diff options
Diffstat (limited to 'cpu/mpc86xx/spd_sdram.c')
| -rw-r--r-- | cpu/mpc86xx/spd_sdram.c | 1346 | 
1 files changed, 0 insertions, 1346 deletions
diff --git a/cpu/mpc86xx/spd_sdram.c b/cpu/mpc86xx/spd_sdram.c deleted file mode 100644 index e26db7c3b..000000000 --- a/cpu/mpc86xx/spd_sdram.c +++ /dev/null @@ -1,1346 +0,0 @@ -/* - * Copyright 2004 Freescale Semiconductor. - * (C) Copyright 2003 Motorola Inc. - * Xianghua Xiao (X.Xiao@motorola.com) - * - * See file CREDITS for list of people who contributed to this - * project. - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License as - * published by the Free Software Foundation; either version 2 of - * the License, or (at your option) any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this program; if not, write to the Free Software - * Foundation, Inc., 59 Temple Place, Suite 330, Boston, - * MA 02111-1307 USA - */ - -#include <common.h> -#include <asm/processor.h> -#include <i2c.h> -#include <spd.h> -#include <asm/mmu.h> -#include <asm/fsl_law.h> - -#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) -extern void dma_init(void); -extern uint dma_check(void); -extern int dma_xfer(void *dest, uint count, void *src); -#endif - -#ifdef CONFIG_SPD_EEPROM - -#ifndef	CFG_READ_SPD -#define CFG_READ_SPD	i2c_read -#endif - -/* - * Only one of the following three should be 1; others should be 0 - * By default the cache line interleaving is selected if - * the CONFIG_DDR_INTERLEAVE flag is defined - */ -#define CFG_PAGE_INTERLEAVING		0 -#define CFG_BANK_INTERLEAVING		0 -#define CFG_SUPER_BANK_INTERLEAVING	0 - -/* - * Convert picoseconds into DRAM clock cycles (rounding up if needed). - */ - -static unsigned int -picos_to_clk(unsigned int picos) -{ -	/* use unsigned long long to avoid rounding errors */ -	const unsigned long long ULL_2e12 = 2000000000000ULL; -	unsigned long long clks; -	unsigned long long clks_temp; - -	if (! picos) -	    return 0; - -	clks = get_bus_freq(0) * (unsigned long long) picos; -	clks_temp = clks; -	clks = clks / ULL_2e12; -	if (clks_temp % ULL_2e12) { -		clks++; -	} - -	if (clks > 0xFFFFFFFFULL) { -		clks = 0xFFFFFFFFULL; -	} - -	return (unsigned int) clks; -} - - -/* - * Calculate the Density of each Physical Rank. - * Returned size is in bytes. - * - * Study these table from Byte 31 of JEDEC SPD Spec. - * - *		DDR I	DDR II - *	Bit	Size	Size - *	---	-----	------ - *	7 high	512MB	512MB - *	6	256MB	256MB - *	5	128MB	128MB - *	4	 64MB	 16GB - *	3	 32MB	  8GB - *	2	 16MB	  4GB - *	1	  2GB	  2GB - *	0 low	  1GB	  1GB - * - * Reorder Table to be linear by stripping the bottom - * 2 or 5 bits off and shifting them up to the top. - */ - -unsigned int -compute_banksize(unsigned int mem_type, unsigned char row_dens) -{ -	unsigned int bsize; - -	if (mem_type == SPD_MEMTYPE_DDR) { -		/* Bottom 2 bits up to the top. */ -		bsize = ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; -		debug("DDR: DDR I rank density = 0x%08x\n", bsize); -	} else { -		/* Bottom 5 bits up to the top. */ -		bsize = ((row_dens >> 5) | ((row_dens & 31) << 3)) << 27; -		debug("DDR: DDR II rank density = 0x%08x\n", bsize); -	} -	return bsize; -} - - -/* - * Convert a two-nibble BCD value into a cycle time. - * While the spec calls for nano-seconds, picos are returned. - * - * This implements the tables for bytes 9, 23 and 25 for both - * DDR I and II.  