +				} +				break; +			} +		} +		startblock += this->chipsize >> this->bbt_erase_shift; +	} +	/* Check, if we found a bbt for each requested chip */ +	for (i = 0; i < chips; i++) { +		if (td->pages[i] == -1) +			printk (KERN_WARNING "Bad block table not found for chip %d\n", i); +		else +			printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]); +	} +	return 0; +} + +/** + * search_read_bbts - [GENERIC] scan the device for bad block table(s) + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @td:		descriptor for the bad block table + * @md:		descriptor for the bad block table mirror + * + * Search and read the bad block table(s) +*/ +static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf, +	struct nand_bbt_descr *td, struct nand_bbt_descr *md) +{ +	/* Search the primary table */ +	search_bbt (mtd, buf, td); + +	/* Search the mirror table */ +	if (md) +		search_bbt (mtd, buf, md); + +	/* Force result check */ +	return 1; +} + + +/** + * write_bbt - [GENERIC] (Re)write the bad block table + * + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @td:		descriptor for the bad block table + * @md:		descriptor for the bad block table mirror + * @chipsel:	selector for a specific chip, -1 for all + * + * (Re)write the bad block table + * +*/ +static int write_bbt (struct mtd_info *mtd, uint8_t *buf, +	struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel) +{ +	struct nand_chip *this = mtd->priv; +	struct nand_oobinfo oobinfo; +	struct erase_info einfo; +	int i, j, res, chip = 0; +	int bits, startblock, dir, page, offs, numblocks, sft, sftmsk; +	int nrchips, bbtoffs, pageoffs; +	uint8_t msk[4]; +	uint8_t rcode = td->reserved_block_code; +	size_t retlen, len = 0; +	loff_t to; + +	if (!rcode) +		rcode = 0xff; +	/* Write bad block table per chip rather than per device ? */ +	if (td->options & NAND_BBT_PERCHIP) { +		numblocks = (int) (this->chipsize >> this->bbt_erase_shift); +		/* Full device write or specific chip ? */ +		if (chipsel == -1) { +			nrchips = this->numchips; +		} else { +			nrchips = chipsel + 1; +			chip = chipsel; +		} +	} else { +		numblocks = (int) (mtd->size >> this->bbt_erase_shift); +		nrchips = 1; +	} + +	/* Loop through the chips */ +	for (; chip < nrchips; chip++) { + +		/* There was already a version of the table, reuse the page +		 * This applies for absolute placement too, as we have the +		 * page nr. in td->pages. +		 */ +		if (td->pages[chip] != -1) { +			page = td->pages[chip]; +			goto write; +		} + +		/* Automatic placement of the bad block table */ +		/* Search direction top -> down ? */ +		if (td->options & NAND_BBT_LASTBLOCK) { +			startblock = numblocks * (chip + 1) - 1; +			dir = -1; +		} else { +			startblock = chip * numblocks; +			dir = 1; +		} + +		for (i = 0; i < td->maxblocks; i++) { +			int block = startblock + dir * i; +			/* Check, if the block is bad */ +			switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) { +			case 0x01: +			case 0x03: +				continue; +			} +			page = block << (this->bbt_erase_shift - this->page_shift); +			/* Check, if the block is used by the mirror table */ +			if (!md || md->pages[chip] != page) +				goto write; +		} +		printk (KERN_ERR "No space left to write bad block table\n"); +		return -ENOSPC; +write: + +		/* Set up shift count and masks for the flash table */ +		bits = td->options & NAND_BBT_NRBITS_MSK; +		switch (bits) { +		case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x01; break; +		case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x03; break; +		case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[2] = ~rcode; msk[3] = 0x0f; break; +		case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[2] = ~rcode; msk[3] = 0xff; break; +		default: return -EINVAL; +		} + +		bbtoffs = chip * (numblocks >> 2); + +		to = ((loff_t) page) << this->page_shift; + +		memcpy (&oobinfo, this->autooob, sizeof(oobinfo)); +		oobinfo.useecc = MTD_NANDECC_PLACEONLY; + +		/* Must we save the block contents ? */ +		if (td->options & NAND_BBT_SAVECONTENT) { +			/* Make it block aligned */ +			to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1)); +			len = 1 << this->bbt_erase_shift; +			res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo); +			if (res < 0) { +				if (retlen != len) { +					printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n"); +					return res; +				} +				printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n"); +			} +			/* Calc the byte offset in the buffer */ +			pageoffs = page - (int)(to >> this->page_shift); +			offs = pageoffs << this->page_shift; +			/* Preset the bbt area with 0xff */ +			memset (&buf[offs], 0xff, (size_t)(numblocks >> sft)); +			/* Preset the bbt's oob area with 0xff */ +			memset (&buf[len + pageoffs * mtd->oobsize], 0xff, +				((len >> this->page_shift) - pageoffs) * mtd->oobsize); +			if (td->options & NAND_BBT_VERSION) { +				buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip]; +			} +		} else { +			/* Calc length */ +			len = (size_t) (numblocks >> sft); +			/* Make it page aligned ! */ +			len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1); +			/* Preset the buffer with 0xff */ +			memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize); +			offs = 0; +			/* Pattern is located in oob area of first page */ +			memcpy (&buf[len + td->offs], td->pattern, td->len); +			if (td->options & NAND_BBT_VERSION) { +				buf[len + td->veroffs] = td->version[chip]; +			} +		} + +		/* walk through the memory table */ +		for (i = 0; i < numblocks; ) { +			uint8_t dat; +			dat = this->bbt[bbtoffs + (i >> 2)]; +			for (j = 0; j < 4; j++ , i++) { +				int sftcnt = (i << (3 - sft)) & sftmsk; +				/* Do not store the reserved bbt blocks ! */ +				buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt); +				dat >>= 2; +			} +		} + +		memset (&einfo, 0, sizeof (einfo)); +		einfo.mtd = mtd; +		einfo.addr = (unsigned long) to; +		einfo.len = 1 << this->bbt_erase_shift; +		res = nand_erase_nand (mtd, &einfo, 1); +		if (res < 0) { +			printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res); +			return res; +		} + +		res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo); +		if (res < 0) { +			printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res); +			return res; +		} +		printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n", +			(unsigned int) to, td->version[chip]); + +		/* Mark it as used */ +		td->pages[chip] = page; +	} +	return 0; +} + +/** + * nand_memory_bbt - [GENERIC] create a memory based bad block table + * @mtd:	MTD device structure + * @bd:		descriptor for the good/bad block search pattern + * + * The function creates a memory based bbt by scanning the device + * for manufacturer / software marked good / bad blocks +*/ +static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ +	struct nand_chip *this = mtd->priv; + +	/* Ensure that we only scan for the pattern and nothing else */ +	bd->options = 0; +	create_bbt (mtd, this->data_buf, bd, -1); +	return 0; +} + +/** + * check_create - [GENERIC] create and write bbt(s) if neccecary + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @bd:		descriptor for the good/bad block search pattern + * + * The function checks the results of the previous call to read_bbt + * and creates / updates the bbt(s) if neccecary + * Creation is neccecary if no bbt was found for the chip/device + * Update is neccecary if one of the tables is missing or the + * version nr. of one table is less than the other +*/ +static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd) +{ +	int i, chips, writeops, chipsel, res; +	struct nand_chip *this = mtd->priv; +	struct nand_bbt_descr *td = this->bbt_td; +	struct nand_bbt_descr *md = this->bbt_md; +	struct nand_bbt_descr *rd, *rd2; + +	/* Do we have a bbt per chip ? */ +	if (td->options & NAND_BBT_PERCHIP) +		chips = this->numchips; +	else +		chips = 1; + +	for (i = 0; i < chips; i++) { +		writeops = 0; +		rd = NULL; +		rd2 = NULL; +		/* Per chip or per device ? */ +		chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; +		/* Mirrored table avilable ? */ +		if (md) { +			if (td->pages[i] == -1 && md->pages[i] == -1) { +				writeops = 0x03; +				goto create; +			} + +			if (td->pages[i] == -1) { +				rd = md; +				td->version[i] = md->version[i]; +				writeops = 1; +				goto writecheck; +			} + +			if (md->pages[i] == -1) { +				rd = td; +				md->version[i] = td->version[i]; +				writeops = 2; +				goto writecheck; +			} + +			if (td->version[i] == md->version[i]) { +				rd = td; +				if (!(td->options & NAND_BBT_VERSION)) +					rd2 = md; +				goto writecheck; +			} + +			if (((int8_t) (td->version[i] - md->version[i])) > 0) { +				rd = td; +				md->version[i] = td->version[i]; +				writeops = 2; +			} else { +				rd = md; +				td->version[i] = md->version[i]; +				writeops = 1; +			} + +			goto writecheck; + +		} else { +			if (td->pages[i] == -1) { +				writeops = 0x01; +				goto create; +			} +			rd = td; +			goto writecheck; +		} +create: +		/* Create the bad block table by scanning the device ? */ +		if (!(td->options & NAND_BBT_CREATE)) +			continue; + +		/* Create the table in memory by scanning the chip(s) */ +		create_bbt (mtd, buf, bd, chipsel); + +		td->version[i] = 1; +		if (md) +			md->version[i] = 1; +writecheck: +		/* read back first ? */ +		if (rd) +			read_abs_bbt (mtd, buf, rd, chipsel); +		/* If they weren't versioned, read both. */ +		if (rd2) +			read_abs_bbt (mtd, buf, rd2, chipsel); + +		/* Write the bad block table to the device ? */ +		if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { +			res = write_bbt (mtd, buf, td, md, chipsel); +			if (res < 0) +				return res; +		} + +		/* Write the mirror bad block table to the device ? */ +		if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { +			res = write_bbt (mtd, buf, md, td, chipsel); +			if (res < 0) +				return res; +		} +	} +	return 0; +} + +/** + * mark_bbt_regions - [GENERIC] mark the bad block table regions + * @mtd:	MTD device structure + * @td:		bad block table descriptor + * + * The bad block table regions are marked as "bad" to prevent + * accidental erasures / writes. The regions are identified by + * the mark 0x02. +*/ +static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td) +{ +	struct nand_chip *this = mtd->priv; +	int i, j, chips, block, nrblocks, update; +	uint8_t oldval, newval; + +	/* Do we have a bbt per chip ? */ +	if (td->options & NAND_BBT_PERCHIP) { +		chips = this->numchips; +		nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); +	} else { +		chips = 1; +		nrblocks = (int)(mtd->size >> this->bbt_erase_shift); +	} + +	for (i = 0; i < chips; i++) { +		if ((td->options & NAND_BBT_ABSPAGE) || +		    !(td->options & NAND_BBT_WRITE)) { +		    	if (td->pages[i] == -1) continue; +			block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); +			block <<= 1; +			oldval = this->bbt[(block >> 3)]; +			newval = oldval | (0x2 << (block & 0x06)); +			this->bbt[(block >> 3)] = newval; +			if ((oldval != newval) && td->reserved_block_code) +				nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1)); +			continue; +		} +		update = 0; +		if (td->options & NAND_BBT_LASTBLOCK) +			block = ((i + 1) * nrblocks) - td->maxblocks; +		else +			block = i * nrblocks; +		block <<= 1; +		for (j = 0; j < td->maxblocks; j++) { +			oldval = this->bbt[(block >> 3)]; +			newval = oldval | (0x2 << (block & 0x06)); +			this->bbt[(block >> 3)] = newval; +			if (oldval != newval) update = 1; +			block += 2; +		} +		/* If we want reserved blocks to be recorded to flash, and some +		   new ones have been marked, then we need to update the stored +		   bbts.  