diff options
Diffstat (limited to 'cpu/ppc4xx/44x_spd_ddr2.c')
| -rw-r--r-- | cpu/ppc4xx/44x_spd_ddr2.c | 3017 | 
1 files changed, 3017 insertions, 0 deletions
| diff --git a/cpu/ppc4xx/44x_spd_ddr2.c b/cpu/ppc4xx/44x_spd_ddr2.c new file mode 100644 index 000000000..2ecd3e4b6 --- /dev/null +++ b/cpu/ppc4xx/44x_spd_ddr2.c @@ -0,0 +1,3017 @@ +/* + * cpu/ppc4xx/44x_spd_ddr2.c + * This SPD SDRAM detection code supports AMCC PPC44x cpu's with a + * DDR2 controller (non Denali Core). Those are 440SP/SPe. + * + * (C) Copyright 2007 + * Stefan Roese, DENX Software Engineering, sr@denx.de. + * + * COPYRIGHT   AMCC   CORPORATION 2004 + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of + * the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + * + */ + +/* define DEBUG for debugging output (obviously ;-)) */ +#if 0 +#define DEBUG +#endif + +#include <common.h> +#include <command.h> +#include <ppc4xx.h> +#include <i2c.h> +#include <asm/io.h> +#include <asm/processor.h> +#include <asm/mmu.h> + +#if defined(CONFIG_SPD_EEPROM) &&				\ +	(defined(CONFIG_440SP) || defined(CONFIG_440SPE)) + +/*-----------------------------------------------------------------------------+ + * Defines + *-----------------------------------------------------------------------------*/ +#ifndef	TRUE +#define TRUE		1 +#endif +#ifndef FALSE +#define FALSE		0 +#endif + +#define SDRAM_DDR1	1 +#define SDRAM_DDR2	2 +#define SDRAM_NONE	0 + +#define MAXDIMMS 	2 +#define MAXRANKS 	4 +#define MAXBXCF		4 +#define MAX_SPD_BYTES	256   /* Max number of bytes on the DIMM's SPD EEPROM */ + +#define ONE_BILLION	1000000000 + +#define MULDIV64(m1, m2, d)	(u32)(((u64)(m1) * (u64)(m2)) / (u64)(d)) + +#define CMD_NOP		(7 << 19) +#define CMD_PRECHARGE	(2 << 19) +#define CMD_REFRESH	(1 << 19) +#define CMD_EMR		(0 << 19) +#define CMD_READ	(5 << 19) +#define CMD_WRITE	(4 << 19) + +#define SELECT_MR	(0 << 16) +#define SELECT_EMR	(1 << 16) +#define SELECT_EMR2	(2 << 16) +#define SELECT_EMR3	(3 << 16) + +/* MR */ +#define DLL_RESET	0x00000100 + +#define WRITE_RECOV_2	(1 << 9) +#define WRITE_RECOV_3	(2 << 9) +#define WRITE_RECOV_4	(3 << 9) +#define WRITE_RECOV_5	(4 << 9) +#define WRITE_RECOV_6	(5 << 9) + +#define BURST_LEN_4	0x00000002 + +/* EMR */ +#define ODT_0_OHM	0x00000000 +#define ODT_50_OHM	0x00000044 +#define ODT_75_OHM	0x00000004 +#define ODT_150_OHM	0x00000040 + +#define ODS_FULL	0x00000000 +#define ODS_REDUCED	0x00000002 + +/* defines for ODT (On Die Termination) of the 440SP(e) DDR2 controller */ +#define ODT_EB0R	(0x80000000 >> 8) +#define ODT_EB0W	(0x80000000 >> 7) +#define CALC_ODT_R(n)	(ODT_EB0R << (n << 1)) +#define CALC_ODT_W(n)	(ODT_EB0W << (n << 1)) +#define CALC_ODT_RW(n)	(CALC_ODT_R(n) | CALC_ODT_W(n)) + +/* Defines for the Read Cycle Delay test */ +#define NUMMEMTESTS	8 +#define NUMMEMWORDS	8 +#define NUMLOOPS	256		/* memory test loops */ + +#undef CONFIG_ECC_ERROR_RESET		/* test-only: see description below, at check_ecc() */ + +/* + * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory + * region. Right now the cache should still be disabled in U-Boot because of the + * EMAC driver, that need it's buffer descriptor to be located in non cached + * memory. + * + * If at some time this restriction doesn't apply anymore, just define + * CFG_ENABLE_SDRAM_CACHE in the board config file and this code should setup + * everything correctly. + */ +#ifdef CFG_ENABLE_SDRAM_CACHE +#define MY_TLB_WORD2_I_ENABLE	0			/* enable caching on SDRAM */ +#else +#define MY_TLB_WORD2_I_ENABLE	TLB_WORD2_I_ENABLE	/* disable caching on SDRAM */ +#endif + +/* Private Structure Definitions */ + +/* enum only to ease code for cas latency setting */ +typedef enum ddr_cas_id { +	DDR_CAS_2      = 20, +	DDR_CAS_2_5    = 25, +	DDR_CAS_3      = 30, +	DDR_CAS_4      = 40, +	DDR_CAS_5      = 50 +} ddr_cas_id_t; + +/*-----------------------------------------------------------------------------+ + * Prototypes + *-----------------------------------------------------------------------------*/ +static unsigned long sdram_memsize(void); +void program_tlb(u32 start, u32 size, u32 tlb_word2_i_value); +static void get_spd_info(unsigned long *dimm_populated, +			 unsigned char *iic0_dimm_addr, +			 unsigned long num_dimm_banks); +static void check_mem_type(unsigned long *dimm_populated, +			   unsigned char *iic0_dimm_addr, +			   unsigned long num_dimm_banks); +static void check_frequency(unsigned long *dimm_populated, +			    unsigned char *iic0_dimm_addr, +			    unsigned long num_dimm_banks); +static void check_rank_number(unsigned long *dimm_populated, +			      unsigned char *iic0_dimm_addr, +			      unsigned long num_dimm_banks); +static void check_voltage_type(unsigned long *dimm_populated, +			       unsigned char *iic0_dimm_addr, +			       unsigned long num_dimm_banks); +static void program_memory_queue(unsigned long *dimm_populated, +				 unsigned char *iic0_dimm_addr, +				 unsigned long num_dimm_banks); +static void program_codt(unsigned long *dimm_populated, +			 unsigned char *iic0_dimm_addr, +			 unsigned long num_dimm_banks); +static void program_mode(unsigned long *dimm_populated, +			 unsigned char *iic0_dimm_addr, +			 unsigned long num_dimm_banks, +			 ddr_cas_id_t *selected_cas, +			 int *write_recovery); +static void program_tr(unsigned long *dimm_populated, +		       unsigned char *iic0_dimm_addr, +		       unsigned long num_dimm_banks); +static void program_rtr(unsigned long *dimm_populated, +			unsigned char *iic0_dimm_addr, +			unsigned long num_dimm_banks); +static void program_bxcf(unsigned long *dimm_populated, +			 unsigned char *iic0_dimm_addr, +			 unsigned long num_dimm_banks); +static void program_copt1(unsigned long *dimm_populated, +			  unsigned char *iic0_dimm_addr, +			  unsigned long num_dimm_banks); +static void program_initplr(unsigned long *dimm_populated, +			    unsigned char *iic0_dimm_addr, +			    unsigned long num_dimm_banks, +			    ddr_cas_id_t selected_cas, +			    int write_recovery); +static unsigned long is_ecc_enabled(void); +#ifdef CONFIG_DDR_ECC +static void program_ecc(unsigned long *dimm_populated, +			unsigned char *iic0_dimm_addr, +			unsigned long num_dimm_banks, +			unsigned long tlb_word2_i_value); +static void program_ecc_addr(unsigned long start_address, +			     unsigned long num_bytes, +			     unsigned long tlb_word2_i_value); +#endif +static void program_DQS_calibration(unsigned long *dimm_populated, +				    unsigned char *iic0_dimm_addr, +				    unsigned long num_dimm_banks); +#ifdef HARD_CODED_DQS /* calibration test with hardvalues */ +static void	test(void); +#else +static void	DQS_calibration_process(void); +#endif +#if defined(DEBUG) +static void ppc440sp_sdram_register_dump(void); +#endif +int do_reset (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]); +void dcbz_area(u32 start_address, u32 num_bytes); +void dflush(void); + +static u32 mfdcr_any(u32 dcr) +{ +	u32 val; + +	switch (dcr) { +	case SDRAM_R0BAS + 0: +		val = mfdcr(SDRAM_R0BAS + 0); +		break; +	case SDRAM_R0BAS + 1: +		val = mfdcr(SDRAM_R0BAS + 1); +		break; +	case SDRAM_R0BAS + 2: +		val = mfdcr(SDRAM_R0BAS + 2); +		break; +	case SDRAM_R0BAS + 3: +		val = mfdcr(SDRAM_R0BAS + 3); +		break; +	default: +		printf("DCR %d not defined in case statement!!!\n", dcr); +		val = 0; /* just to satisfy the compiler */ +	} + +	return val; +} + +static void mtdcr_any(u32 dcr, u32 val) +{ +	switch (dcr) { +	case SDRAM_R0BAS + 0: +		mtdcr(SDRAM_R0BAS + 0, val); +		break; +	case SDRAM_R0BAS + 1: +		mtdcr(SDRAM_R0BAS + 1, val); +		break; +	case SDRAM_R0BAS + 2: +		mtdcr(SDRAM_R0BAS + 2, val); +		break; +	case SDRAM_R0BAS + 3: +		mtdcr(SDRAM_R0BAS + 3, val); +		break; +	default: +		printf("DCR %d not defined in case statement!!!\n", dcr); +	} +} + +static unsigned char spd_read(uchar chip, uint addr) +{ +	unsigned char data[2]; + +	if (i2c_probe(chip) == 0) +		if (i2c_read(chip, addr, 1, data, 1) == 0) +			return data[0]; + +	return 0; +} + +/*-----------------------------------------------------------------------------+ + * sdram_memsize + *-----------------------------------------------------------------------------*/ +static unsigned long sdram_memsize(void) +{ +	unsigned long mem_size; +	unsigned long mcopt2; +	unsigned long mcstat; +	unsigned long mb0cf; +	unsigned long sdsz; +	unsigned long i; + +	mem_size = 0; + +	mfsdram(SDRAM_MCOPT2, mcopt2); +	mfsdram(SDRAM_MCSTAT, mcstat); + +	/* DDR controller must be enabled and not in self-refresh. */ +	/* Otherwise memsize is zero. */ +	if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE) +	    && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT) +	    && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK)) +		== (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) { +		for (i = 0; i < MAXBXCF; i++) { +			mfsdram(SDRAM_MB0CF + (i << 2), mb0cf); +			/* Banks enabled */ +			if ((mb0cf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { +				sdsz = mfdcr_any(SDRAM_R0BAS + i) & SDRAM_RXBAS_SDSZ_MASK; + +				switch(sdsz) { +				case SDRAM_RXBAS_SDSZ_8: +					mem_size+=8; +					break; +				case SDRAM_RXBAS_SDSZ_16: +					mem_size+=16; +					break; +				case SDRAM_RXBAS_SDSZ_32: +					mem_size+=32; +					break; +				case SDRAM_RXBAS_SDSZ_64: +					mem_size+=64; +					break; +				case SDRAM_RXBAS_SDSZ_128: +					mem_size+=128; +					break; +				case SDRAM_RXBAS_SDSZ_256: +					mem_size+=256; +					break; +				case SDRAM_RXBAS_SDSZ_512: +					mem_size+=512; +					break; +				case SDRAM_RXBAS_SDSZ_1024: +					mem_size+=1024; +					break; +				case SDRAM_RXBAS_SDSZ_2048: +					mem_size+=2048; +					break; +				case SDRAM_RXBAS_SDSZ_4096: +					mem_size+=4096; +					break; +				default: +					mem_size=0; +					break; +				} +			} +		} +	} + +	mem_size *= 1024 * 1024; +	return(mem_size); +} + +/*-----------------------------------------------------------------------------+ + * initdram.  Initializes the 440SP Memory Queue and DDR SDRAM controller. + * Note: This routine runs from flash with a stack set up in the chip's + * sram space.  It is important that the routine does not require .sbss, .bss or + * .data sections.  It also cannot call routines that require these sections. + *-----------------------------------------------------------------------------*/ +/*----------------------------------------------------------------------------- + * Function:	 initdram + * Description:  Configures SDRAM memory banks for DDR operation. + *		 Auto Memory Configuration option reads the DDR SDRAM EEPROMs + *		 via the IIC bus and then configures the DDR SDRAM memory + *		 banks appropriately. If Auto Memory Configuration is + *		 not used, it is assumed that no DIMM is plugged + *-----------------------------------------------------------------------------*/ +long int initdram(int board_type) +{ +	unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; +	unsigned char spd0[MAX_SPD_BYTES]; +	unsigned char spd1[MAX_SPD_BYTES]; +	unsigned char *dimm_spd[MAXDIMMS]; +	unsigned long dimm_populated[MAXDIMMS]; +	unsigned long num_dimm_banks;		    /* on board dimm banks */ +	unsigned long val; +	ddr_cas_id_t  selected_cas; +	int write_recovery; +	unsigned long dram_size = 0; + +	num_dimm_banks = sizeof(iic0_dimm_addr); + +	/*------------------------------------------------------------------ +	 * Set up an array of SPD matrixes. +	 *-----------------------------------------------------------------*/ +	dimm_spd[0] = spd0; +	dimm_spd[1] = spd1; + +	/*------------------------------------------------------------------ +	 * Reset the DDR-SDRAM controller. +	 *-----------------------------------------------------------------*/ +	mtsdr(SDR0_SRST, (0x80000000 >> 10)); +	mtsdr(SDR0_SRST, 0x00000000); + +	/* +	 * Make sure I2C controller is initialized +	 * before continuing. +	 */ + +	/* switch to correct I2C bus */ +	I2C_SET_BUS(CFG_SPD_BUS_NUM); +	i2c_init(CFG_I2C_SPEED, CFG_I2C_SLAVE); + +	/*------------------------------------------------------------------ +	 * Clear out the serial presence detect buffers. +	 * Perform IIC reads from the dimm.  