No allowance for distinguishing the invalid - * fields absent for DDR I yet present in DDR II is made. - * (That is, cycle times of .25, .33, .66 and .75 ns are - * allowed for both DDR II and I.) - */ - -unsigned int -convert_bcd_tenths_to_cycle_time_ps(unsigned int spd_val) -{ -	/* -	 * Table look up the lower nibble, allow DDR I & II. -	 */ -	unsigned int tenths_ps[16] = { -		0, -		100, -		200, -		300, -		400, -		500, -		600, -		700, -		800, -		900, -		250, -		330, -		660, -		750, -		0,	/* undefined */ -		0	/* undefined */ -	}; - -	unsigned int whole_ns = (spd_val & 0xF0) >> 4; -	unsigned int tenth_ns = spd_val & 0x0F; -	unsigned int ps = whole_ns * 1000 + tenths_ps[tenth_ns]; - -	return ps; -} - - -/* - * Determine Refresh Rate.  Ignore self refresh bit on DDR I. - * Table from SPD Spec, Byte 12, converted to picoseconds and - * filled in with "default" normal values. - */ -unsigned int determine_refresh_rate(unsigned int spd_refresh) -{ -	unsigned int refresh_time_ns[8] = { -		15625000,	/* 0 Normal    1.00x */ -		3900000,	/* 1 Reduced    .25x */ -		7800000,	/* 2 Extended   .50x */ -		31300000,	/* 3 Extended  2.00x */ -		62500000,	/* 4 Extended  4.00x */ -		125000000,	/* 5 Extended  8.00x */ -		15625000,	/* 6 Normal    1.00x  filler */ -		15625000,	/* 7 Normal    1.00x  filler */ -	}; - -	return picos_to_clk(refresh_time_ns[spd_refresh & 0x7]); -} - - -long int -spd_init(unsigned char i2c_address, unsigned int ddr_num, -	 unsigned int dimm_num, unsigned int start_addr) -{ -	volatile immap_t *immap = (immap_t *)CFG_IMMR; -	volatile ccsr_ddr_t *ddr; -	volatile ccsr_gur_t *gur = &immap->im_gur; -	spd_eeprom_t spd; -	unsigned int n_ranks; -	unsigned int rank_density; -	unsigned int odt_rd_cfg, odt_wr_cfg, ba_bits; -	unsigned int odt_cfg, mode_odt_enable; -	unsigned int refresh_clk; -#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL -	unsigned char clk_adjust; -#endif -	unsigned int dqs_cfg; -	unsigned char twr_clk, twtr_clk, twr_auto_clk; -	unsigned int tCKmin_ps, tCKmax_ps; -	unsigned int max_data_rate; -	unsigned int busfreq; -	unsigned int memsize; -	unsigned char caslat, caslat_ctrl; -	unsigned int trfc, trfc_clk, trfc_low, trfc_high; -	unsigned int trcd_clk; -	unsigned int trtp_clk; -	unsigned char cke_min_clk; -	unsigned char add_lat; -	unsigned char wr_lat; -	unsigned char wr_data_delay; -	unsigned char four_act; -	unsigned char cpo; -	unsigned char burst_len; -	unsigned int mode_caslat; -	unsigned char d_init; -	unsigned int tCycle_ps, modfreq; - -	if (ddr_num == 1) -		ddr = &immap->im_ddr1; -	else -		ddr = &immap->im_ddr2; - -	/* -	 * Read SPD information. -	 */ -	debug("Performing SPD read at I2C address 0x%02lx\n",i2c_address); -	memset((void *)&spd, 0, sizeof(spd)); -	CFG_READ_SPD(i2c_address, 0, 1, (uchar *) &spd, sizeof(spd)); - -	/* -	 * Check for supported memory module types. -	 */ -	if (spd.mem_type != SPD_MEMTYPE_DDR && -	    spd.mem_type != SPD_MEMTYPE_DDR2) { -		debug("Warning: Unable to locate DDR I or DDR II module for DIMM %d of DDR controller %d.\n" -		      "         Fundamental memory type is 0x%0x\n", -		      dimm_num, -		      ddr_num, -		      spd.mem_type); -		return 0; -	} - -	debug("\nFound memory of type 0x%02lx  ", spd.mem_type); -	if (spd.mem_type == SPD_MEMTYPE_DDR) -		debug("DDR I\n"); -	else -		debug("DDR II\n"); - -	/* -	 * These test gloss over DDR I and II differences in interpretation -	 * of bytes 3 and 4, but irrelevantly.  