This should only happen once. */ +		if (update && td->reserved_block_code) +			nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1)); +	} +} + +/** + * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) + * @mtd:	MTD device structure + * @bd:		descriptor for the good/bad block search pattern + * + * The function checks, if a bad block table(s) is/are already + * available. If not it scans the device for manufacturer + * marked good / bad blocks and writes the bad block table(s) to + * the selected place. + * + * The bad block table memory is allocated here. It must be freed + * by calling the nand_free_bbt function. + * +*/ +int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ +	struct nand_chip *this = mtd->priv; +	int len, res = 0; +	uint8_t *buf; +	struct nand_bbt_descr *td = this->bbt_td; +	struct nand_bbt_descr *md = this->bbt_md; + +	len = mtd->size >> (this->bbt_erase_shift + 2); +	/* Allocate memory (2bit per block) */ +	this->bbt = kmalloc (len, GFP_KERNEL); +	if (!this->bbt) { +		printk (KERN_ERR "nand_scan_bbt: Out of memory\n"); +		return -ENOMEM; +	} +	/* Clear the memory bad block table */ +	memset (this->bbt, 0x00, len); + +	/* If no primary table decriptor is given, scan the device +	 * to build a memory based bad block table +	 */ +	if (!td) +		return nand_memory_bbt(mtd, bd); + +	/* Allocate a temporary buffer for one eraseblock incl. oob */ +	len = (1 << this->bbt_erase_shift); +	len += (len >> this->page_shift) * mtd->oobsize; +	buf = kmalloc (len, GFP_KERNEL); +	if (!buf) { +		printk (KERN_ERR "nand_bbt: Out of memory\n"); +		kfree (this->bbt); +		this->bbt = NULL; +		return -ENOMEM; +	} + +	/* Is the bbt at a given page ? */ +	if (td->options & NAND_BBT_ABSPAGE) { +		res = read_abs_bbts (mtd, buf, td, md); +	} else { +		/* Search the bad block table using a pattern in oob */ +		res = search_read_bbts (mtd, buf, td, md); +	} + +	if (res) +		res = check_create (mtd, buf, bd); + +	/* Prevent the bbt regions from erasing / writing */ +	mark_bbt_region (mtd, td); +	if (md) +		mark_bbt_region (mtd, md); + +	kfree (buf); +	return res; +} + + +/** + * nand_update_bbt - [NAND Interface] update bad block table(s) + * @mtd:	MTD device structure + * @offs:	the offset of the newly marked block + * + * The function updates the bad block table(s) +*/ +int nand_update_bbt (struct mtd_info *mtd, loff_t offs) +{ +	struct nand_chip *this = mtd->priv; +	int len, res = 0, writeops = 0; +	int chip, chipsel; +	uint8_t *buf; +	struct nand_bbt_descr *td = this->bbt_td; +	struct nand_bbt_descr *md = this->bbt_md; + +	if (!this->bbt || !td) +		return -EINVAL; + +	len = mtd->size >> (this->bbt_erase_shift + 2); +	/* Allocate a temporary buffer for one eraseblock incl. oob */ +	len = (1 << this->bbt_erase_shift); +	len += (len >> this->page_shift) * mtd->oobsize; +	buf = kmalloc (len, GFP_KERNEL); +	if (!buf) { +		printk (KERN_ERR "nand_update_bbt: Out of memory\n"); +		return -ENOMEM; +	} + +	writeops = md != NULL ? 0x03 : 0x01; + +	/* Do we have a bbt per chip ? */ +	if (td->options & NAND_BBT_PERCHIP) { +		chip = (int) (offs >> this->chip_shift); +		chipsel = chip; +	} else { +		chip = 0; +		chipsel = -1; +	} + +	td->version[chip]++; +	if (md) +		md->version[chip]++; + +	/* Write the bad block table to the device ? */ +	if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { +		res = write_bbt (mtd, buf, td, md, chipsel); +		if (res < 0) +			goto out; +	} +	/* Write the mirror bad block table to the device ? */ +	if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { +		res = write_bbt (mtd, buf, md, td, chipsel); +	} + +out: +	kfree (buf); +	return res; +} + +/* Define some generic bad / good block scan pattern which are used + * while scanning a device for factory marked good / bad blocks + * + * The memory based patterns just + */ +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static struct nand_bbt_descr smallpage_memorybased = { +	.options = 0, +	.offs = 5, +	.len = 1, +	