Fill in the spds. +	 * Check to see if the dimm slots are populated +	 *-----------------------------------------------------------------*/ +	get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Check the memory type for the dimms plugged. +	 *-----------------------------------------------------------------*/ +	check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Check the frequency supported for the dimms plugged. +	 *-----------------------------------------------------------------*/ +	check_frequency(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Check the total rank number. +	 *-----------------------------------------------------------------*/ +	check_rank_number(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Check the voltage type for the dimms plugged. +	 *-----------------------------------------------------------------*/ +	check_voltage_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Program SDRAM controller options 2 register +	 * Except Enabling of the memory controller. +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_MCOPT2, val); +	mtsdram(SDRAM_MCOPT2, +		(val & +		 ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_PMEN_MASK | +		   SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_XSRP_MASK | +		   SDRAM_MCOPT2_ISIE_MASK)) +		| (SDRAM_MCOPT2_SREN_ENTER | SDRAM_MCOPT2_PMEN_DISABLE | +		   SDRAM_MCOPT2_IPTR_IDLE | SDRAM_MCOPT2_XSRP_ALLOW | +		   SDRAM_MCOPT2_ISIE_ENABLE)); + +	/*------------------------------------------------------------------ +	 * Program SDRAM controller options 1 register +	 * Note: Does not enable the memory controller. +	 *-----------------------------------------------------------------*/ +	program_copt1(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Set the SDRAM Controller On Die Termination Register +	 *-----------------------------------------------------------------*/ +	program_codt(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Program SDRAM refresh register. +	 *-----------------------------------------------------------------*/ +	program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Program SDRAM mode register. +	 *-----------------------------------------------------------------*/ +	program_mode(dimm_populated, iic0_dimm_addr, num_dimm_banks, +		     &selected_cas, &write_recovery); + +	/*------------------------------------------------------------------ +	 * Set the SDRAM Write Data/DM/DQS Clock Timing Reg +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_WRDTR, val); +	mtsdram(SDRAM_WRDTR, (val & ~(SDRAM_WRDTR_LLWP_MASK | SDRAM_WRDTR_WTR_MASK)) | +		(SDRAM_WRDTR_LLWP_1_CYC | SDRAM_WRDTR_WTR_90_DEG_ADV)); + +	/*------------------------------------------------------------------ +	 * Set the SDRAM Clock Timing Register +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_CLKTR, val); +	mtsdram(SDRAM_CLKTR, (val & ~SDRAM_CLKTR_CLKP_MASK) | SDRAM_CLKTR_CLKP_0_DEG); + +	/*------------------------------------------------------------------ +	 * Program the BxCF registers. +	 *-----------------------------------------------------------------*/ +	program_bxcf(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Program SDRAM timing registers. +	 *-----------------------------------------------------------------*/ +	program_tr(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Set the Extended Mode register +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_MEMODE, val); +	mtsdram(SDRAM_MEMODE, +		(val & ~(SDRAM_MEMODE_DIC_MASK  | SDRAM_MEMODE_DLL_MASK | +			 SDRAM_MEMODE_RTT_MASK | SDRAM_MEMODE_DQS_MASK)) | +		(SDRAM_MEMODE_DIC_NORMAL | SDRAM_MEMODE_DLL_ENABLE +		 | SDRAM_MEMODE_RTT_150OHM | SDRAM_MEMODE_DQS_ENABLE)); + +	/*------------------------------------------------------------------ +	 * Program Initialization preload registers. +	 *-----------------------------------------------------------------*/ +	program_initplr(dimm_populated, iic0_dimm_addr, num_dimm_banks, +			selected_cas, write_recovery); + +	/*------------------------------------------------------------------ +	 * Delay to ensure 200usec have elapsed since reset. +	 *-----------------------------------------------------------------*/ +	udelay(400); + +	/*------------------------------------------------------------------ +	 * Set the memory queue core base addr. +	 *-----------------------------------------------------------------*/ +	program_memory_queue(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Program SDRAM controller options 2 register +	 * Enable the memory controller. +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_MCOPT2, val); +	mtsdram(SDRAM_MCOPT2, +		(val & ~(SDRAM_MCOPT2_SREN_MASK | SDRAM_MCOPT2_DCEN_MASK | +			 SDRAM_MCOPT2_IPTR_MASK | SDRAM_MCOPT2_ISIE_MASK)) | +		(SDRAM_MCOPT2_DCEN_ENABLE | SDRAM_MCOPT2_IPTR_EXECUTE)); + +	/*------------------------------------------------------------------ +	 * Wait for SDRAM_CFG0_DC_EN to complete. +	 *-----------------------------------------------------------------*/ +	do { +		mfsdram(SDRAM_MCSTAT, val); +	} while ((val & SDRAM_MCSTAT_MIC_MASK) == SDRAM_MCSTAT_MIC_NOTCOMP); + +	/* get installed memory size */ +	dram_size = sdram_memsize(); + +	/* and program tlb entries for this size (dynamic) */ +	program_tlb(0, dram_size, MY_TLB_WORD2_I_ENABLE); + +	/*------------------------------------------------------------------ +	 * DQS calibration. +	 *-----------------------------------------------------------------*/ +	program_DQS_calibration(dimm_populated, iic0_dimm_addr, num_dimm_banks); + +#ifdef CONFIG_DDR_ECC +	/*------------------------------------------------------------------ +	 * If ecc is enabled, initialize the parity bits. +	 *-----------------------------------------------------------------*/ +	program_ecc(dimm_populated, iic0_dimm_addr, num_dimm_banks, MY_TLB_WORD2_I_ENABLE); +#endif + +#ifdef DEBUG +	ppc440sp_sdram_register_dump(); +#endif + +	return dram_size; +} + +static void get_spd_info(unsigned long *dimm_populated, +			 unsigned char *iic0_dimm_addr, +			 unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long dimm_found; +	unsigned char num_of_bytes; +	unsigned char total_size; + +	dimm_found = FALSE; +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		num_of_bytes = 0; +		total_size = 0; + +		num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); +		debug("\nspd_read(0x%x) returned %d\n", +		      iic0_dimm_addr[dimm_num], num_of_bytes); +		total_size = spd_read(iic0_dimm_addr[dimm_num], 1); +		debug("spd_read(0x%x) returned %d\n", +		      iic0_dimm_addr[dimm_num], total_size); + +		if ((num_of_bytes != 0) && (total_size != 0)) { +			dimm_populated[dimm_num] = TRUE; +			dimm_found = TRUE; +			debug("DIMM slot %lu: populated\n", dimm_num); +		} else { +			dimm_populated[dimm_num] = FALSE; +			debug("DIMM slot %lu: Not populated\n", dimm_num); +		} +	} + +	if (dimm_found == FALSE) { +		printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n"); +		hang(); +	} +} + +#ifdef CONFIG_ADD_RAM_INFO +void board_add_ram_info(int use_default) +{ +	PPC440_SYS_INFO board_cfg; +	u32 val; + +	if (is_ecc_enabled()) +		puts(" (ECC"); +	else +		puts(" (ECC not"); + +	get_sys_info(&board_cfg); + +	mfsdr(SDR0_DDR0, val); +	val = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(val), 1); +	printf(" enabled, %d MHz", (val * 2) / 1000000); + +	mfsdram(SDRAM_MMODE, val); +	val = (val & SDRAM_MMODE_DCL_MASK) >> 4; +	printf(", CL%d)", val); +} +#endif + +/*------------------------------------------------------------------ + * For the memory DIMMs installed, this routine verifies that they + * really are DDR specific DIMMs. + *-----------------------------------------------------------------*/ +static void check_mem_type(unsigned long *dimm_populated, +			   unsigned char *iic0_dimm_addr, +			   unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long dimm_type; + +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_populated[dimm_num] == TRUE) { +			dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2); +			switch (dimm_type) { +			case 1: +				printf("ERROR: Standard Fast Page Mode DRAM DIMM detected in " +				       "slot %d.\n", (unsigned int)dimm_num); +				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); +				printf("Replace the DIMM module with a supported DIMM.\n\n"); +				hang(); +				break; +			case 2: +				printf("ERROR: EDO DIMM detected in slot %d.\n", +				       (unsigned int)dimm_num); +				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); +				printf("Replace the DIMM module with a supported DIMM.\n\n"); +				hang(); +				break; +			case 3: +				printf("ERROR: Pipelined Nibble DIMM detected in slot %d.\n", +				       (unsigned int)dimm_num); +				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); +				printf("Replace the DIMM module with a supported DIMM.\n\n"); +				hang(); +				break; +			case 4: +				printf("ERROR: SDRAM DIMM detected in slot %d.\n", +				       (unsigned int)dimm_num); +				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); +				printf("Replace the DIMM module with a supported DIMM.\n\n"); +				hang(); +				break; +			case 5: +				printf("ERROR: Multiplexed ROM DIMM detected in slot %d.\n", +				       (unsigned int)dimm_num); +				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); +				printf("Replace the DIMM module with a supported DIMM.\n\n"); +				hang(); +				break; +			case 6: +				printf("ERROR: SGRAM DIMM detected in slot %d.\n", +				       (unsigned int)dimm_num); +				printf("Only DDR and DDR2 SDRAM DIMMs are supported.\n"); +				printf("Replace the DIMM module with a supported DIMM.\n\n"); +				hang(); +				break; +			case 7: +				debug("DIMM slot %d: DDR1 SDRAM detected\n", dimm_num); +				dimm_populated[dimm_num] = SDRAM_DDR1; +				break; +			case 8: +				debug("DIMM slot %d: DDR2 SDRAM detected\n", dimm_num); +				dimm_populated[dimm_num] = SDRAM_DDR2; +				break; +			default: +				printf("ERROR: Unknown DIMM detected in slot %d.\n", +				       (unsigned int)dimm_num); +				printf("Only DDR1 and DDR2 SDRAM DIMMs are supported.\n"); +				printf("Replace the DIMM module with a supported DIMM.\n\n"); +				hang(); +				break; +			} +		} +	} +	for (dimm_num = 1; dimm_num < num_dimm_banks; dimm_num++) { +		if ((dimm_populated[dimm_num-1] != SDRAM_NONE) +		    && (dimm_populated[dimm_num]   != SDRAM_NONE) +		    && (dimm_populated[dimm_num-1] != dimm_populated[dimm_num])) { +			printf("ERROR: DIMM's DDR1 and DDR2 type can not be mixed.\n"); +			hang(); +		} +	} +} + +/*------------------------------------------------------------------ + * For the memory DIMMs installed, this routine verifies that + * frequency previously calculated is supported. + *-----------------------------------------------------------------*/ +static void check_frequency(unsigned long *dimm_populated, +			    unsigned char *iic0_dimm_addr, +			    unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long tcyc_reg; +	unsigned long cycle_time; +	unsigned long calc_cycle_time; +	unsigned long sdram_freq; +	unsigned long sdr_ddrpll; +	PPC440_SYS_INFO board_cfg; + +	/*------------------------------------------------------------------ +	 * Get the board configuration info. +	 *-----------------------------------------------------------------*/ +	get_sys_info(&board_cfg); + +	mfsdr(SDR0_DDR0, sdr_ddrpll); +	sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); + +	/* +	 * calc_cycle_time is calculated from DDR frequency set by board/chip +	 * and is expressed in multiple of 10 picoseconds +	 * to match the way DIMM cycle time is calculated below. +	 */ +	calc_cycle_time = MULDIV64(ONE_BILLION, 100, sdram_freq); + +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_populated[dimm_num] != SDRAM_NONE) { +			tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); +			/* +			 * Byte 9, Cycle time for CAS Latency=X, is split into two nibbles: +			 * the higher order nibble (bits 4-7) designates the cycle time +			 * to a granularity of 1ns; +			 * the value presented by the lower order nibble (bits 0-3) +			 * has a granularity of .1ns and is added to the value designated +			 * by the higher nibble. In addition, four lines of the lower order +			 * nibble are assigned to support +.25,+.33, +.66 and +.75. +			 */ +			 /* Convert from hex to decimal */ +			if ((tcyc_reg & 0x0F) == 0x0D) +				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 75; +			else if ((tcyc_reg & 0x0F) == 0x0C) +				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 66; +			else if ((tcyc_reg & 0x0F) == 0x0B) +				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 33; +			else if ((tcyc_reg & 0x0F) == 0x0A) +				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + 25; +			else +				cycle_time = (((tcyc_reg & 0xF0) >> 4) * 100) + +					((tcyc_reg & 0x0F)*10); +			debug("cycle_time=%d [10 picoseconds]\n", cycle_time); + +			if  (cycle_time > (calc_cycle_time + 10)) { +				/* +				 * the provided sdram cycle_time is too small +				 * for the available DIMM cycle_time. +				 * The additionnal 100ps is here to accept a small incertainty. +				 */ +				printf("ERROR: DRAM DIMM detected with cycle_time %d ps in " +				       "slot %d \n while calculated cycle time is %d ps.