Multiple asymmetric banks -	 * are not supported on DDR I; and not encoded on DDR II. -	 * -	 * Also note that the 8548 controller can support: -	 *    12 <= nrow <= 16 -	 * and -	 *     8 <= ncol <= 11 (still, for DDR) -	 *     6 <= ncol <=  9 (for FCRAM) -	 */ -	if (spd.nrow_addr < 12 || spd.nrow_addr > 14) { -		printf("DDR: Unsupported number of Row Addr lines: %d.\n", -		       spd.nrow_addr); -		return 0; -	} -	if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { -		printf("DDR: Unsupported number of Column Addr lines: %d.\n", -		       spd.ncol_addr); -		return 0; -	} - -	/* -	 * Determine the number of physical banks controlled by -	 * different Chip Select signals.  This is not quite the -	 * same as the number of DIMM modules on the board.  Feh. -	 */ -	if (spd.mem_type == SPD_MEMTYPE_DDR) { -		n_ranks = spd.nrows; -	} else { -		n_ranks = (spd.nrows & 0x7) + 1; -	} - -	debug("DDR: number of ranks = %d\n", n_ranks); - -	if (n_ranks > 2) { -		printf("DDR: Only 2 chip selects are supported: %d\n", -		       n_ranks); -		return 0; -	} - -	/* -	 * Adjust DDR II IO voltage biasing.  Rev1 only -	 */ -	if (((get_svr() & 0xf0) == 0x10) && (spd.mem_type == SPD_MEMTYPE_DDR2)) { -		gur->ddrioovcr = (0 -				  | 0x80000000		/* Enable */ -				  | 0x10000000		/* VSEL to 1.8V */ -				  ); -	} - -	/* -	 * Determine the size of each Rank in bytes. -	 */ -	rank_density = compute_banksize(spd.mem_type, spd.row_dens); - -	debug("Start address for this controller is 0x%08lx\n", start_addr); - -	/* -	 * ODT configuration recommendation from DDR Controller Chapter. -	 */ -	odt_rd_cfg = 0;			/* Never assert ODT */ -	odt_wr_cfg = 0;			/* Never assert ODT */ -	if (spd.mem_type == SPD_MEMTYPE_DDR2) { -		odt_wr_cfg = 1;		/* Assert ODT on writes to CS0 */ -	} - -	ba_bits = 0; -	if (spd.nbanks == 0x8) -		ba_bits = 1; - -#ifdef CONFIG_DDR_INTERLEAVE - -	if (dimm_num != 1) { -		printf("For interleaving memory on HPCN, need to use DIMM 1 for DDR Controller %d !\n", ddr_num); -		return 0; -	} else { -		/* -		 * Since interleaved memory only uses CS0, the -		 * memory sticks have to be identical in size and quantity -		 * of ranks.  That essentially gives double the size on -		 * one rank, i.e on CS0 for both controllers put together. -		 * Confirm this??? -		 */ -		rank_density *= 2; - -		/* -		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg -		 */ -		start_addr = 0; -		ddr->cs0_bnds = (start_addr >> 8) -			| (((start_addr + rank_density - 1) >> 24)); -		/* -		 * Default interleaving mode to cache-line interleaving. -		 */ -		ddr->cs0_config = ( 1 << 31 -#if	(CFG_PAGE_INTERLEAVING == 1) -				    | (PAGE_INTERLEAVING) -#elif	(CFG_BANK_INTERLEAVING == 1) -				    | (BANK_INTERLEAVING) -#elif	(CFG_SUPER_BANK_INTERLEAVING == 1) -				    | (SUPER_BANK_INTERLEAVING) -#else -				    | (CACHE_LINE_INTERLEAVING) -#endif -				    | (odt_rd_cfg << 20) -				    | (odt_wr_cfg << 16) -				    | (ba_bits << 14) -				    | (spd.nrow_addr - 12) << 8 -				    | (spd.ncol_addr - 8) ); - -		debug("DDR: cs0_bnds   = 0x%08x\n", ddr->cs0_bnds); -		debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config); - -		/* -		 * Adjustment for dual rank memory to get correct memory -		 * size (return value of this function). -		 */ -		if (n_ranks == 2) { -			n_ranks = 1; -			rank_density /= 2; -		} else { -			rank_density /= 2; -		} -	} -#else	/* CONFIG_DDR_INTERLEAVE */ - -	if (dimm_num == 1) { -		/* -		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg -		 */ -		ddr->cs0_bnds = (start_addr >> 8) -			