.pattern = scan_ff_pattern +}; + +static struct nand_bbt_descr largepage_memorybased = { +	.options = 0, +	.offs = 0, +	.len = 2, +	.pattern = scan_ff_pattern +}; + +static struct nand_bbt_descr smallpage_flashbased = { +	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, +	.offs = 5, +	.len = 1, +	.pattern = scan_ff_pattern +}; + +static struct nand_bbt_descr largepage_flashbased = { +	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, +	.offs = 0, +	.len = 2, +	.pattern = scan_ff_pattern +}; + +static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 }; + +static struct nand_bbt_descr agand_flashbased = { +	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, +	.offs = 0x20, +	.len = 6, +	.pattern = scan_agand_pattern +}; + +/* Generic flash bbt decriptors +*/ +static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE +		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, +	.offs =	8, +	.len = 4, +	.veroffs = 12, +	.maxblocks = 4, +	.pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE +		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, +	.offs =	8, +	.len = 4, +	.veroffs = 12, +	.maxblocks = 4, +	.pattern = mirror_pattern +}; + +/** + * nand_default_bbt - [NAND Interface] Select a default bad block table for the device + * @mtd:	MTD device structure + * + * This function selects the default bad block table + * support for the device and calls the nand_scan_bbt function + * +*/ +int nand_default_bbt (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; + +	/* Default for AG-AND. We must use a flash based +	 * bad block table as the devices have factory marked +	 * _good_ blocks. Erasing those blocks leads to loss +	 * of the good / bad information, so we _must_ store +	 * this information in a good / bad table during +	 * startup +	*/ +	if (this->options & NAND_IS_AND) { +		/* Use the default pattern descriptors */ +		if (!this->bbt_td) { +			this->bbt_td = &bbt_main_descr; +			this->bbt_md = &bbt_mirror_descr; +		} +		this->options |= NAND_USE_FLASH_BBT; +		return nand_scan_bbt (mtd, &agand_flashbased); +	} + + +	/* Is a flash based bad block table requested ? */ +	if (this->options & NAND_USE_FLASH_BBT) { +		/* Use the default pattern descriptors */ +		if (!this->bbt_td) { +			this->bbt_td = &bbt_main_descr; +			this->bbt_md = &bbt_mirror_descr; +		} +		if (!this->badblock_pattern) { +			this->badblock_pattern = (mtd->oobblock > 512) ? +				&largepage_flashbased : &smallpage_flashbased; +		} +	} else { +		this->bbt_td = NULL; +		this->bbt_md = NULL; +		if (!this->badblock_pattern) { +			this->badblock_pattern = (mtd->oobblock > 512) ? +				&largepage_memorybased : &smallpage_memorybased; +		} +	} +	return nand_scan_bbt (mtd, this->badblock_pattern); +} + +/** + * nand_isbad_bbt - [NAND Interface] Check if a block is bad + * @mtd:	MTD device structure + * @offs:	offset in the device + * @allowbbt:	allow access to bad block table region + * + */ +int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt) +{ +	struct nand_chip *this = mtd->priv; +	int block; +	uint8_t	res; + +	/* Get block number * 2 */ +	block = (int) (offs >> (this->bbt_erase_shift - 1)); +	res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03; + +	DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", +		(unsigned int)offs, res, block >> 1); + +	switch ((int)res) { +	case 0x00:	return 0; +	case 0x01:	return 1; +	case 0x02:	return allowbbt ? 