\n", +				       (unsigned int)(cycle_time*10), +				       (unsigned int)dimm_num, +				       (unsigned int)(calc_cycle_time*10)); +				printf("Replace the DIMM, or change DDR frequency via " +				       "strapping bits.\n\n"); +				hang(); +			} +		} +	} +} + +/*------------------------------------------------------------------ + * For the memory DIMMs installed, this routine verifies two + * ranks/banks maximum are availables. + *-----------------------------------------------------------------*/ +static void check_rank_number(unsigned long *dimm_populated, +			      unsigned char *iic0_dimm_addr, +			      unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long dimm_rank; +	unsigned long total_rank = 0; + +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_populated[dimm_num] != SDRAM_NONE) { +			dimm_rank = spd_read(iic0_dimm_addr[dimm_num], 5); +			if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) +				dimm_rank = (dimm_rank & 0x0F) +1; +			else +				dimm_rank = dimm_rank & 0x0F; + + +			if (dimm_rank > MAXRANKS) { +				printf("ERROR: DRAM DIMM detected with %d ranks in " +				       "slot %d is not supported.\n", dimm_rank, dimm_num); +				printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS); +				printf("Replace the DIMM module with a supported DIMM.\n\n"); +				hang(); +			} else +				total_rank += dimm_rank; +		} +		if (total_rank > MAXRANKS) { +			printf("ERROR: DRAM DIMM detected with a total of %d ranks " +			       "for all slots.\n", (unsigned int)total_rank); +			printf("Only %d ranks are supported for all DIMM.\n", MAXRANKS); +			printf("Remove one of the DIMM modules.\n\n"); +			hang(); +		} +	} +} + +/*------------------------------------------------------------------ + * only support 2.5V modules. + * This routine verifies this. + *-----------------------------------------------------------------*/ +static void check_voltage_type(unsigned long *dimm_populated, +			       unsigned char *iic0_dimm_addr, +			       unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long voltage_type; + +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_populated[dimm_num] != SDRAM_NONE) { +			voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); +			switch (voltage_type) { +			case 0x00: +				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); +				printf("This DIMM is 5.0 Volt/TTL.\n"); +				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", +				       (unsigned int)dimm_num); +				hang(); +				break; +			case 0x01: +				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); +				printf("This DIMM is LVTTL.\n"); +				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", +				       (unsigned int)dimm_num); +				hang(); +				break; +			case 0x02: +				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); +				printf("This DIMM is 1.5 Volt.\n"); +				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", +				       (unsigned int)dimm_num); +				hang(); +				break; +			case 0x03: +				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); +				printf("This DIMM is 3.3 Volt/TTL.\n"); +				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", +				       (unsigned int)dimm_num); +				hang(); +				break; +			case 0x04: +				/* 2.5 Voltage only for DDR1 */ +				break; +			case 0x05: +				/* 1.8 Voltage only for DDR2 */ +				break; +			default: +				printf("ERROR: Only DIMMs DDR 2.5V or DDR2 1.8V are supported.\n"); +				printf("Replace the DIMM module in slot %d with a supported DIMM.\n\n", +				       (unsigned int)dimm_num); +				hang(); +				break; +			} +		} +	} +} + +/*-----------------------------------------------------------------------------+ + * program_copt1. + *-----------------------------------------------------------------------------*/ +static void program_copt1(unsigned long *dimm_populated, +			  unsigned char *iic0_dimm_addr, +			  unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long mcopt1; +	unsigned long ecc_enabled; +	unsigned long ecc = 0; +	unsigned long data_width = 0; +	unsigned long dimm_32bit; +	unsigned long dimm_64bit; +	unsigned long registered = 0; +	unsigned long attribute = 0; +	unsigned long buf0, buf1; /* TODO: code to be changed for IOP1.6 to support 4 DIMMs */ +	unsigned long bankcount; +	unsigned long ddrtype; +	unsigned long val; + +#ifdef CONFIG_DDR_ECC +	ecc_enabled = TRUE; +#else +	ecc_enabled = FALSE; +#endif +	dimm_32bit = FALSE; +	dimm_64bit = FALSE; +	buf0 = FALSE; +	buf1 = FALSE; + +	/*------------------------------------------------------------------ +	 * Set memory controller options reg 1, SDRAM_MCOPT1. +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_MCOPT1, val); +	mcopt1 = val & ~(SDRAM_MCOPT1_MCHK_MASK | SDRAM_MCOPT1_RDEN_MASK | +			 SDRAM_MCOPT1_PMU_MASK  | SDRAM_MCOPT1_DMWD_MASK | +			 SDRAM_MCOPT1_UIOS_MASK | SDRAM_MCOPT1_BCNT_MASK | +			 SDRAM_MCOPT1_DDR_TYPE_MASK | SDRAM_MCOPT1_RWOO_MASK | +			 SDRAM_MCOPT1_WOOO_MASK | SDRAM_MCOPT1_DCOO_MASK | +			 SDRAM_MCOPT1_DREF_MASK); + +	mcopt1 |= SDRAM_MCOPT1_QDEP; +	mcopt1 |= SDRAM_MCOPT1_PMU_OPEN; +	mcopt1 |= SDRAM_MCOPT1_RWOO_DISABLED; +	mcopt1 |= SDRAM_MCOPT1_WOOO_DISABLED; +	mcopt1 |= SDRAM_MCOPT1_DCOO_DISABLED; +	mcopt1 |= SDRAM_MCOPT1_DREF_NORMAL; + +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_populated[dimm_num] != SDRAM_NONE) { +			/* test ecc support */ +			ecc = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 11); +			if (ecc != 0x02) /* ecc not supported */ +				ecc_enabled = FALSE; + +			/* test bank count */ +			bankcount = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 17); +			if (bankcount == 0x04) /* bank count = 4 */ +				mcopt1 |= SDRAM_MCOPT1_4_BANKS; +			else /* bank count = 8 */ +				mcopt1 |= SDRAM_MCOPT1_8_BANKS; + +			/* test DDR type */ +			ddrtype = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2); +			/* test for buffered/unbuffered, registered, differential clocks */ +			registered = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 20); +			attribute = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 21); + +			/* TODO: code to be changed for IOP1.6 to support 4 DIMMs */ +			if (dimm_num == 0) { +				if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */ +					mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE; +				if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */ +					mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE; +				if (registered == 1) { /* DDR2 always buffered */ +					/* TODO: what about above  comments ? */ +					mcopt1 |= SDRAM_MCOPT1_RDEN; +					buf0 = TRUE; +				} else { +					/* TODO: the mask 0x02 doesn't match Samsung def for byte 21. */ +					if ((attribute & 0x02) == 0x00) { +						/* buffered not supported */ +						buf0 = FALSE; +					} else { +						mcopt1 |= SDRAM_MCOPT1_RDEN; +						buf0 = TRUE; +					} +				} +			} +			else if (dimm_num == 1) { +				if (dimm_populated[dimm_num] == SDRAM_DDR1) /* DDR1 type */ +					mcopt1 |= SDRAM_MCOPT1_DDR1_TYPE; +				if (dimm_populated[dimm_num] == SDRAM_DDR2) /* DDR2 type */ +					mcopt1 |= SDRAM_MCOPT1_DDR2_TYPE; +				if (registered == 1) { +					/* DDR2 always buffered */ +					mcopt1 |= SDRAM_MCOPT1_RDEN; +					buf1 = TRUE; +				} else { +					if ((attribute & 0x02) == 0x00) { +						/* buffered not supported */ +						buf1 = FALSE; +					} else { +						mcopt1 |= SDRAM_MCOPT1_RDEN; +						buf1 = TRUE; +					} +				} +			} + +			/* Note that for DDR2 the byte 7 is reserved, but OK to keep code as is. */ +			data_width = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 6) + +				(((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 7)) << 8); + +			switch (data_width) { +			case 72: +			case 64: +				dimm_64bit = TRUE; +				break; +			case 40: +			case 32: +				dimm_32bit = TRUE; +				break; +			default: +				printf("WARNING: Detected a DIMM with a data width of %d bits.\n", +				       data_width); +				printf("Only DIMMs with 32 or 64 bit DDR-SDRAM widths are supported.\n"); +				break; +			} +		} +	} + +	/* verify matching properties */ +	if ((dimm_populated[0] != SDRAM_NONE) && (dimm_populated[1] != SDRAM_NONE)) { +		if (buf0 != buf1) { +			printf("ERROR: DIMM's buffered/unbuffered, registered, clocking don't match.\n"); +			hang(); +		} +	} + +	if ((dimm_64bit == TRUE) && (dimm_32bit == TRUE)) { +		printf("ERROR: Cannot mix 32 bit and 64 bit DDR-SDRAM DIMMs together.\n"); +		hang(); +	} +	else if ((dimm_64bit == TRUE) && (dimm_32bit == FALSE)) { +		mcopt1 |= SDRAM_MCOPT1_DMWD_64; +	} else if ((dimm_64bit == FALSE) && (dimm_32bit == TRUE)) { +		mcopt1 |= SDRAM_MCOPT1_DMWD_32; +	} else { +		printf("ERROR: Please install only 32 or 64 bit DDR-SDRAM DIMMs.\n\n"); +		hang(); +	} + +	if (ecc_enabled == TRUE) +		mcopt1 |= SDRAM_MCOPT1_MCHK_GEN; +	else +		mcopt1 |= SDRAM_MCOPT1_MCHK_NON; + +	mtsdram(SDRAM_MCOPT1, mcopt1); +} + +/*-----------------------------------------------------------------------------+ + * program_codt. + *-----------------------------------------------------------------------------*/ +static void program_codt(unsigned long *dimm_populated, +			 unsigned char *iic0_dimm_addr, +			 unsigned long num_dimm_banks) +{ +	unsigned long codt; +	unsigned long modt0 = 0; +	unsigned long modt1 = 0; +	unsigned long modt2 = 0; +	unsigned long modt3 = 0; +	unsigned char dimm_num; +	unsigned char dimm_rank; +	unsigned char total_rank = 0; +	unsigned char total_dimm = 0; +	unsigned char dimm_type = 0; +	unsigned char firstSlot = 0; + +	/*------------------------------------------------------------------ +	 * Set the SDRAM Controller On Die Termination Register +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_CODT, codt); +	codt |= (SDRAM_CODT_IO_NMODE +		 & (~SDRAM_CODT_DQS_SINGLE_END +		    & ~SDRAM_CODT_CKSE_SINGLE_END +		    & ~SDRAM_CODT_FEEBBACK_RCV_SINGLE_END +		    & ~SDRAM_CODT_FEEBBACK_DRV_SINGLE_END)); + +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_populated[dimm_num] != SDRAM_NONE) { +			dimm_rank = (unsigned long)spd_read(iic0_dimm_addr[dimm_num], 5); +			if (((unsigned long)spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) { +				dimm_rank = (dimm_rank & 0x0F) + 1; +				dimm_type = SDRAM_DDR2; +			} else { +				dimm_rank = dimm_rank & 0x0F; +				dimm_type = SDRAM_DDR1; +			} + +			total_rank += dimm_rank; +			total_dimm++; +			if ((dimm_num == 0) && (total_dimm == 1)) +				firstSlot = TRUE; +			else +				firstSlot = FALSE; +		} +	} +	if (dimm_type == SDRAM_DDR2) { +		codt |= SDRAM_CODT_DQS_1_8_V_DDR2; +		if ((total_dimm == 1) && (firstSlot == TRUE)) { +			if (total_rank == 1) { +				codt |= CALC_ODT_R(0); +				modt0 = CALC_ODT_W(0); +				modt1 = 0x00000000; +				modt2 = 0x00000000; +				modt3 = 0x00000000; +			} +			if (total_rank == 2) { +				codt |= CALC_ODT_R(0) | CALC_ODT_R(1); +				modt0 = CALC_ODT_W(0); +				modt1 = CALC_ODT_W(0); +				modt2 = 0x00000000; +				modt3 = 0x00000000; +			} +		} else if ((total_dimm == 1) && (firstSlot != TRUE)) { +			if (total_rank == 1) { +				codt |= CALC_ODT_R(2); +				modt0 = 0x00000000; +				modt1 = 0x00000000; +				modt2 = CALC_ODT_W(2); +				modt3 = 0x00000000; +			} +			if (total_rank == 2) { +				codt |= CALC_ODT_R(2) | CALC_ODT_R(3); +				modt0 = 0x00000000; +				modt1 = 0x00000000; +				modt2 = CALC_ODT_W(2); +				modt3 = CALC_ODT_W(2); +			} +		} +		if (total_dimm == 2) { +			if (total_rank == 2) { +				codt |= CALC_ODT_R(0) | CALC_ODT_R(2); +				modt0 = CALC_ODT_RW(2); +				modt1 = 0x00000000; +				modt2 = CALC_ODT_RW(0); +				modt3 = 0x00000000; +			} +			if (total_rank == 4) { +				codt |= CALC_ODT_R(0) | CALC_ODT_R(1) | CALC_ODT_R(2) | CALC_ODT_R(3); +				modt0 = CALC_ODT_RW(2); +				modt1 = 0x00000000; +				modt2 = CALC_ODT_RW(0); +				modt3 = 0x00000000; +			} +		} +	} else { +		codt |= SDRAM_CODT_DQS_2_5_V_DDR1; +		modt0 = 0x00000000; +		modt1 = 0x00000000; +		modt2 = 0x00000000; +		modt3 = 0x00000000; + +		if (total_dimm == 1) { +			if (total_rank == 1) +				codt |= 0x00800000; +			if (total_rank == 2) +				codt |= 0x02800000; +		} +		if (total_dimm == 2) { +			if (total_rank == 2) +				codt |= 0x08800000; +			if (total_rank == 4) +				codt |= 0x2a800000; +		} +	} + +	debug("nb of dimm %d\n", total_dimm); +	debug("nb of rank %d\n", total_rank); +	if (total_dimm == 1) +		debug("dimm in slot %d\n", firstSlot); + +	mtsdram(SDRAM_CODT, codt); +	mtsdram(SDRAM_MODT0, modt0); +	mtsdram(SDRAM_MODT1, modt1); +	mtsdram(SDRAM_MODT2, modt2); +	mtsdram(SDRAM_MODT3, modt3); +} + +/*-----------------------------------------------------------------------------+ + * program_initplr. + *-----------------------------------------------------------------------------*/ +static void program_initplr(unsigned long *dimm_populated, +			    unsigned char *iic0_dimm_addr, +			    unsigned long num_dimm_banks, +			    ddr_cas_id_t selected_cas, +			    int write_recovery) +{ +	u32 cas = 0; +	u32 odt = 0; +	u32 ods = 0; +	u32 mr; +	u32 wr; +	u32 emr; +	u32 emr2; +	u32 emr3; +	int dimm_num; +	int total_dimm = 0; + +	/****************************************************** +	 ** Assumption: if more than one DIMM, all DIMMs are the same +	 **		as already checked in check_memory_type +	 ******************************************************/ + +	if ((dimm_populated[0] == SDRAM_DDR1) || (dimm_populated[1] == SDRAM_DDR1)) { +		mtsdram(SDRAM_INITPLR0, 0x81B80000); +		mtsdram(SDRAM_INITPLR1, 0x81900400); +		mtsdram(SDRAM_INITPLR2, 0x81810000); +		mtsdram(SDRAM_INITPLR3, 0xff800162); +		mtsdram(SDRAM_INITPLR4, 0x81900400); +		mtsdram(SDRAM_INITPLR5, 0x86080000); +		mtsdram(SDRAM_INITPLR6, 0x86080000); +		mtsdram(SDRAM_INITPLR7, 0x81000062); +	} else if ((dimm_populated[0] == SDRAM_DDR2) || (dimm_populated[1] == SDRAM_DDR2)) { +		switch (selected_cas) { +		case DDR_CAS_3: +			cas = 3 << 4; +			break; +		case DDR_CAS_4: +			cas = 4 << 4; +			break; +		case DDR_CAS_5: +			cas = 5 << 4; +			break; +		default: +			printf("ERROR: ucode error on selected_cas value %d", selected_cas); +			hang(); +			break; +		} + +#if 0 +		/* +		 * ToDo - Still a problem with the write recovery: +		 * On the Corsair CM2X512-5400C4 module, setting write recovery +		 * in the INITPLR reg to the value calculated in program_mode() +		 * results in not correctly working DDR2 memory (crash after +		 * relocation). +		 * +		 * So for now, set the write recovery to 3. This seems to work +		 * on the Corair module too. +		 * +		 * 2007-03-01, sr +		 */ +		switch (write_recovery) { +		case 3: +			wr = WRITE_RECOV_3; +			break; +		case 4: +			wr = WRITE_RECOV_4; +			break; +		case 5: +			wr = WRITE_RECOV_5; +			break; +		case 6: +			wr = WRITE_RECOV_6; +			break; +		default: +			printf("ERROR: write recovery not support (%d)", write_recovery); +			hang(); +			break; +		} +#else +		wr = WRITE_RECOV_3; /* test-only, see description above */ +#endif + +		for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) +			if (dimm_populated[dimm_num] != SDRAM_NONE) +				total_dimm++; +		if (total_dimm == 1) { +			odt = ODT_150_OHM; +			ods = ODS_FULL; +		} else if (total_dimm == 2) { +			odt = ODT_75_OHM; +			ods = ODS_REDUCED; +		} else { +			printf("ERROR: Unsupported number of DIMM's (%d)", total_dimm); +			hang(); +		} + +		mr = CMD_EMR | SELECT_MR | BURST_LEN_4 | wr | cas; +		emr = CMD_EMR | SELECT_EMR | odt | ods; +		emr2 = CMD_EMR | SELECT_EMR2; +		emr3 = CMD_EMR | SELECT_EMR3; +		mtsdram(SDRAM_INITPLR0,  0xB5000000 | CMD_NOP);		/* NOP */ +		udelay(1000); +		mtsdram(SDRAM_INITPLR1,  0x82000400 | CMD_PRECHARGE);	/* precharge 8 DDR clock cycle */ +		mtsdram(SDRAM_INITPLR2,  0x80800000 | emr2);		/* EMR2 */ +		mtsdram(SDRAM_INITPLR3,  0x80800000 | emr3);		/* EMR3 */ +		mtsdram(SDRAM_INITPLR4,  0x80800000 | emr);		/* EMR DLL ENABLE */ +		mtsdram(SDRAM_INITPLR5,  0x80800000 | mr | DLL_RESET);	/* MR w/ DLL reset */ +		udelay(1000); +		mtsdram(SDRAM_INITPLR6,  0x82000400 | CMD_PRECHARGE);	/* precharge 8 DDR clock cycle */ +		mtsdram(SDRAM_INITPLR7,  0x8a000000 | CMD_REFRESH);	/* Refresh  50 DDR clock cycle */ +		mtsdram(SDRAM_INITPLR8,  0x8a000000 | CMD_REFRESH);	/* Refresh  50 DDR clock cycle */ +		mtsdram(SDRAM_INITPLR9,  0x8a000000 | CMD_REFRESH);	/* Refresh  50 DDR clock cycle */ +		mtsdram(SDRAM_INITPLR10, 0x8a000000 | CMD_REFRESH);	/* Refresh  50 DDR clock cycle */ +		mtsdram(SDRAM_INITPLR11, 0x80000000 | mr);		/* MR w/o DLL reset */ +		mtsdram(SDRAM_INITPLR12, 0x80800380 | emr);		/* EMR OCD Default */ +		mtsdram(SDRAM_INITPLR13, 0x80800000 | emr);		/* EMR OCD Exit */ +	} else { +		printf("ERROR: ucode error as unknown DDR type in program_initplr"); +		hang(); +	} +} + +/*------------------------------------------------------------------ + * This routine programs the SDRAM_MMODE register. + * the selected_cas is an output parameter, that will be passed + * by caller to call the above program_initplr( ) + *-----------------------------------------------------------------*/ +static void program_mode(unsigned long *dimm_populated, +			 unsigned char *iic0_dimm_addr, +			 unsigned long num_dimm_banks, +			 ddr_cas_id_t *selected_cas, +			 int *write_recovery) +{ +	unsigned long dimm_num; +	unsigned long sdram_ddr1; +	unsigned long t_wr_ns; +	unsigned long t_wr_clk; +	unsigned long cas_bit; +	unsigned long cas_index; +	unsigned long sdram_freq; +	unsigned long ddr_check; +	unsigned long mmode; +	unsigned long tcyc_reg; +	unsigned long cycle_2_0_clk; +	unsigned long cycle_2_5_clk; +	unsigned long cycle_3_0_clk; +	unsigned long cycle_4_0_clk; +	unsigned long cycle_5_0_clk; +	unsigned long max_2_0_tcyc_ns_x_100; +	unsigned long max_2_5_tcyc_ns_x_100; +	unsigned long max_3_0_tcyc_ns_x_100; +	unsigned long max_4_0_tcyc_ns_x_100; +	unsigned long max_5_0_tcyc_ns_x_100; +	unsigned long cycle_time_ns_x_100[3]; +	PPC440_SYS_INFO board_cfg; +	unsigned char cas_2_0_available; +	unsigned char cas_2_5_available; +	unsigned char cas_3_0_available; +	unsigned char cas_4_0_available; +	unsigned char cas_5_0_available; +	unsigned long sdr_ddrpll; + +	/*------------------------------------------------------------------ +	 * Get the board configuration info. +	 *-----------------------------------------------------------------*/ +	get_sys_info(&board_cfg); + +	mfsdr(SDR0_DDR0, sdr_ddrpll); +	sdram_freq = MULDIV64((board_cfg.freqPLB), SDR0_DDR0_DDRM_DECODE(sdr_ddrpll), 1); +	debug("sdram_freq=%d\n", sdram_freq); + +	/*------------------------------------------------------------------ +	 * Handle the timing.  We need to find the worst case timing of all +	 * the dimm modules installed. +	 *-----------------------------------------------------------------*/ +	t_wr_ns = 0; +	cas_2_0_available = TRUE; +	cas_2_5_available = TRUE; +	cas_3_0_available = TRUE; +	cas_4_0_available = TRUE; +	cas_5_0_available = TRUE; +	max_2_0_tcyc_ns_x_100 = 10; +	max_2_5_tcyc_ns_x_100 = 10; +	max_3_0_tcyc_ns_x_100 = 10; +	max_4_0_tcyc_ns_x_100 = 10; +	max_5_0_tcyc_ns_x_100 = 10; +	sdram_ddr1 = TRUE; + +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		/* If a dimm is installed in a particular slot ... */ +		if (dimm_populated[dimm_num] != SDRAM_NONE) { +			if (dimm_populated[dimm_num] == SDRAM_DDR1) +				sdram_ddr1 = TRUE; +			else +				sdram_ddr1 = FALSE; + +			/* t_wr_ns = max(t_wr_ns, (unsigned long)dimm_spd[dimm_num][36] >> 2); */ /*  not used in this loop. */ +			cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18); +			debug("cas_bit[SPD byte 18]=%02x\n", cas_bit); + +			/* For a particular DIMM, grab the three CAS values it supports */ +			for (cas_index = 0; cas_index < 3; cas_index++) { +				switch (cas_index) { +				case 0: +					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); +					break; +				case 1: +					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23); +					break; +				default: +					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25); +					break; +				} + +				if ((tcyc_reg & 0x0F) >= 10) { +					if ((tcyc_reg & 0x0F) == 0x0D) { +						/* Convert from hex to decimal */ +						cycle_time_ns_x_100[cas_index] = +							(((tcyc_reg & 0xF0) >> 4) * 100) + 75; +					} else { +						printf("ERROR: SPD reported Tcyc is incorrect for DIMM " +						       "in slot %d\n", (unsigned int)dimm_num); +						hang(); +					} +				} else { +					/* Convert from hex to decimal */ +					cycle_time_ns_x_100[cas_index] = +						(((tcyc_reg & 0xF0) >> 4) * 100) + +						((tcyc_reg & 0x0F)*10); +				} +				debug("cas_index=%d: cycle_time_ns_x_100=%d\n", cas_index, +				      cycle_time_ns_x_100[cas_index]); +			} + +			/* The rest of this routine determines if CAS 2.0, 2.5, 3.0, 4.0 and 5.0 are */ +			/* supported for a particular DIMM. */ +			cas_index = 0; + +			if (sdram_ddr1) { +				/* +				 * DDR devices use the following bitmask for CAS latency: +				 *  Bit   7    6    5    4    3    2    1    0 +				 *       TBD  4.0  3.5  3.0  2.5  2.0  1.5  1.0 +				 */ +				if (((cas_bit & 0x40) == 0x40) && (cas_index < 3) && +				    (cycle_time_ns_x_100[cas_index] != 0)) { +					max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, +								    cycle_time_ns_x_100[cas_index]); +					cas_index++; +				} else { +					if (cas_index != 0) +						cas_index++; +					cas_4_0_available = FALSE; +				} + +				if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && +				    (cycle_time_ns_x_100[cas_index] != 0)) { +					max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, +								    cycle_time_ns_x_100[cas_index]); +					cas_index++; +				} else { +					if (cas_index != 0) +						cas_index++; +					cas_3_0_available = FALSE; +				} + +				if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && +				    (cycle_time_ns_x_100[cas_index] != 0)) { +					max_2_5_tcyc_ns_x_100 = max(max_2_5_tcyc_ns_x_100, +								    cycle_time_ns_x_100[cas_index]); +					cas_index++; +				} else { +					if (cas_index != 0) +						cas_index++; +					cas_2_5_available = FALSE; +				} + +				if (((cas_bit & 0x04) == 0x04) && (cas_index < 3) && +				    (cycle_time_ns_x_100[cas_index] != 0)) { +					max_2_0_tcyc_ns_x_100 = max(max_2_0_tcyc_ns_x_100, +								    cycle_time_ns_x_100[cas_index]); +					cas_index++; +				} else { +					if (cas_index != 0) +						cas_index++; +					cas_2_0_available = FALSE; +				} +			} else { +				/* +				 * DDR2 devices use the following bitmask for CAS latency: +				 *  Bit   7    6    5    4    3    2    1    0 +				 *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD +				 */ +				if (((cas_bit & 0x20) == 0x20) && (cas_index < 3) && +				    (cycle_time_ns_x_100[cas_index] != 0)) { +					max_5_0_tcyc_ns_x_100 = max(max_5_0_tcyc_ns_x_100, +								    cycle_time_ns_x_100[cas_index]); +					cas_index++; +				} else { +					if (cas_index != 0) +						cas_index++; +					cas_5_0_available = FALSE; +				} + +				if (((cas_bit & 0x10) == 0x10) && (cas_index < 3) && +				    (cycle_time_ns_x_100[cas_index] != 0)) { +					max_4_0_tcyc_ns_x_100 = max(max_4_0_tcyc_ns_x_100, +								    cycle_time_ns_x_100[cas_index]); +					cas_index++; +				} else { +					if (cas_index != 0) +						cas_index++; +					cas_4_0_available = FALSE; +				} + +				if (((cas_bit & 0x08) == 0x08) && (cas_index < 3) && +				    (cycle_time_ns_x_100[cas_index] != 0)) { +					max_3_0_tcyc_ns_x_100 = max(max_3_0_tcyc_ns_x_100, +								    cycle_time_ns_x_100[cas_index]); +					cas_index++; +				} else { +					if (cas_index != 0) +						cas_index++; +					cas_3_0_available = FALSE; +				} +			} +		} +	} + +	/*------------------------------------------------------------------ +	 * Set the SDRAM mode, SDRAM_MMODE +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_MMODE, mmode); +	mmode = mmode & ~(SDRAM_MMODE_WR_MASK | SDRAM_MMODE_DCL_MASK); + +	/* add 10 here because of rounding problems */ +	cycle_2_0_clk = MULDIV64(ONE_BILLION, 100, max_2_0_tcyc_ns_x_100) + 10; +	cycle_2_5_clk = MULDIV64(ONE_BILLION, 100, max_2_5_tcyc_ns_x_100) + 10; +	cycle_3_0_clk = MULDIV64(ONE_BILLION, 100, max_3_0_tcyc_ns_x_100) + 10; +	cycle_4_0_clk = MULDIV64(ONE_BILLION, 100, max_4_0_tcyc_ns_x_100) + 10; +	cycle_5_0_clk = MULDIV64(ONE_BILLION, 100, max_5_0_tcyc_ns_x_100) + 10; +	debug("cycle_3_0_clk=%d\n", cycle_3_0_clk); +	debug("cycle_4_0_clk=%d\n", cycle_4_0_clk); +	debug("cycle_5_0_clk=%d\n", cycle_5_0_clk); + +	if (sdram_ddr1 == TRUE) { /* DDR1 */ +		if ((cas_2_0_available == TRUE) && (sdram_freq <= cycle_2_0_clk)) { +			mmode |= SDRAM_MMODE_DCL_DDR1_2_0_CLK; +			*selected_cas = DDR_CAS_2; +		} else if ((cas_2_5_available == TRUE) && (sdram_freq <= cycle_2_5_clk)) { +			mmode |= SDRAM_MMODE_DCL_DDR1_2_5_CLK; +			*selected_cas = DDR_CAS_2_5; +		} else if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) { +			mmode |= SDRAM_MMODE_DCL_DDR1_3_0_CLK; +			*selected_cas = DDR_CAS_3; +		} else { +			printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n"); +			printf("Only DIMMs DDR1 with CAS latencies of 2.0, 2.5, and 3.0 are supported.