| (((start_addr + rank_density - 1) >> 24)); - -		ddr->cs0_config = ( 1 << 31 -				    | (odt_rd_cfg << 20) -				    | (odt_wr_cfg << 16) -				    | (ba_bits << 14) -				    | (spd.nrow_addr - 12) << 8 -				    | (spd.ncol_addr - 8) ); - -		debug("DDR: cs0_bnds   = 0x%08x\n", ddr->cs0_bnds); -		debug("DDR: cs0_config = 0x%08x\n", ddr->cs0_config); - -		if (n_ranks == 2) { -			/* -			 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000, -			 * second 256 Meg -			 */ -			ddr->cs1_bnds = (((start_addr + rank_density) >> 8) -					| (( start_addr + 2*rank_density - 1) -					   >> 24)); -			ddr->cs1_config = ( 1<<31 -					    | (odt_rd_cfg << 20) -					    | (odt_wr_cfg << 16) -					    | (ba_bits << 14) -					    | (spd.nrow_addr - 12) << 8 -					    | (spd.ncol_addr - 8) ); -			debug("DDR: cs1_bnds   = 0x%08x\n", ddr->cs1_bnds); -			debug("DDR: cs1_config = 0x%08x\n", ddr->cs1_config); -		} - -	} else { -		/* -		 * This is the 2nd DIMM slot for this controller -		 */ -		/* -		 * Eg: Bounds: 0x0000_0000 to 0x0f000_0000	first 256 Meg -		 */ -		ddr->cs2_bnds = (start_addr >> 8) -			| (((start_addr + rank_density - 1) >> 24)); - -		ddr->cs2_config = ( 1 << 31 -				    | (odt_rd_cfg << 20) -				    | (odt_wr_cfg << 16) -				    | (ba_bits << 14) -				    | (spd.nrow_addr - 12) << 8 -				    | (spd.ncol_addr - 8) ); - -		debug("DDR: cs2_bnds   = 0x%08x\n", ddr->cs2_bnds); -		debug("DDR: cs2_config = 0x%08x\n", ddr->cs2_config); - -		if (n_ranks == 2) { -			/* -			 * Eg: Bounds: 0x1000_0000 to 0x1f00_0000, -			 * second 256 Meg -			 */ -			ddr->cs3_bnds = (((start_addr + rank_density) >> 8) -					| (( start_addr + 2*rank_density - 1) -					   >> 24)); -			ddr->cs3_config = ( 1<<31 -					    | (odt_rd_cfg << 20) -					    | (odt_wr_cfg << 16) -					    | (ba_bits << 14) -					    | (spd.nrow_addr - 12) << 8 -					    | (spd.ncol_addr - 8) ); -			debug("DDR: cs3_bnds   = 0x%08x\n", ddr->cs3_bnds); -			debug("DDR: cs3_config = 0x%08x\n", ddr->cs3_config); -		} -	} -#endif /* CONFIG_DDR_INTERLEAVE */ - -	/* -	 * Find the largest CAS by locating the highest 1 bit -	 * in the spd.cas_lat field.  Translate it to a DDR -	 * controller field value: -	 * -	 *	CAS Lat	DDR I	DDR II	Ctrl -	 *	Clocks	SPD Bit	SPD Bit	Value -	 *	-------	-------	-------	----- -	 *	1.0	0		0001 -	 *	1.5	1		0010 -	 *	2.0	2	2	0011 -	 *	2.5	3		0100 -	 *	3.0	4	3	0101 -	 *	3.5	5		0110 -	 *	4.0		4	0111 -	 *	4.5			1000 -	 *	5.0		5	1001 -	 */ -	caslat = __ilog2(spd.cas_lat); -	if ((spd.mem_type == SPD_MEMTYPE_DDR) -	    && (caslat > 5)) { -		printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat); -		return 0; - -	} else if (spd.mem_type == SPD_MEMTYPE_DDR2 -		   && (caslat < 2 || caslat > 5)) { -		printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n", -		       spd.cas_lat); -		return 0; -	} -	debug("DDR: caslat SPD bit is %d\n", caslat); - -	/* -	 * Calculate the Maximum Data Rate based on the Minimum Cycle time. -	 * The SPD clk_cycle field (tCKmin) is measured in tenths of -	 * nanoseconds and represented as BCD. -	 */ -	tCKmin_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle); -	debug("DDR: tCKmin = %d ps\n", tCKmin_ps); - -	/* -	 * Double-data rate, scaled 1000 to picoseconds, and back down to MHz. -	 */ -	max_data_rate = 2 * 1000 * 1000 / tCKmin_ps; -	debug("DDR: Module max data rate = %d Mhz\n", max_data_rate); - - -	/* -	 * Adjust the CAS Latency to allow for bus speeds that -	 * are slower than the DDR