0 : 1; +	} +	return 1; +} + +#endif +#endif /* CONFIG_NEW_NAND_CODE */ + diff --git a/drivers/nand/nand_ecc.c b/drivers/nand/nand_ecc.c new file mode 100644 index 000000000..4e610c112 --- /dev/null +++ b/drivers/nand/nand_ecc.c @@ -0,0 +1,247 @@ +/* + * This file contains an ECC algorithm from Toshiba that detects and + * corrects 1 bit errors in a 256 byte block of data. + * + * drivers/mtd/nand/nand_ecc.c + * + * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com) + *                         Toshiba America Electronics Components, Inc. + * + * $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $ + * + * This file is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 or (at your option) any + * later version. + * + * This file is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License + * for more details. + * + * You should have received a copy of the GNU General Public License along + * with this file; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. + * + * As a special exception, if other files instantiate templates or use + * macros or inline functions from these files, or you compile these + * files and link them with other works to produce a work based on these + * files, these files do not by themselves cause the resulting work to be + * covered by the GNU General Public License. However the source code for + * these files must still be made available in accordance with section (3) + * of the GNU General Public License. + * + * This exception does not invalidate any other reasons why a work based on + * this file might be covered by the GNU General Public License. + */ + +#include <common.h> + +#ifdef CONFIG_NEW_NAND_CODE +#if (CONFIG_COMMANDS & CFG_CMD_NAND) + +#include<linux/mtd/mtd.h> +/* + * Pre-calculated 256-way 1 byte column parity + */ +static const u_char nand_ecc_precalc_table[] = { +	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, +	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, +	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, +	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, +	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, +	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, +	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, +	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, +	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, +	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, +	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, +	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, +	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, +	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, +	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, +	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 +}; + + +/** + * nand_trans_result - [GENERIC] create non-inverted ECC + * @reg2:	line parity reg 2 + * @reg3:	line parity reg 3 + * @ecc_code:	ecc + * + * Creates non-inverted ECC code from line parity + */ +static void nand_trans_result(u_char reg2, u_char reg3, +	u_char *ecc_code) +{ +	u_char a, b, i, tmp1, tmp2; + +	/* Initialize variables */ +	a = b = 0x80; +	tmp1 = tmp2 = 0; + +	/* Calculate first ECC byte */ +	for (i = 0; i < 4; i++) { +		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */ +			tmp1 |= b; +		b >>= 1; +		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */ +			tmp1 |= b; +		b >>= 1; +		a >>= 1; +	} + +	/* Calculate second ECC byte */ +	b = 0x80; +	for (i = 0; i < 4; i++) { +		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */ +			tmp2 |= b; +		b >>= 1; +		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */ +			tmp2 |= b; +		b >>= 1; +		a >>= 1; +	} + +	/* Store two of the ECC bytes */ +	ecc_code[0] = tmp1; +	ecc_code[1] = tmp2; +} + +/** + * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block + * @mtd:	MTD block structure + * @dat:	raw data + * @ecc_code:	buffer for ECC + */ +int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +{ +	u_char idx, reg1, reg2, reg3; +	int j; + +	/* Initialize variables */ +	reg1 = reg2 = reg3 = 0; +	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; + +	/* Build up column parity */ +	for(j = 0; j < 256; j++) { + +		/* Get CP0 - CP5 from table */ +		idx = nand_ecc_precalc_table[dat[j]]; +		reg1 ^= (idx & 0x3f); + +		/* All bit XOR = 1 ? */ +		if (idx & 0x40) { +			reg3 ^= (u_char) j; +			reg2 ^= ~((u_char) j); +		} +	} + +	