\n"); +			printf("Make sure the PLB speed is within the supported range of the DIMMs.\n\n"); +			hang(); +		} +	} else { /* DDR2 */ +		debug("cas_3_0_available=%d\n", cas_3_0_available); +		debug("cas_4_0_available=%d\n", cas_4_0_available); +		debug("cas_5_0_available=%d\n", cas_5_0_available); +		if ((cas_3_0_available == TRUE) && (sdram_freq <= cycle_3_0_clk)) { +			mmode |= SDRAM_MMODE_DCL_DDR2_3_0_CLK; +			*selected_cas = DDR_CAS_3; +		} else if ((cas_4_0_available == TRUE) && (sdram_freq <= cycle_4_0_clk)) { +			mmode |= SDRAM_MMODE_DCL_DDR2_4_0_CLK; +			*selected_cas = DDR_CAS_4; +		} else if ((cas_5_0_available == TRUE) && (sdram_freq <= cycle_5_0_clk)) { +			mmode |= SDRAM_MMODE_DCL_DDR2_5_0_CLK; +			*selected_cas = DDR_CAS_5; +		} else { +			printf("ERROR: Cannot find a supported CAS latency with the installed DIMMs.\n"); +			printf("Only DIMMs DDR2 with CAS latencies of 3.0, 4.0, and 5.0 are supported.\n"); +			printf("Make sure the PLB speed is within the supported range of the DIMMs.\n"); +			printf("cas3=%d cas4=%d cas5=%d\n", +			       cas_3_0_available, cas_4_0_available, cas_5_0_available); +			printf("sdram_freq=%d cycle3=%d cycle4=%d cycle5=%d\n\n", +			       sdram_freq, cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk); +			hang(); +		} +	} + +	if (sdram_ddr1 == TRUE) +		mmode |= SDRAM_MMODE_WR_DDR1; +	else { + +		/* loop through all the DIMM slots on the board */ +		for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +			/* If a dimm is installed in a particular slot ... */ +			if (dimm_populated[dimm_num] != SDRAM_NONE) +				t_wr_ns = max(t_wr_ns, +					      spd_read(iic0_dimm_addr[dimm_num], 36) >> 2); +		} + +		/* +		 * convert from nanoseconds to ddr clocks +		 * round up if necessary +		 */ +		t_wr_clk = MULDIV64(sdram_freq, t_wr_ns, ONE_BILLION); +		ddr_check = MULDIV64(ONE_BILLION, t_wr_clk, t_wr_ns); +		if (sdram_freq != ddr_check) +			t_wr_clk++; + +		switch (t_wr_clk) { +		case 0: +		case 1: +		case 2: +		case 3: +			mmode |= SDRAM_MMODE_WR_DDR2_3_CYC; +			break; +		case 4: +			mmode |= SDRAM_MMODE_WR_DDR2_4_CYC; +			break; +		case 5: +			mmode |= SDRAM_MMODE_WR_DDR2_5_CYC; +			break; +		default: +			mmode |= SDRAM_MMODE_WR_DDR2_6_CYC; +			break; +		} +		*write_recovery = t_wr_clk; +	} + +	debug("CAS latency = %d\n", *selected_cas); +	debug("Write recovery = %d\n", *write_recovery); + +	mtsdram(SDRAM_MMODE, mmode); +} + +/*-----------------------------------------------------------------------------+ + * program_rtr. + *-----------------------------------------------------------------------------*/ +static void program_rtr(unsigned long *dimm_populated, +			unsigned char *iic0_dimm_addr, +			unsigned long num_dimm_banks) +{ +	PPC440_SYS_INFO board_cfg; +	unsigned long max_refresh_rate; +	unsigned long dimm_num; +	unsigned long refresh_rate_type; +	unsigned long refresh_rate; +	unsigned long rint; +	unsigned long sdram_freq; +	unsigned long sdr_ddrpll; +	unsigned long val; + +	/*------------------------------------------------------------------ +	 * Get the board configuration info. +	 *-----------------------------------------------------------------*/ +	get_sys_info(&board_cfg); + +	/*------------------------------------------------------------------ +	 * Set the SDRAM Refresh Timing Register, SDRAM_RTR +	 *-----------------------------------------------------------------*/ +	mfsdr(SDR0_DDR0, sdr_ddrpll); +	sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); + +	max_refresh_rate = 0; +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_populated[dimm_num] != SDRAM_NONE) { + +			refresh_rate_type = spd_read(iic0_dimm_addr[dimm_num], 12); +			refresh_rate_type &= 0x7F; +			switch (refresh_rate_type) { +			case 0: +				refresh_rate =  15625; +				break; +			case 1: +				refresh_rate =   3906; +				break; +			case 2: +				refresh_rate =   7812; +				break; +			case 3: +				refresh_rate =  31250; +				break; +			case 4: +				refresh_rate =  62500; +				break; +			case 5: +				refresh_rate = 125000; +				break; +			default: +				refresh_rate = 0; +				printf("ERROR: DIMM %d unsupported refresh rate/type.\n", +				       (unsigned int)dimm_num); +				printf("Replace the DIMM module with a supported DIMM.\n\n"); +				hang(); +				break; +			} + +			max_refresh_rate = max(max_refresh_rate, refresh_rate); +		} +	} + +	rint = MULDIV64(sdram_freq, max_refresh_rate, ONE_BILLION); +	mfsdram(SDRAM_RTR, val); +	mtsdram(SDRAM_RTR, (val & ~SDRAM_RTR_RINT_MASK) | +		(SDRAM_RTR_RINT_ENCODE(rint))); +} + +/*------------------------------------------------------------------ + * This routine programs the SDRAM_TRx registers. + *-----------------------------------------------------------------*/ +static void program_tr(unsigned long *dimm_populated, +		       unsigned char *iic0_dimm_addr, +		       unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long sdram_ddr1; +	unsigned long t_rp_ns; +	unsigned long t_rcd_ns; +	unsigned long t_rrd_ns; +	unsigned long t_ras_ns; +	unsigned long t_rc_ns; +	unsigned long t_rfc_ns; +	unsigned long t_wpc_ns; +	unsigned long t_wtr_ns; +	unsigned long t_rpc_ns; +	unsigned long t_rp_clk; +	unsigned long t_rcd_clk; +	unsigned long t_rrd_clk; +	unsigned long t_ras_clk; +	unsigned long t_rc_clk; +	unsigned long t_rfc_clk; +	unsigned long t_wpc_clk; +	unsigned long t_wtr_clk; +	unsigned long t_rpc_clk; +	unsigned long sdtr1, sdtr2, sdtr3; +	unsigned long ddr_check; +	unsigned long sdram_freq; +	unsigned long sdr_ddrpll; + +	PPC440_SYS_INFO board_cfg; + +	/*------------------------------------------------------------------ +	 * Get the board configuration info. +	 *-----------------------------------------------------------------*/ +	get_sys_info(&board_cfg); + +	mfsdr(SDR0_DDR0, sdr_ddrpll); +	sdram_freq = ((board_cfg.freqPLB) * SDR0_DDR0_DDRM_DECODE(sdr_ddrpll)); + +	/*------------------------------------------------------------------ +	 * Handle the timing.  We need to find the worst case timing of all +	 * the dimm modules installed. +	 *-----------------------------------------------------------------*/ +	t_rp_ns = 0; +	t_rrd_ns = 0; +	t_rcd_ns = 0; +	t_ras_ns = 0; +	t_rc_ns = 0; +	t_rfc_ns = 0; +	t_wpc_ns = 0; +	t_wtr_ns = 0; +	t_rpc_ns = 0; +	sdram_ddr1 = TRUE; + +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		/* If a dimm is installed in a particular slot ... */ +		if (dimm_populated[dimm_num] != SDRAM_NONE) { +			if (dimm_populated[dimm_num] == SDRAM_DDR2) +				sdram_ddr1 = TRUE; +			else +				sdram_ddr1 = FALSE; + +			t_rcd_ns = max(t_rcd_ns, spd_read(iic0_dimm_addr[dimm_num], 29) >> 2); +			t_rrd_ns = max(t_rrd_ns, spd_read(iic0_dimm_addr[dimm_num], 28) >> 2); +			t_rp_ns  = max(t_rp_ns,  spd_read(iic0_dimm_addr[dimm_num], 27) >> 2); +			t_ras_ns = max(t_ras_ns, spd_read(iic0_dimm_addr[dimm_num], 30)); +			t_rc_ns  = max(t_rc_ns,  spd_read(iic0_dimm_addr[dimm_num], 41)); +			t_rfc_ns = max(t_rfc_ns, spd_read(iic0_dimm_addr[dimm_num], 42)); +		} +	} + +	/*------------------------------------------------------------------ +	 * Set the SDRAM Timing Reg 1, SDRAM_TR1 +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_SDTR1, sdtr1); +	sdtr1 &= ~(SDRAM_SDTR1_LDOF_MASK | SDRAM_SDTR1_RTW_MASK | +		   SDRAM_SDTR1_WTWO_MASK | SDRAM_SDTR1_RTRO_MASK); + +	/* default values */ +	sdtr1 |= SDRAM_SDTR1_LDOF_2_CLK; +	sdtr1 |= SDRAM_SDTR1_RTW_2_CLK; + +	/* normal operations */ +	sdtr1 |= SDRAM_SDTR1_WTWO_0_CLK; +	sdtr1 |= SDRAM_SDTR1_RTRO_1_CLK; + +	mtsdram(SDRAM_SDTR1, sdtr1); + +	/*------------------------------------------------------------------ +	 * Set the SDRAM Timing Reg 2, SDRAM_TR2 +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_SDTR2, sdtr2); +	sdtr2 &= ~(SDRAM_SDTR2_RCD_MASK  | SDRAM_SDTR2_WTR_MASK | +		   SDRAM_SDTR2_XSNR_MASK | SDRAM_SDTR2_WPC_MASK | +		   SDRAM_SDTR2_RPC_MASK  | SDRAM_SDTR2_RP_MASK  | +		   SDRAM_SDTR2_RRD_MASK); + +	/* +	 * convert t_rcd from nanoseconds to ddr clocks +	 * round up if necessary +	 */ +	t_rcd_clk = MULDIV64(sdram_freq, t_rcd_ns, ONE_BILLION); +	ddr_check = MULDIV64(ONE_BILLION, t_rcd_clk, t_rcd_ns); +	if (sdram_freq != ddr_check) +		t_rcd_clk++; + +	switch (t_rcd_clk) { +	case 0: +	case 1: +		sdtr2 |= SDRAM_SDTR2_RCD_1_CLK; +		break; +	case 2: +		sdtr2 |= SDRAM_SDTR2_RCD_2_CLK; +		break; +	case 3: +		sdtr2 |= SDRAM_SDTR2_RCD_3_CLK; +		break; +	case 4: +		sdtr2 |= SDRAM_SDTR2_RCD_4_CLK; +		break; +	default: +		sdtr2 |= SDRAM_SDTR2_RCD_5_CLK; +		break; +	} + +	if (sdram_ddr1 == TRUE) { /* DDR1 */ +		if (sdram_freq < 200000000) { +			sdtr2 |= SDRAM_SDTR2_WTR_1_CLK; +			sdtr2 |= SDRAM_SDTR2_WPC_2_CLK; +			sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; +		} else { +			sdtr2 |= SDRAM_SDTR2_WTR_2_CLK; +			sdtr2 |= SDRAM_SDTR2_WPC_3_CLK; +			sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; +		} +	} else { /* DDR2 */ +		/* loop through all the DIMM slots on the board */ +		for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +			/* If a dimm is installed in a particular slot ... */ +			if (dimm_populated[dimm_num] != SDRAM_NONE) { +				t_wpc_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 36) >> 2); +				t_wtr_ns = max(t_wtr_ns, spd_read(iic0_dimm_addr[dimm_num], 37) >> 2); +				t_rpc_ns = max(t_rpc_ns, spd_read(iic0_dimm_addr[dimm_num], 38) >> 2); +			} +		} + +		/* +		 * convert from nanoseconds to ddr clocks +		 * round up if necessary +		 */ +		t_wpc_clk = MULDIV64(sdram_freq, t_wpc_ns, ONE_BILLION); +		ddr_check = MULDIV64(ONE_BILLION, t_wpc_clk, t_wpc_ns); +		if (sdram_freq != ddr_check) +			t_wpc_clk++; + +		switch (t_wpc_clk) { +		case 0: +		case 1: +		case 2: +			sdtr2 |= SDRAM_SDTR2_WPC_2_CLK; +			break; +		case 3: +			sdtr2 |= SDRAM_SDTR2_WPC_3_CLK; +			break; +		case 4: +			sdtr2 |= SDRAM_SDTR2_WPC_4_CLK; +			break; +		case 5: +			sdtr2 |= SDRAM_SDTR2_WPC_5_CLK; +			break; +		default: +			sdtr2 |= SDRAM_SDTR2_WPC_6_CLK; +			break; +		} + +		/* +		 * convert from nanoseconds to ddr clocks +		 * round up if necessary +		 */ +		t_wtr_clk = MULDIV64(sdram_freq, t_wtr_ns, ONE_BILLION); +		ddr_check = MULDIV64(ONE_BILLION, t_wtr_clk, t_wtr_ns); +		if (sdram_freq != ddr_check) +			t_wtr_clk++; + +		switch (t_wtr_clk) { +		case 0: +		case 1: +			sdtr2 |= SDRAM_SDTR2_WTR_1_CLK; +			break; +		case 2: +			sdtr2 |= SDRAM_SDTR2_WTR_2_CLK; +			break; +		case 3: +			sdtr2 |= SDRAM_SDTR2_WTR_3_CLK; +			break; +		default: +			sdtr2 |= SDRAM_SDTR2_WTR_4_CLK; +			break; +		} + +		/* +		 * convert from nanoseconds to ddr clocks +		 * round up if necessary +		 */ +		t_rpc_clk = MULDIV64(sdram_freq, t_rpc_ns, ONE_BILLION); +		ddr_check = MULDIV64(ONE_BILLION, t_rpc_clk, t_rpc_ns); +		if (sdram_freq != ddr_check) +			t_rpc_clk++; + +		switch (t_rpc_clk) { +		case 0: +		case 1: +		case 2: +			sdtr2 |= SDRAM_SDTR2_RPC_2_CLK; +			break; +		case 3: +			sdtr2 |= SDRAM_SDTR2_RPC_3_CLK; +			break; +		default: +			sdtr2 |= SDRAM_SDTR2_RPC_4_CLK; +			break; +		} +	} + +	/* default value */ +	sdtr2 |= SDRAM_SDTR2_XSNR_16_CLK; + +	/* +	 * convert t_rrd from nanoseconds to ddr clocks +	 * round up if necessary +	 */ +	t_rrd_clk = MULDIV64(sdram_freq, t_rrd_ns, ONE_BILLION); +	ddr_check = MULDIV64(ONE_BILLION, t_rrd_clk, t_rrd_ns); +	if (sdram_freq != ddr_check) +		t_rrd_clk++; + +	if (t_rrd_clk == 3) +		sdtr2 |= SDRAM_SDTR2_RRD_3_CLK; +	else +		sdtr2 |= SDRAM_SDTR2_RRD_2_CLK; + +	/* +	 * convert t_rp from nanoseconds to ddr clocks +	 * round up if necessary +	 */ +	t_rp_clk = MULDIV64(sdram_freq, t_rp_ns, ONE_BILLION); +	ddr_check = MULDIV64(ONE_BILLION, t_rp_clk, t_rp_ns); +	if (sdram_freq != ddr_check) +		t_rp_clk++; + +	switch (t_rp_clk) { +	case 0: +	case 1: +	case 2: +	case 3: +		sdtr2 |= SDRAM_SDTR2_RP_3_CLK; +		break; +	case 4: +		sdtr2 |= SDRAM_SDTR2_RP_4_CLK; +		break; +	case 5: +		sdtr2 |= SDRAM_SDTR2_RP_5_CLK; +		break; +	case 6: +		sdtr2 |= SDRAM_SDTR2_RP_6_CLK; +		break; +	default: +		sdtr2 |= SDRAM_SDTR2_RP_7_CLK; +		break; +	} + +	mtsdram(SDRAM_SDTR2, sdtr2); + +	/*------------------------------------------------------------------ +	 * Set the SDRAM Timing Reg 3, SDRAM_TR3 +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_SDTR3, sdtr3); +	sdtr3 &= ~(SDRAM_SDTR3_RAS_MASK  | SDRAM_SDTR3_RC_MASK | +		   SDRAM_SDTR3_XCS_MASK | SDRAM_SDTR3_RFC_MASK); + +	/* +	 * convert t_ras from nanoseconds to ddr clocks +	 * round up if necessary +	 */ +	t_ras_clk = MULDIV64(sdram_freq, t_ras_ns, ONE_BILLION); +	ddr_check = MULDIV64(ONE_BILLION, t_ras_clk, t_ras_ns); +	if (sdram_freq != ddr_check) +		t_ras_clk++; + +	sdtr3 |= SDRAM_SDTR3_RAS_ENCODE(t_ras_clk); + +	/* +	 * convert t_rc from nanoseconds to ddr clocks +	 * round up if necessary +	 */ +	t_rc_clk = MULDIV64(sdram_freq, t_rc_ns, ONE_BILLION); +	ddr_check = MULDIV64(ONE_BILLION, t_rc_clk, t_rc_ns); +	if (sdram_freq != ddr_check) +		t_rc_clk++; + +	sdtr3 |= SDRAM_SDTR3_RC_ENCODE(t_rc_clk); + +	/* default xcs value */ +	sdtr3 |= SDRAM_SDTR3_XCS; + +	/* +	 * convert t_rfc from nanoseconds to ddr clocks +	 * round up if necessary +	 */ +	t_rfc_clk = MULDIV64(sdram_freq, t_rfc_ns, ONE_BILLION); +	ddr_check = MULDIV64(ONE_BILLION, t_rfc_clk, t_rfc_ns); +	if (sdram_freq != ddr_check) +		t_rfc_clk++; + +	sdtr3 |= SDRAM_SDTR3_RFC_ENCODE(t_rfc_clk); + +	mtsdram(SDRAM_SDTR3, sdtr3); +} + +/*-----------------------------------------------------------------------------+ + * program_bxcf. + *-----------------------------------------------------------------------------*/ +static void program_bxcf(unsigned long *dimm_populated, +			 unsigned char *iic0_dimm_addr, +			 unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long num_col_addr; +	unsigned long num_ranks; +	unsigned long num_banks; +	unsigned long mode; +	unsigned long ind_rank; +	unsigned long ind; +	unsigned long ind_bank; +	unsigned long bank_0_populated; + +	/*------------------------------------------------------------------ +	 * Set the BxCF regs.  First, wipe out the bank config registers. +	 *-----------------------------------------------------------------*/ +	mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF); +	mtdcr(SDRAMC_CFGDATA, 0x00000000); +	mtdcr(SDRAMC_CFGADDR, SDRAM_MB1CF); +	mtdcr(SDRAMC_CFGDATA, 0x00000000); +	mtdcr(SDRAMC_CFGADDR, SDRAM_MB2CF); +	mtdcr(SDRAMC_CFGDATA, 0x00000000); +	mtdcr(SDRAMC_CFGADDR, SDRAM_MB3CF); +	mtdcr(SDRAMC_CFGDATA, 0x00000000); + +	mode = SDRAM_BXCF_M_BE_ENABLE; + +	bank_0_populated = 0; + +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_populated[dimm_num] != SDRAM_NONE) { +			num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4); +			num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5); +			if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) +				num_ranks = (num_ranks & 0x0F) +1; +			else +				num_ranks = num_ranks & 0x0F; + +			num_banks = spd_read(iic0_dimm_addr[dimm_num], 17); + +			for (ind_bank = 0; ind_bank < 2; ind_bank++) { +				if (num_banks == 4) +					ind = 0; +				else +					ind = 5; +				switch (num_col_addr) { +				case 0x08: +					mode |= (SDRAM_BXCF_M_AM_0 + ind); +					break; +				case 0x09: +					mode |= (SDRAM_BXCF_M_AM_1 + ind); +					break; +				case 0x0A: +					mode |= (SDRAM_BXCF_M_AM_2 + ind); +					break; +				case 0x0B: +					mode |= (SDRAM_BXCF_M_AM_3 + ind); +					break; +				case 0x0C: +					mode |= (SDRAM_BXCF_M_AM_4 + ind); +					break; +				default: +					printf("DDR-SDRAM: DIMM %d BxCF configuration.\n", +					       (unsigned int)dimm_num); +					printf("ERROR: Unsupported value for number of " +					       "column addresses: %d.\n", (unsigned int)num_col_addr); +					printf("Replace the DIMM module with a supported DIMM.\n\n"); +					hang(); +				} +			} + +			if ((dimm_populated[dimm_num] != SDRAM_NONE)&& (dimm_num ==1)) +				bank_0_populated = 1; + +			for (ind_rank = 0; ind_rank < num_ranks; ind_rank++) { +				mtdcr(SDRAMC_CFGADDR, SDRAM_MB0CF + ((dimm_num + bank_0_populated + ind_rank) << 2)); +				mtdcr(SDRAMC_CFGDATA, mode); +			} +		} +	} +} + +/*------------------------------------------------------------------ + * program memory queue. + *-----------------------------------------------------------------*/ +static void program_memory_queue(unsigned long *dimm_populated, +				 unsigned char *iic0_dimm_addr, +				 unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long rank_base_addr; +	unsigned long rank_reg; +	unsigned long rank_size_bytes; +	unsigned long rank_size_id; +	unsigned long num_ranks; +	unsigned long baseadd_size; +	unsigned long i; +	unsigned long bank_0_populated = 0; + +	/*------------------------------------------------------------------ +	 * Reset the rank_base_address. +	 *-----------------------------------------------------------------*/ +	rank_reg   = SDRAM_R0BAS; + +	rank_base_addr = 0x00000000; + +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_populated[dimm_num] != SDRAM_NONE) { +			num_ranks = spd_read(iic0_dimm_addr[dimm_num], 5); +			if ((spd_read(iic0_dimm_addr[dimm_num], 2)) == 0x08) +				num_ranks = (num_ranks & 0x0F) + 1; +			else +				num_ranks = num_ranks & 0x0F; + +			rank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31); + +			/*------------------------------------------------------------------ +			 * Set the sizes +			 *-----------------------------------------------------------------*/ +			baseadd_size = 0; +			rank_size_bytes = 4 * 1024 * 1024 * rank_size_id; +			switch (rank_size_id) { +			case 0x02: +				baseadd_size |= SDRAM_RXBAS_SDSZ_8; +				break; +			case 0x04: +				baseadd_size |= SDRAM_RXBAS_SDSZ_16; +				break; +			case 0x08: +				baseadd_size |= SDRAM_RXBAS_SDSZ_32; +				break; +			case 0x10: +				baseadd_size |= SDRAM_RXBAS_SDSZ_64; +				break; +			case 0x20: +				baseadd_size |= SDRAM_RXBAS_SDSZ_128; +				break; +			case 0x40: +				baseadd_size |= SDRAM_RXBAS_SDSZ_256; +				break; +			case 0x80: +				baseadd_size |= SDRAM_RXBAS_SDSZ_512; +				break; +			default: +				printf("DDR-SDRAM: DIMM %d memory queue configuration.\n", +				       (unsigned int)dimm_num); +				printf("ERROR: Unsupported value for the banksize: %d.\n", +				       (unsigned int)rank_size_id); +				printf("Replace the DIMM module with a supported DIMM.\n\n"); +				hang(); +			} + +			if ((dimm_populated[dimm_num] != SDRAM_NONE) && (dimm_num == 1)) +				bank_0_populated = 1; + +			for (i = 0; i < num_ranks; i++)	{ +				mtdcr_any(rank_reg+i+dimm_num+bank_0_populated, +					  (SDRAM_RXBAS_SDBA_ENCODE(rank_base_addr) | +					   baseadd_size)); +				rank_base_addr += rank_size_bytes; +			} +		} +	} +} + +/*-----------------------------------------------------------------------------+ + * is_ecc_enabled. + *-----------------------------------------------------------------------------*/ +static unsigned long is_ecc_enabled(void) +{ +	unsigned long dimm_num; +	unsigned long ecc; +	unsigned long val; + +	ecc = 0; +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { +		mfsdram(SDRAM_MCOPT1, val); +		ecc = max(ecc, SDRAM_MCOPT1_MCHK_CHK_DECODE(val)); +	} + +	return ecc; +} + +static void blank_string(int size) +{ +	int i; + +	for (i=0; i<size; i++) +		putc('\b'); +	for (i=0; i<size; i++) +		putc(' '); +	for (i=0; i<size; i++) +		putc('\b'); +} + +#ifdef CONFIG_DDR_ECC +/*-----------------------------------------------------------------------------+ + * program_ecc. + *-----------------------------------------------------------------------------*/ +static void program_ecc(unsigned long *dimm_populated, +			unsigned char *iic0_dimm_addr, +			unsigned long num_dimm_banks, +			unsigned long tlb_word2_i_value) +{ +	unsigned long mcopt1; +	unsigned long mcopt2; +	unsigned long mcstat; +	unsigned long dimm_num; +	unsigned long ecc; + +	ecc = 0; +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { +		/* If a dimm is installed in a particular slot ... */ +		if (dimm_populated[dimm_num] != SDRAM_NONE) +			ecc = max(ecc, spd_read(iic0_dimm_addr[dimm_num], 11)); +	} +	if (ecc == 0) +		return; + +	mfsdram(SDRAM_MCOPT1, mcopt1); +	mfsdram(SDRAM_MCOPT2, mcopt2); + +	if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) { +		/* DDR controller must be enabled and not in self-refresh. */ +		mfsdram(SDRAM_MCSTAT, mcstat); +		if (((mcopt2 & SDRAM_MCOPT2_DCEN_MASK) == SDRAM_MCOPT2_DCEN_ENABLE) +		    && ((mcopt2 & SDRAM_MCOPT2_SREN_MASK) == SDRAM_MCOPT2_SREN_EXIT) +		    && ((mcstat & (SDRAM_MCSTAT_MIC_MASK | SDRAM_MCSTAT_SRMS_MASK)) +			== (SDRAM_MCSTAT_MIC_COMP | SDRAM_MCSTAT_SRMS_NOT_SF))) { + +			program_ecc_addr(0, sdram_memsize(), tlb_word2_i_value); +		} +	} + +	return; +} + +#ifdef CONFIG_ECC_ERROR_RESET +/* + * Check for ECC errors and reset board upon any error here + * + * On the Katmai 440SPe eval board, from time to time, the first + * lword write access after DDR2 initializazion with ECC checking + * enabled, leads to an ECC error. I couldn't find a configuration + * without this happening. On my board with the current setup it + * happens about 1 from 10 times. + * + * The ECC modules used for testing are: + * - Kingston ValueRAM KVR667D2E5/512 (tested with 1 and 2 DIMM's) + * + * This has to get fixed for the Katmai and tested for the other + * board (440SP/440SPe) that will eventually use this code in the + * future. + * + * 2007-03-01, sr + */ +static void check_ecc(void) +{ +	u32 val; + +	mfsdram(SDRAM_ECCCR, val); +	if (val != 0) { +		printf("\nECC error: MCIF0_ECCES=%08lx MQ0_ESL=%08lx address=%08lx\n", +		       val, mfdcr(0x4c), mfdcr(0x4e)); +		printf("ECC error occured, resetting board...