module. -	 */ -	busfreq = get_bus_freq(0) / 1000000;	/* MHz */ -	tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle3); -	modfreq = 2 * 1000 * 1000 / tCycle_ps; - -	if ((spd.mem_type == SPD_MEMTYPE_DDR2) && (busfreq < 266)) { -		printf("DDR: platform frequency too low for correct DDR2 controller operation\n"); -		return 0; -	} else if (busfreq < 90) { -		printf("DDR: platform frequency too low for correct DDR1 operation\n"); -		return 0; -	} - -	if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 2)))) { -		caslat -= 2; -	} else { -		tCycle_ps = convert_bcd_tenths_to_cycle_time_ps(spd.clk_cycle2); -		modfreq = 2 * 1000 * 1000 / tCycle_ps; -		if ((busfreq <= modfreq) && (spd.cas_lat & (1 << (caslat - 1)))) -			caslat -= 1; -		else if (busfreq > max_data_rate) { -			printf("DDR: Bus freq %d MHz is not fit for DDR rate %d MHz\n", -			busfreq, max_data_rate); -			return 0; -		} -	} - -	/* -	 * Empirically set ~MCAS-to-preamble override for DDR 2. -	 * Your milage will vary. -	 */ -	cpo = 0; -	if (spd.mem_type == SPD_MEMTYPE_DDR2) { -		if (busfreq <= 333) { -			cpo = 0x7; -		} else if (busfreq <= 400) { -			cpo = 0x9; -		} else { -			cpo = 0xa; -		} -	} - -	/* -	 * Convert caslat clocks to DDR controller value. -	 * Force caslat_ctrl to be DDR Controller field-sized. -	 */ -	if (spd.mem_type == SPD_MEMTYPE_DDR) { -		caslat_ctrl = (caslat + 1) & 0x07; -	} else { -		caslat_ctrl =  (2 * caslat - 1) & 0x0f; -	} - -	debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n", -	      caslat, caslat_ctrl); - -	/* -	 * Timing Config 0. -	 * Avoid writing for DDR I.  The new PQ38 DDR controller -	 * dreams up non-zero default values to be backwards compatible. -	 */ -	if (spd.mem_type == SPD_MEMTYPE_DDR2) { -		unsigned char taxpd_clk = 8;		/* By the book. */ -		unsigned char tmrd_clk = 2;		/* By the book. */ -		unsigned char act_pd_exit = 2;		/* Empirical? */ -		unsigned char pre_pd_exit = 6;		/* Empirical? */ - -		ddr->timing_cfg_0 = (0 -			| ((act_pd_exit & 0x7) << 20)	/* ACT_PD_EXIT */ -			| ((pre_pd_exit & 0x7) << 16)	/* PRE_PD_EXIT */ -			| ((taxpd_clk & 0xf) << 8)	/* ODT_PD_EXIT */ -			| ((tmrd_clk & 0xf) << 0)	/* MRS_CYC */ -			); -		debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); - -	} - - -	/* -	 * Some Timing Config 1 values now. -	 * Sneak Extended Refresh Recovery in here too. -	 */ - -	/* -	 * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD, -	 * use conservative value. -	 * For DDR II, they are bytes 36 and 37, in quarter nanos. -	 */ - -	if (spd.mem_type == SPD_MEMTYPE_DDR) { -		twr_clk = 3;	/* Clocks */ -		twtr_clk = 1;	/* Clocks */ -	} else { -		twr_clk = picos_to_clk(spd.twr * 250); -		twtr_clk = picos_to_clk(spd.twtr * 250); -	} - -	/* -	 * Calculate Trfc, in picos. -	 * DDR I:  Byte 42 straight up in ns. -	 * DDR II: Byte 40 and 42 swizzled some, in ns. -	 */ -	if (spd.mem_type == SPD_MEMTYPE_DDR) { -		trfc = spd.trfc * 1000;		/* up to ps */ -	} else { -		unsigned int byte40_table_ps[8] = { -			0, -			250, -			330, -			500, -			660, -			750, -			0, -			0 -		}; - -		trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000 -			+ byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7]; -	} -	trfc_clk = picos_to_clk(trfc); - -	/* -	 * Trcd, Byte 29, from quarter nanos to ps and clocks. -	 */ -	trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7; - -	/* -	 * Convert trfc_clk to DDR controller fields.  