/* Create non-inverted ECC code from line parity */ +	nand_trans_result(reg2, reg3, ecc_code); + +	/* Calculate final ECC code */ +	ecc_code[0] = ~ecc_code[0]; +	ecc_code[1] = ~ecc_code[1]; +	ecc_code[2] = ((~reg1) << 2) | 0x03; +	return 0; +} + +/** + * nand_correct_data - [NAND Interface] Detect and correct bit error(s) + * @mtd:	MTD block structure + * @dat:	raw data read from the chip + * @read_ecc:	ECC from the chip + * @calc_ecc:	the ECC calculated from raw data + * + * Detect and correct a 1 bit error for 256 byte block + */ +int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) +{ +	u_char a, b, c, d1, d2, d3, add, bit, i; + +	/* Do error detection */ +	d1 = calc_ecc[0] ^ read_ecc[0]; +	d2 = calc_ecc[1] ^ read_ecc[1]; +	d3 = calc_ecc[2] ^ read_ecc[2]; + +	if ((d1 | d2 | d3) == 0) { +		/* No errors */ +		return 0; +	} +	else { +		a = (d1 ^ (d1 >> 1)) & 0x55; +		b = (d2 ^ (d2 >> 1)) & 0x55; +		c = (d3 ^ (d3 >> 1)) & 0x54; + +		/* Found and will correct single bit error in the data */ +		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { +			c = 0x80; +			add = 0; +			a = 0x80; +			for (i=0; i<4; i++) { +				if (d1 & c) +					add |= a; +				c >>= 2; +				a >>= 1; +			} +			c = 0x80; +			for (i=0; i<4; i++) { +				if (d2 & c) +					add |= a; +				c >>= 2; +				a >>= 1; +			} +			bit = 0; +			b = 0x04; +			c = 0x80; +			for (i=0; i<3; i++) { +				if (d3 & c) +					bit |= b; +				c >>= 2; +				b >>= 1; +			} +			b = 0x01; +			a = dat[add]; +			a ^= (b << bit); +			dat[add] = a; +			return 1; +		} else { +			i = 0; +			while (d1) { +				if (d1 & 0x01) +					++i; +				d1 >>= 1; +			} +			while (d2) { +				if (d2 & 0x01) +					++i; +				d2 >>= 1; +			} +			while (d3) { +				if (d3 & 0x01) +					++i; +				d3 >>= 1; +			} +			if (i == 1) { +				/* ECC Code Error Correction */ +				read_ecc[0] = calc_ecc[0]; +				read_ecc[1] = calc_ecc[1]; +				read_ecc[2] = calc_ecc[2]; +				return 2; +			} +			else { +				/* Uncorrectable Error */ +				return -1; +			} +		} +	} + +	/* Should never happen */ +	return -1; +} + +#endif	/* CONFIG_COMMANDS & CFG_CMD_NAND */ +#endif /* CONFIG_NEW_NAND_CODE */ + diff --git a/drivers/nand/nand_ids.c b/drivers/nand/nand_ids.c new file mode 100644 index 000000000..d35532610 --- /dev/null +++ b/drivers/nand/nand_ids.c @@ -0,0 +1,131 @@ +/* + *  drivers/mtd/nandids.c + * + *  Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de) +  * + * $Id: nand_ids.c,v 1.10 2004/05/26 13:40:12 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include <common.h> + +#ifdef CONFIG_NEW_NAND_CODE +#if (CONFIG_COMMANDS & CFG_CMD_NAND) + +#include <linux/mtd/nand.h> + +/* +*	Chip ID list +* +*	Name. ID code, pagesize, chipsize in MegaByte, eraseblock size, +*	options +* +* 	Pagesize; 0, 256, 512 +*	0 	get this information from the extended chip ID ++	256	256 Byte page size +*	512	512 Byte page size +*/ +struct nand_flash_dev nand_flash_ids[] = { +	{"NAND 1MiB 5V 8-bit", 		0x6e, 256, 1, 0x1000, 0}, +	{"NAND 2MiB 5V 8-bit", 		0x64, 256, 2, 0x1000, 0}, +	{"NAND 4MiB 5V 8-bit", 		0x6b, 512, 4, 0x2000, 0}, +	{"NAND 1MiB 3,3V 8-bit", 	0xe8, 256, 1, 0x1000, 0}, +	{"NAND 1MiB 3,3V 8-bit", 	0xec, 256, 1, 0x1000, 0}, +	{"NAND 2MiB 3,3V 8-bit", 	0xea, 256, 2, 0x1000, 0}, +	{"NAND 4MiB 3,3V 8-bit", 	0xd5, 512, 4, 0x2000, 0}, +	{"NAND 4MiB 3,3V 8-bit", 	0xe3, 512, 4, 0x2000, 0}, +	{"NAND 4MiB 3,3V 8-bit", 	0xe5, 512, 4, 0x2000, 0}, +	{"NAND 8MiB 3,3V 8-bit", 	0xd6, 512, 8, 0x2000, 0}, + +	{"NAND 8MiB 1,8V 8-bit", 	0x39, 512, 8, 0x2000, 0}, +	{"NAND 8MiB 3,3V 8-bit", 	0xe6, 512, 8, 0x2000, 0}, +	{"NAND 8MiB 1,8V 16-bit", 	0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16}, +	{"NAND 8MiB 3,3V 16-bit", 	0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16}, + +	{"NAND 16MiB 1,8V 8-bit", 	0x33, 512, 16, 0x4000, 0}, +	{"NAND 16MiB 3,3V 8-bit", 	0x73, 512, 16, 0x4000, 0}, +	{"NAND 16MiB 1,8V 16-bit", 	