\n"); +		do_reset(NULL, 0, 0, NULL); +	} +} +#endif + +static void wait_ddr_idle(void) +{ +	u32 val; + +	do { +		mfsdram(SDRAM_MCSTAT, val); +	} while ((val & SDRAM_MCSTAT_IDLE_MASK) == SDRAM_MCSTAT_IDLE_NOT); +} + +/*-----------------------------------------------------------------------------+ + * program_ecc_addr. + *-----------------------------------------------------------------------------*/ +static void program_ecc_addr(unsigned long start_address, +			     unsigned long num_bytes, +			     unsigned long tlb_word2_i_value) +{ +	unsigned long current_address; +	unsigned long end_address; +	unsigned long address_increment; +	unsigned long mcopt1; +	char str[] = "ECC generation -"; +	char slash[] = "\\|/-\\|/-"; +	int loop = 0; +	int loopi = 0; + +	current_address = start_address; +	mfsdram(SDRAM_MCOPT1, mcopt1); +	if ((mcopt1 & SDRAM_MCOPT1_MCHK_MASK) != SDRAM_MCOPT1_MCHK_NON) { +		mtsdram(SDRAM_MCOPT1, +			(mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_GEN); +		sync(); +		eieio(); +		wait_ddr_idle(); + +		puts(str); +		if (tlb_word2_i_value == TLB_WORD2_I_ENABLE) { +			/* ECC bit set method for non-cached memory */ +			if ((mcopt1 & SDRAM_MCOPT1_DMWD_MASK) == SDRAM_MCOPT1_DMWD_32) +				address_increment = 4; +			else +				address_increment = 8; +			end_address = current_address + num_bytes; + +			while (current_address < end_address) { +				*((unsigned long *)current_address) = 0x00000000; +				current_address += address_increment; + +				if ((loop++ % (2 << 20)) == 0) { +					putc('\b'); +					putc(slash[loopi++ % 8]); +				} +			} + +		} else { +			/* ECC bit set method for cached memory */ +			dcbz_area(start_address, num_bytes); +			dflush(); +		} + +		blank_string(strlen(str)); + +		sync(); +		eieio(); +		wait_ddr_idle(); + +		/* clear ECC error repoting registers */ +		mtsdram(SDRAM_ECCCR, 0xffffffff); +		mtdcr(0x4c, 0xffffffff); + +		mtsdram(SDRAM_MCOPT1, +			(mcopt1 & ~SDRAM_MCOPT1_MCHK_MASK) | SDRAM_MCOPT1_MCHK_CHK_REP); +		sync(); +		eieio(); +		wait_ddr_idle(); + +#ifdef CONFIG_ECC_ERROR_RESET +		/* +		 * One write to 0 is enough to trigger this ECC error +		 * (see description above) +		 */ +		out_be32(0, 0x12345678); +		check_ecc(); +#endif +	} +} +#endif + +/*-----------------------------------------------------------------------------+ + * program_DQS_calibration. + *-----------------------------------------------------------------------------*/ +static void program_DQS_calibration(unsigned long *dimm_populated, +				    unsigned char *iic0_dimm_addr, +				    unsigned long num_dimm_banks) +{ +	unsigned long val; + +#ifdef HARD_CODED_DQS /* calibration test with hardvalues */ +	mtsdram(SDRAM_RQDC, 0x80000037); +	mtsdram(SDRAM_RDCC, 0x40000000); +	mtsdram(SDRAM_RFDC, 0x000001DF); + +	test(); +#else +	/*------------------------------------------------------------------ +	 * Program RDCC register +	 * Read sample cycle auto-update enable +	 *-----------------------------------------------------------------*/ + +	/* +	 * Modified for the Katmai platform:  with some DIMMs, the DDR2 +	 * controller automatically selects the T2 read cycle, but this +	 * proves unreliable.  Go ahead and force the DDR2 controller +	 * to use the T4 sample and disable the automatic update of the +	 * RDSS field. +	 */ +	mfsdram(SDRAM_RDCC, val); +	mtsdram(SDRAM_RDCC, +		(val & ~(SDRAM_RDCC_RDSS_MASK | SDRAM_RDCC_RSAE_MASK)) +		| (SDRAM_RDCC_RDSS_T4 | SDRAM_RDCC_RSAE_DISABLE)); + +	/*------------------------------------------------------------------ +	 * Program RQDC register +	 * Internal DQS delay mechanism enable +	 *-----------------------------------------------------------------*/ +	mtsdram(SDRAM_RQDC, (SDRAM_RQDC_RQDE_ENABLE|SDRAM_RQDC_RQFD_ENCODE(0x38))); + +	/*------------------------------------------------------------------ +	 * Program RFDC register +	 * Set Feedback Fractional Oversample +	 * Auto-detect read sample cycle enable +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_RFDC, val); +	mtsdram(SDRAM_RFDC, +		(val & ~(SDRAM_RFDC_ARSE_MASK | SDRAM_RFDC_RFOS_MASK | +			 SDRAM_RFDC_RFFD_MASK)) +		| (SDRAM_RFDC_ARSE_ENABLE | SDRAM_RFDC_RFOS_ENCODE(0) | +		   SDRAM_RFDC_RFFD_ENCODE(0))); + +	DQS_calibration_process(); +#endif +} + +static int short_mem_test(void) +{ +	u32 *membase; +	u32 bxcr_num; +	u32 bxcf; +	int i; +	int j; +	u32 test[NUMMEMTESTS][NUMMEMWORDS] = { +		{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, +		 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, +		{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, +		 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, +		{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, +		 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, +		{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, +		 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, +		{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, +		 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, +		{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, +		 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, +		{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, +		 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, +		{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, +		 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} }; +	int l; + +	for (bxcr_num = 0; bxcr_num < MAXBXCF; bxcr_num++) { +		mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf); + +		/* Banks enabled */ +		if ((bxcf & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { +			/* Bank is enabled */ + +			/*------------------------------------------------------------------ +			 * Run the short memory test. +			 *-----------------------------------------------------------------*/ +			membase = (u32 *)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+bxcr_num))); + +			for (i = 0; i < NUMMEMTESTS; i++) { +				for (j = 0; j < NUMMEMWORDS; j++) { +					membase[j] = test[i][j]; +					ppcDcbf((u32)&(membase[j])); +				} +				sync(); +				for (l=0; l<NUMLOOPS; l++) { +					for (j = 0; j < NUMMEMWORDS; j++) { +						if (membase[j] != test[i][j]) { +							ppcDcbf((u32)&(membase[j])); +							return 0; +						} +						ppcDcbf((u32)&(membase[j])); +					} +					sync(); +				} +			} +		}	/* if bank enabled */ +	}		/* for bxcf_num */ + +	return 1; +} + +#ifndef HARD_CODED_DQS +/*-----------------------------------------------------------------------------+ + * DQS_calibration_process. + *-----------------------------------------------------------------------------*/ +static void DQS_calibration_process(void) +{ +	unsigned long rfdc_reg; +	unsigned long rffd; +	unsigned long rqdc_reg; +	unsigned long rqfd; +	unsigned long val; +	long rqfd_average; +	long rffd_average; +	long max_start; +	long min_end; +	unsigned long begin_rqfd[MAXRANKS]; +	unsigned long begin_rffd[MAXRANKS]; +	unsigned long end_rqfd[MAXRANKS]; +	unsigned long end_rffd[MAXRANKS]; +	char window_found; +	unsigned long dlycal; +	unsigned long dly_val; +	unsigned long max_pass_length; +	unsigned long current_pass_length; +	unsigned long current_fail_length; +	unsigned long current_start; +	long max_end; +	unsigned char fail_found; +	unsigned char pass_found; +	u32 rqfd_start; +	char str[] = "Auto calibration -"; +	char slash[] = "\\|/-\\|/-"; +	int loopi = 0; + +	/*------------------------------------------------------------------ +	 * Test to determine the best read clock delay tuning bits. +	 * +	 * Before the DDR controller can be used, the read clock delay needs to be +	 * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD]. +	 * This value cannot be hardcoded into the program because it changes +	 * depending on the board's setup and environment. +	 * To do this, all delay values are tested to see if they +	 * work or not.  By doing this, you get groups of fails with groups of +	 * passing values.  The idea is to find the start and end of a passing +	 * window and take the center of it to use as the read clock delay. +	 * +	 * A failure has to be seen first so that when we hit a pass, we know +	 * that it is truely the start of the window.  If we get passing values +	 * to start off with, we don't know if we are at the start of the window. +	 * +	 * The code assumes that a failure will always be found. +	 * If a failure is not found, there is no easy way to get the middle +	 * of the passing window.  I guess we can pretty much pick any value +	 * but some values will be better than others.  Since the lowest speed +	 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed), +	 * from experimentation it is safe to say you will always have a failure. +	 *-----------------------------------------------------------------*/ + +	/* first fix RQDC[RQFD] to an average of 80 degre phase shift to find RFDC[RFFD] */ +	rqfd_start = 64; /* test-only: don't know if this is the _best_ start value */ + +	puts(str); + +calibration_loop: +	mfsdram(SDRAM_RQDC, rqdc_reg); +	mtsdram(SDRAM_RQDC, (rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) | +		SDRAM_RQDC_RQFD_ENCODE(rqfd_start)); + +	max_start = 0; +	min_end = 0; +	begin_rqfd[0] = 0; +	begin_rffd[0] = 0; +	begin_rqfd[1] = 0; +	begin_rffd[1] = 0; +	end_rqfd[0] = 0; +	end_rffd[0] = 0; +	end_rqfd[1] = 0; +	end_rffd[1] = 0; +	window_found = FALSE; + +	max_pass_length = 0; +	max_start = 0; +	max_end = 0; +	current_pass_length = 0; +	current_fail_length = 0; +	current_start = 0; +	window_found = FALSE; +	fail_found = FALSE; +	pass_found = FALSE; + +	/* +	 * get the delay line calibration register value +	 */ +	mfsdram(SDRAM_DLCR, dlycal); +	dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2; + +	for (rffd = 0; rffd <= SDRAM_RFDC_RFFD_MAX; rffd++) { +		mfsdram(SDRAM_RFDC, rfdc_reg); +		rfdc_reg &= ~(SDRAM_RFDC_RFFD_MASK); + +		/*------------------------------------------------------------------ +		 * Set the timing reg for the test. +		 *-----------------------------------------------------------------*/ +		mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd)); + +		/*------------------------------------------------------------------ +		 * See if the rffd value passed. +		 *-----------------------------------------------------------------*/ +		if (short_mem_test()) { +			if (fail_found == TRUE) { +				pass_found = TRUE; +				if (current_pass_length == 0) +					current_start = rffd; + +				current_fail_length = 0; +				current_pass_length++; + +				if (current_pass_length > max_pass_length) { +					max_pass_length = current_pass_length; +					max_start = current_start; +					max_end = rffd; +				} +			} +		} else { +			current_pass_length = 0; +			current_fail_length++; + +			if (current_fail_length >= (dly_val >> 2)) { +				if (fail_found == FALSE) { +					fail_found = TRUE; +				} else if (pass_found == TRUE) { +					window_found = TRUE; +					break; +				} +			} +		} +	}		/* for rffd */ + +	/*------------------------------------------------------------------ +	 * Set the average RFFD value +	 *-----------------------------------------------------------------*/ +	rffd_average = ((max_start + max_end) >> 1); + +	if (rffd_average < 0) +		rffd_average = 0; + +	if (rffd_average > SDRAM_RFDC_RFFD_MAX) +		rffd_average = SDRAM_RFDC_RFFD_MAX; +	/* now fix RFDC[RFFD] found and find RQDC[RQFD] */ +	mtsdram(SDRAM_RFDC, rfdc_reg | SDRAM_RFDC_RFFD_ENCODE(rffd_average)); + +	max_pass_length = 0; +	max_start = 0; +	max_end = 0; +	current_pass_length = 0; +	current_fail_length = 0; +	current_start = 0; +	window_found = FALSE; +	fail_found = FALSE; +	pass_found = FALSE; + +	for (rqfd = 0; rqfd <= SDRAM_RQDC_RQFD_MAX; rqfd++) { +		mfsdram(SDRAM_RQDC, rqdc_reg); +		rqdc_reg &= ~(SDRAM_RQDC_RQFD_MASK); + +		/*------------------------------------------------------------------ +		 * Set the timing reg for the test. +		 *-----------------------------------------------------------------*/ +		mtsdram(SDRAM_RQDC, rqdc_reg | SDRAM_RQDC_RQFD_ENCODE(rqfd)); + +		/*------------------------------------------------------------------ +		 * See if the rffd value passed. +		 *-----------------------------------------------------------------*/ +		if (short_mem_test()) { +			if (fail_found == TRUE) { +				pass_found = TRUE; +				if (current_pass_length == 0) +					current_start = rqfd; + +				current_fail_length = 0; +				current_pass_length++; + +				if (current_pass_length > max_pass_length) { +					max_pass_length = current_pass_length; +					max_start = current_start; +					max_end = rqfd; +				} +			} +		} else { +			current_pass_length = 0; +			current_fail_length++; + +			if (fail_found == FALSE) { +				fail_found = TRUE; +			} else if (pass_found == TRUE) { +				window_found = TRUE; +				break; +			} +		} +	} + +	rqfd_average = ((max_start + max_end) >> 1); + +	/*------------------------------------------------------------------ +	 * Make sure we found the valid read passing window.  Halt if not +	 *-----------------------------------------------------------------*/ +	if (window_found == FALSE) { +		if (rqfd_start < SDRAM_RQDC_RQFD_MAX) { +			putc('\b'); +			putc(slash[loopi++ % 8]); + +			/* try again from with a different RQFD start value */ +			rqfd_start++; +			goto calibration_loop; +		} + +		printf("\nERROR: Cannot determine a common read delay for the " +		       "DIMM(s) installed.