DDR I should -	 * fit in the REFREC field (16-19) of TIMING_CFG_1, but the -	 * 8548 controller has an extended REFREC field of three bits. -	 * The controller automatically adds 8 clocks to this value, -	 * so preadjust it down 8 first before splitting it up. -	 */ -	trfc_low = (trfc_clk - 8) & 0xf; -	trfc_high = ((trfc_clk - 8) >> 4) & 0x3; - -	/* -	 * Sneak in some Extended Refresh Recovery. -	 */ -	ddr->timing_cfg_3 = (trfc_high << 16); -	debug("DDR: timing_cfg_3 = 0x%08x\n", ddr->timing_cfg_3); - -	ddr->timing_cfg_1 = -	    (0 -	     | ((picos_to_clk(spd.trp * 250) & 0x07) << 28)	/* PRETOACT */ -	     | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24)	/* ACTTOPRE */ -	     | (trcd_clk << 20)					/* ACTTORW */ -	     | (caslat_ctrl << 16)				/* CASLAT */ -	     | (trfc_low << 12)					/* REFEC */ -	     | ((twr_clk & 0x07) << 8)				/* WRRREC */ -	     | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4)	/* ACTTOACT */ -	     | ((twtr_clk & 0x07) << 0)				/* WRTORD */ -	     ); - -	debug("DDR: timing_cfg_1  = 0x%08x\n", ddr->timing_cfg_1); - - -	/* -	 * Timing_Config_2 -	 * Was: 0x00000800; -	 */ - -	/* -	 * Additive Latency -	 * For DDR I, 0. -	 * For DDR II, with ODT enabled, use "a value" less than ACTTORW, -	 * which comes from Trcd, and also note that: -	 *	add_lat + caslat must be >= 4 -	 */ -	add_lat = 0; -	if (spd.mem_type == SPD_MEMTYPE_DDR2 -	    && (odt_wr_cfg || odt_rd_cfg) -	    && (caslat < 4)) { -		add_lat = 4 - caslat; -		if (add_lat >= trcd_clk) { -			add_lat = trcd_clk - 1; -		} -	} - -	/* -	 * Write Data Delay -	 * Historically 0x2 == 4/8 clock delay. -	 * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. -	 */ -	wr_data_delay = 3; - -	/* -	 * Write Latency -	 * Read to Precharge -	 * Minimum CKE Pulse Width. -	 * Four Activate Window -	 */ -	if (spd.mem_type == SPD_MEMTYPE_DDR) { -		/* -		 * This is a lie.  It should really be 1, but if it is -		 * set to 1, bits overlap into the old controller's -		 * otherwise unused ACSM field.  If we leave it 0, then -		 * the HW will magically treat it as 1 for DDR 1.  Oh Yea. -		 */ -		wr_lat = 0; - -		trtp_clk = 2;		/* By the book. */ -		cke_min_clk = 1;	/* By the book. */ -		four_act = 1;		/* By the book. */ - -	} else { -		wr_lat = caslat - 1; - -		/* Convert SPD value from quarter nanos to picos. */ -		trtp_clk = picos_to_clk(spd.trtp * 250); - -		cke_min_clk = 3;	/* By the book. */ -		four_act = picos_to_clk(37500);	/* By the book. 1k pages? */ -	} - -	ddr->timing_cfg_2 = (0 -		| ((add_lat & 0x7) << 28)		/* ADD_LAT */ -		| ((cpo & 0x1f) << 23)			/* CPO */ -		| ((wr_lat & 0x7) << 19)		/* WR_LAT */ -		| ((trtp_clk & 0x7) << 13)		/* RD_TO_PRE */ -		| ((wr_data_delay & 0x7) << 10)		/* WR_DATA_DELAY */ -		| ((cke_min_clk & 0x7) << 6)		/* CKE_PLS */ -		| ((four_act & 0x1f) << 0)		/* FOUR_ACT */ -		); - -	debug("DDR: timing_cfg_2 = 0x%08x\n", ddr->timing_cfg_2); - - -	/* -	 * Determine the Mode Register Set. -	 * -	 * This is nominally part specific, but it appears to be -	 * consistent for all DDR I devices, and for all DDR II devices. -	 * -	 *     caslat must be programmed -	 *     burst length is always 4 -	 *     burst type is sequential -	 * -	 * For DDR I: -	 *     operating mode is "normal" -	 * -	 * For DDR II: -	 *     other stuff -	 */ - -	mode_caslat = 0; - -	/* -	 * Table lookup from DDR I or II Device Operation Specs. -	 */ -	if (spd.mem_type == SPD_MEMTYPE_DDR) { -		if (1 <= caslat && caslat <= 4) { -			unsigned char mode_caslat_table[4] = { -				0x5,	/* 1.5 clocks */ -				0x2,	/* 2.0 clocks */ -				0x6,	/* 2.5 clocks */ -				0x3	/* 3.0 clocks */ -			}; -			mode_caslat = mode_caslat_table[caslat - 1]; -		} else { -			puts("DDR I: Only CAS Latencies of 1.5, 2.0, " -			     "2.5 and 3.0 clocks are supported.