0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16}, +	{"NAND 16MiB 3,3V 16-bit", 	0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16}, + +	{"NAND 32MiB 1,8V 8-bit", 	0x35, 512, 32, 0x4000, 0}, +	{"NAND 32MiB 3,3V 8-bit", 	0x75, 512, 32, 0x4000, 0}, +	{"NAND 32MiB 1,8V 16-bit", 	0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16}, +	{"NAND 32MiB 3,3V 16-bit", 	0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16}, + +	{"NAND 64MiB 1,8V 8-bit", 	0x36, 512, 64, 0x4000, 0}, +	{"NAND 64MiB 3,3V 8-bit", 	0x76, 512, 64, 0x4000, 0}, +	{"NAND 64MiB 1,8V 16-bit", 	0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16}, +	{"NAND 64MiB 3,3V 16-bit", 	0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16}, + +	{"NAND 128MiB 1,8V 8-bit", 	0x78, 512, 128, 0x4000, 0}, +	{"NAND 128MiB 3,3V 8-bit", 	0x79, 512, 128, 0x4000, 0}, +	{"NAND 128MiB 1,8V 16-bit", 	0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16}, +	{"NAND 128MiB 3,3V 16-bit", 	0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16}, + +	{"NAND 256MiB 3,3V 8-bit", 	0x71, 512, 256, 0x4000, 0}, + +	{"NAND 512MiB 3,3V 8-bit", 	0xDC, 512, 512, 0x4000, 0}, + +	/* These are the new chips with large page size. The pagesize +	* and the erasesize is determined from the extended id bytes +	*/ +	/* 1 Gigabit */ +	{"NAND 128MiB 1,8V 8-bit", 	0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 128MiB 3,3V 8-bit", 	0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 128MiB 1,8V 16-bit", 	0xB1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	{"NAND 128MiB 3,3V 16-bit", 	0xC1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + +	/* 2 Gigabit */ +	{"NAND 256MiB 1,8V 8-bit", 	0xAA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 256MiB 3,3V 8-bit", 	0xDA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 256MiB 1,8V 16-bit", 	0xBA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	{"NAND 256MiB 3,3V 16-bit", 	0xCA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + +	/* 4 Gigabit */ +	{"NAND 512MiB 1,8V 8-bit", 	0xAC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 512MiB 3,3V 8-bit", 	0xDC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 512MiB 1,8V 16-bit", 	0xBC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	{"NAND 512MiB 3,3V 16-bit", 	0xCC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + +	/* 8 Gigabit */ +	{"NAND 1GiB 1,8V 8-bit", 	0xA3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 1GiB 3,3V 8-bit", 	0xD3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 1GiB 1,8V 16-bit", 	0xB3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	{"NAND 1GiB 3,3V 16-bit", 	0xC3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + +	/* 16 Gigabit */ +	{"NAND 2GiB 1,8V 8-bit", 	0xA5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 2GiB 3,3V 8-bit", 	0xD5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 2GiB 1,8V 16-bit", 	0xB5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	{"NAND 2GiB 3,3V 16-bit", 	0xC5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + +	/* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout ! +	 * The chosen minimum erasesize is 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page planes +	 * 1 block = 2 pages, but due to plane arrangement the blocks 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7 +	 * Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go +	 * There are more speed improvements for reads and writes possible, but not implemented now +	 */ +	{"AND 128MiB 3,3V 8-bit",	0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY}, + +	{NULL,} +}; + +/* +*	Manufacturer ID list +*/ +struct nand_manufacturers nand_manuf_ids[] = { +	{NAND_MFR_TOSHIBA, "Toshiba"}, +	{NAND_MFR_SAMSUNG, "Samsung"}, +	{NAND_MFR_FUJITSU, "Fujitsu"}, +	{NAND_MFR_NATIONAL, "National"}, +	{NAND_MFR_RENESAS, "Renesas"}, +	{NAND_MFR_STMICRO, "ST Micro"}, +	{0x0, "Unknown"} +}; +#endif +#endif /* CONFIG_NEW_NAND_CODE */ + |