\n"); +		debug("%s[%d] ERROR : \n", __FUNCTION__,__LINE__); +		hang(); +	} + +	blank_string(strlen(str)); + +	if (rqfd_average < 0) +		rqfd_average = 0; + +	if (rqfd_average > SDRAM_RQDC_RQFD_MAX) +		rqfd_average = SDRAM_RQDC_RQFD_MAX; + +	mtsdram(SDRAM_RQDC, +		(rqdc_reg & ~SDRAM_RQDC_RQFD_MASK) | +		SDRAM_RQDC_RQFD_ENCODE(rqfd_average)); + +	mfsdram(SDRAM_DLCR, val); +	debug("%s[%d] DLCR: 0x%08X\n", __FUNCTION__, __LINE__, val); +	mfsdram(SDRAM_RQDC, val); +	debug("%s[%d] RQDC: 0x%08X\n", __FUNCTION__, __LINE__, val); +	mfsdram(SDRAM_RFDC, val); +	debug("%s[%d] RFDC: 0x%08X\n", __FUNCTION__, __LINE__, val); +} +#else /* calibration test with hardvalues */ +/*-----------------------------------------------------------------------------+ + * DQS_calibration_process. + *-----------------------------------------------------------------------------*/ +static void test(void) +{ +	unsigned long dimm_num; +	unsigned long ecc_temp; +	unsigned long i, j; +	unsigned long *membase; +	unsigned long bxcf[MAXRANKS]; +	unsigned long val; +	char window_found; +	char begin_found[MAXDIMMS]; +	char end_found[MAXDIMMS]; +	char search_end[MAXDIMMS]; +	unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = { +		{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, +		 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, +		{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, +		 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, +		{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, +		 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, +		{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, +		 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, +		{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, +		 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, +		{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, +		 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, +		{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, +		 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, +		{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, +		 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55} }; + +	/*------------------------------------------------------------------ +	 * Test to determine the best read clock delay tuning bits. +	 * +	 * Before the DDR controller can be used, the read clock delay needs to be +	 * set.  This is SDRAM_RQDC[RQFD] and SDRAM_RFDC[RFFD]. +	 * This value cannot be hardcoded into the program because it changes +	 * depending on the board's setup and environment. +	 * To do this, all delay values are tested to see if they +	 * work or not.  By doing this, you get groups of fails with groups of +	 * passing values.  The idea is to find the start and end of a passing +	 * window and take the center of it to use as the read clock delay. +	 * +	 * A failure has to be seen first so that when we hit a pass, we know +	 * that it is truely the start of the window.  If we get passing values +	 * to start off with, we don't know if we are at the start of the window. +	 * +	 * The code assumes that a failure will always be found. +	 * If a failure is not found, there is no easy way to get the middle +	 * of the passing window.  I guess we can pretty much pick any value +	 * but some values will be better than others.  Since the lowest speed +	 * we can clock the DDR interface at is 200 MHz (2x 100 MHz PLB speed), +	 * from experimentation it is safe to say you will always have a failure. +	 *-----------------------------------------------------------------*/ +	mfsdram(SDRAM_MCOPT1, ecc_temp); +	ecc_temp &= SDRAM_MCOPT1_MCHK_MASK; +	mfsdram(SDRAM_MCOPT1, val); +	mtsdram(SDRAM_MCOPT1, (val & ~SDRAM_MCOPT1_MCHK_MASK) | +		SDRAM_MCOPT1_MCHK_NON); + +	window_found = FALSE; +	begin_found[0] = FALSE; +	end_found[0] = FALSE; +	search_end[0] = FALSE; +	begin_found[1] = FALSE; +	end_found[1] = FALSE; +	search_end[1] = FALSE; + +	for (dimm_num = 0; dimm_num < MAXDIMMS; dimm_num++) { +		mfsdram(SDRAM_MB0CF + (bxcr_num << 2), bxcf[bxcr_num]); + +		/* Banks enabled */ +		if ((bxcf[dimm_num] & SDRAM_BXCF_M_BE_MASK) == SDRAM_BXCF_M_BE_ENABLE) { + +			/* Bank is enabled */ +			membase = +				(unsigned long*)(SDRAM_RXBAS_SDBA_DECODE(mfdcr_any(SDRAM_R0BAS+dimm_num))); + +			/*------------------------------------------------------------------ +			 * Run the short memory test. +			 *-----------------------------------------------------------------*/ +			for (i = 0; i < NUMMEMTESTS; i++) { +				for (j = 0; j < NUMMEMWORDS; j++) { +					membase[j] = test[i][j]; +					ppcDcbf((u32)&(membase[j])); +				} +				sync(); +				for (j = 0; j < NUMMEMWORDS; j++) { +					if (membase[j] != test[i][j]) { +						ppcDcbf((u32)&(membase[j])); +						break; +					} +					ppcDcbf((u32)&(membase[j])); +				} +				sync(); +				if (j < NUMMEMWORDS) +					break; +			} + +			/*------------------------------------------------------------------ +			 * See if the rffd value passed. +			 *-----------------------------------------------------------------*/ +			if (i < NUMMEMTESTS) { +				if ((end_found[dimm_num] == FALSE) && +				    (search_end[dimm_num] == TRUE)) { +					end_found[dimm_num] = TRUE; +				} +				if ((end_found[0] == TRUE) && +				    (end_found[1] == TRUE)) +					break; +			} else { +				if (begin_found[dimm_num] == FALSE) { +					begin_found[dimm_num] = TRUE; +					search_end[dimm_num] = TRUE; +				} +			} +		} else { +			begin_found[dimm_num] = TRUE; +			end_found[dimm_num] = TRUE; +		} +	} + +	if ((begin_found[0] == TRUE) && (begin_found[1] == TRUE)) +		window_found = TRUE; + +	/*------------------------------------------------------------------ +	 * Make sure we found the valid read passing window.  Halt if not +	 *-----------------------------------------------------------------*/ +	if (window_found == FALSE) { +		printf("ERROR: Cannot determine a common read delay for the " +		       "DIMM(s) installed.\n"); +		hang(); +	} + +	/*------------------------------------------------------------------ +	 * Restore the ECC variable to what it originally was +	 *-----------------------------------------------------------------*/ +	mtsdram(SDRAM_MCOPT1, +		(ppcMfdcr_sdram(SDRAM_MCOPT1) & ~SDRAM_MCOPT1_MCHK_MASK) +		| ecc_temp); +} +#endif + +#if defined(DEBUG) +static void ppc440sp_sdram_register_dump(void) +{ +	unsigned int sdram_reg; +	unsigned int sdram_data; +	unsigned int dcr_data; + +	printf("\n  Register Dump:\n"); +	sdram_reg = SDRAM_MCSTAT; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MCSTAT    = 0x%08X", sdram_data); +	sdram_reg = SDRAM_MCOPT1; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MCOPT1    = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_MCOPT2; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MCOPT2    = 0x%08X", sdram_data); +	sdram_reg = SDRAM_MODT0; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MODT0     = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_MODT1; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MODT1     = 0x%08X", sdram_data); +	sdram_reg = SDRAM_MODT2; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MODT2     = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_MODT3; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MODT3     = 0x%08X", sdram_data); +	sdram_reg = SDRAM_CODT; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_CODT      = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_VVPR; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_VVPR      = 0x%08X", sdram_data); +	sdram_reg = SDRAM_OPARS; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_OPARS     = 0x%08X\n", sdram_data); +	/* +	 * OPAR2 is only used as a trigger register. +	 * No data is contained in this register, and reading or writing +	 * to is can cause bad things to happen (hangs).  Just skip it +	 * and report NA +	 * sdram_reg = SDRAM_OPAR2; +	 * mfsdram(sdram_reg, sdram_data); +	 * printf("        SDRAM_OPAR2     = 0x%08X\n", sdram_data); +	 */ +	printf("        SDRAM_OPART     = N/A       "); +	sdram_reg = SDRAM_RTR; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_RTR       = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_MB0CF; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MB0CF     = 0x%08X", sdram_data); +	sdram_reg = SDRAM_MB1CF; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MB1CF     = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_MB2CF; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MB2CF     = 0x%08X", sdram_data); +	sdram_reg = SDRAM_MB3CF; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MB3CF     = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_INITPLR0; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR0  = 0x%08X", sdram_data); +	sdram_reg = SDRAM_INITPLR1; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR1  = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_INITPLR2; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR2  = 0x%08X", sdram_data); +	sdram_reg = SDRAM_INITPLR3; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR3  = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_INITPLR4; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR4  = 0x%08X", sdram_data); +	sdram_reg = SDRAM_INITPLR5; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR5  = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_INITPLR6; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR6  = 0x%08X", sdram_data); +	sdram_reg = SDRAM_INITPLR7; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR7  = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_INITPLR8; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR8  = 0x%08X", sdram_data); +	sdram_reg = SDRAM_INITPLR9; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR9  = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_INITPLR10; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR10 = 0x%08X", sdram_data); +	sdram_reg = SDRAM_INITPLR11; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR11 = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_INITPLR12; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR12 = 0x%08X", sdram_data); +	sdram_reg = SDRAM_INITPLR13; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR13 = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_INITPLR14; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR14 = 0x%08X", sdram_data); +	sdram_reg = SDRAM_INITPLR15; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_INITPLR15 = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_RQDC; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_RQDC      = 0x%08X", sdram_data); +	sdram_reg = SDRAM_RFDC; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_RFDC      = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_RDCC; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_RDCC      = 0x%08X", sdram_data); +	sdram_reg = SDRAM_DLCR; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_DLCR      = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_CLKTR; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_CLKTR     = 0x%08X", sdram_data); +	sdram_reg = SDRAM_WRDTR; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_WRDTR     = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_SDTR1; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_SDTR1     = 0x%08X", sdram_data); +	sdram_reg = SDRAM_SDTR2; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_SDTR2     = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_SDTR3; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_SDTR3     = 0x%08X", sdram_data); +	sdram_reg = SDRAM_MMODE; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MMODE     = 0x%08X\n", sdram_data); +	sdram_reg = SDRAM_MEMODE; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_MEMODE    = 0x%08X", sdram_data); +	sdram_reg = SDRAM_ECCCR; +	mfsdram(sdram_reg, sdram_data); +	printf("        SDRAM_ECCCR     = 0x%08X\n\n", sdram_data); + +	dcr_data = mfdcr(SDRAM_R0BAS); +	printf("        MQ0_B0BAS       = 0x%08X", dcr_data); +	dcr_data = mfdcr(SDRAM_R1BAS); +	printf("        MQ1_B0BAS       = 0x%08X\n", dcr_data); +	dcr_data = mfdcr(SDRAM_R2BAS); +	printf("        MQ2_B0BAS       = 0x%08X", dcr_data); +	dcr_data = mfdcr(SDRAM_R3BAS); +	printf("        MQ3_B0BAS       = 0x%08X\n", dcr_data); +} +#endif +#endif /* CONFIG_SPD_EEPROM */ |