\n"); -			return 0; -		} - -	} else { -		if (2 <= caslat && caslat <= 5) { -			mode_caslat = caslat; -		} else { -			puts("DDR II: Only CAS Latencies of 2.0, 3.0, " -			     "4.0 and 5.0 clocks are supported.\n"); -			return 0; -		} -	} - -	/* -	 * Encoded Burst Length of 4. -	 */ -	burst_len = 2;			/* Fiat. */ - -	if (spd.mem_type == SPD_MEMTYPE_DDR) { -		twr_auto_clk = 0;	/* Historical */ -	} else { -		/* -		 * Determine tCK max in picos.  Grab tWR and convert to picos. -		 * Auto-precharge write recovery is: -		 *	WR = roundup(tWR_ns/tCKmax_ns). -		 * -		 * Ponder: Is twr_auto_clk different than twr_clk? -		 */ -		tCKmax_ps = convert_bcd_tenths_to_cycle_time_ps(spd.tckmax); -		twr_auto_clk = (spd.twr * 250 + tCKmax_ps - 1) / tCKmax_ps; -	} - -	/* -	 * Mode Reg in bits 16 ~ 31, -	 * Extended Mode Reg 1 in bits 0 ~ 15. -	 */ -	mode_odt_enable = 0x0;			/* Default disabled */ -	if (odt_wr_cfg || odt_rd_cfg) { -		/* -		 * Bits 6 and 2 in Extended MRS(1) -		 * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. -		 * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. -		 */ -		mode_odt_enable = 0x40;		/* 150 Ohm */ -	} - -	ddr->sdram_mode_1 = -		(0 -		 | (add_lat << (16 + 3))	/* Additive Latency in EMRS1 */ -		 | (mode_odt_enable << 16)	/* ODT Enable in EMRS1 */ -		 | (twr_auto_clk << 9)		/* Write Recovery Autopre */ -		 | (mode_caslat << 4)		/* caslat */ -		 | (burst_len << 0)		/* Burst length */ -		 ); - -	debug("DDR: sdram_mode   = 0x%08x\n", ddr->sdram_mode_1); - -	/* -	 * Clear EMRS2 and EMRS3. -	 */ -	ddr->sdram_mode_2 = 0; -	debug("DDR: sdram_mode_2 = 0x%08x\n", ddr->sdram_mode_2); - -	/* -	 * Determine Refresh Rate. -	 */ -	refresh_clk = determine_refresh_rate(spd.refresh & 0x7); - -	/* -	 * Set BSTOPRE to 0x100 for page mode -	 * If auto-charge is used, set BSTOPRE = 0 -	 */ -	ddr->sdram_interval = -		(0 -		 | (refresh_clk & 0x3fff) << 16 -		 | 0x100 -		 ); -	debug("DDR: sdram_interval = 0x%08x\n", ddr->sdram_interval); - - -	/* -	 * Is this an ECC DDR chip? -	 * But don't mess with it if the DDR controller will init mem. -	 */ -#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) -	if (spd.config == 0x02) { -		ddr->err_disable = 0x0000000d; -		ddr->err_sbe = 0x00ff0000; -	} -	debug("DDR: err_disable = 0x%08x\n", ddr->err_disable); -	debug("DDR: err_sbe = 0x%08x\n", ddr->err_sbe); -#endif - -	asm volatile("sync;isync"); -	udelay(500); - -	/* -	 * SDRAM Cfg 2 -	 */ - -	/* -	 * When ODT is enabled, Chap 9 suggests asserting ODT to -	 * internal IOs only during reads. -	 */ -	odt_cfg = 0; -	if (odt_rd_cfg | odt_wr_cfg) { -		odt_cfg = 0x2;		/* ODT to IOs during reads */ -	} - -	/* -	 * Try to use differential DQS with DDR II. -	 */ -	if (spd.mem_type == SPD_MEMTYPE_DDR) { -		dqs_cfg = 0;		/* No Differential DQS for DDR I */ -	} else { -		dqs_cfg = 0x1;		/* Differential DQS for DDR II */ -	} - -#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) -	/* -	 * Use the DDR controller to auto initialize memory. -	 */ -	d_init = 1; -	ddr->sdram_data_init = CONFIG_MEM_INIT_VALUE; -	debug("DDR: ddr_data_init = 0x%08x\n", ddr->sdram_data_init); -#else -	/* -	 * Memory will be initialized via DMA, or not at all. -	 */ -	d_init = 0; -#endif - -	ddr->sdram_cfg_2 = (0 -			    | (dqs_cfg << 26)	/* Differential DQS */ -			    | (odt_cfg << 21)	/* ODT */ -			    | (d_init << 4)	/* D_INIT auto init DDR */ -			    ); - -	debug("DDR: sdram_cfg_2  = 0x%08x\n", ddr->sdram_cfg_2); - - -#ifdef MPC86xx_DDR_SDRAM_CLK_CNTL -	/* -	 * Setup the clock control. -	 * SDRAM_CLK_CNTL[0] = Source synchronous enable == 1 -	 * SDRAM_CLK_CNTL[5-7] = Clock Adjust -	 *	0110	3/4 cycle late -	 *	0111	7/8 cycle late -	 */ -	if (spd.mem_type == SPD_MEMTYPE_DDR) -		clk_adjust = 0x6; -	else -		clk_adjust = 0x7; - -	ddr->sdram_clk_cntl = (0 -			       | 0x80000000 -			       | (clk_adjust << 23) -			       ); -	debug("DDR: sdram_clk_cntl = 0x%08x\n", ddr->sdram_clk_cntl); -#endif - -	/* -	 * Figure out memory size in Megabytes. -	 */ -	debug("# ranks = %d, rank_density = 0x%08lx\n", n_ranks, rank_density); -	memsize = n_ranks * rank_density / 0x100000; -	return memsize; -} - - -unsigned int enable_ddr(unsigned int ddr_num) -{ -	volatile immap_t *immap = (immap_t *)CFG_IMMR; -	spd_eeprom_t spd1,spd2; -	volatile ccsr_ddr_t *ddr; -	unsigned sdram_cfg_1; -	unsigned char sdram_type, mem_type, mod_attr; -	unsigned char d_init; -	unsigned int no_dimm1=0, no_dimm2=0; - -	/* Set up pointer to enable the current ddr controller */ -	if (ddr_num == 1) -		ddr = &immap->im_ddr1; -	else -		ddr = &immap->im_ddr2; - -	/* -	 * Read both dimm slots and decide whether -	 * or not to enable this controller. -	 */ -	memset((void *)&spd1, 0, sizeof(spd1)); -	memset((void *)&spd2, 0, sizeof(spd2)); - -	if (ddr_num == 1) { -		CFG_READ_SPD(SPD_EEPROM_ADDRESS1, -			     0, 1, (uchar *) &spd1, sizeof(spd1)); -#if defined(SPD_EEPROM_ADDRESS2) -		CFG_READ_SPD(SPD_EEPROM_ADDRESS2, -			     0, 1, (uchar *) &spd2, sizeof(spd2)); -#endif -	} else { -#if defined(SPD_EEPROM_ADDRESS3) -		CFG_READ_SPD(SPD_EEPROM_ADDRESS3, -			     0, 1, (uchar *) &spd1, sizeof(spd1)); -#endif -#if defined(SPD_EEPROM_ADDRESS4) -		CFG_READ_SPD(SPD_EEPROM_ADDRESS4, -			     0, 1, (uchar *) &spd2, sizeof(spd2)); -#endif -	} - -	/* -	 * Check for supported memory module types. -	 */ -	if (spd1.mem_type != SPD_MEMTYPE_DDR -	    && spd1.mem_type != SPD_MEMTYPE_DDR2) { -		no_dimm1 = 1; -	} else { -		debug("\nFound memory of type 0x%02lx  ",spd1.mem_type ); -		if (spd1.mem_type == SPD_MEMTYPE_DDR) -			debug("DDR I\n"); -		else -			debug("DDR II\n"); -	} - -	if (spd2.mem_type != SPD_MEMTYPE_DDR && -	    spd2.mem_type != SPD_MEMTYPE_DDR2) { -		no_dimm2 = 1; -	} else { -		debug("\nFound memory of type 0x%02lx  ",spd2.mem_type ); -		if (spd2.mem_type == SPD_MEMTYPE_DDR) -			debug("DDR I\n"); -		else -			debug("DDR II\n"); -	} - -#ifdef CONFIG_DDR_INTERLEAVE -	if (no_dimm1) { -		printf("For interleaved operation memory modules need to be present in CS0 DIMM slots of both DDR controllers!\n"); -		return 0; -	} -#endif - -	/* -	 * Memory is not present in DIMM1 and DIMM2 - so do not enable DDRn -	 */ -	if (no_dimm1  && no_dimm2) { -		printf("No memory modules found for DDR controller %d!!\n", ddr_num); -		return 0; -	} else { - -#if defined(CONFIG_DDR_ECC) -		unsigned char config; -#endif -		mem_type = no_dimm2 ? spd1.mem_type : spd2.mem_type; - -		/* -		 * Figure out the settings for the sdram_cfg register. -		 * Build up the entire register in 'sdram_cfg' before -		 * writing since the write into the register will -		 * actually enable the memory controller; all settings -		 * must be done before enabling. -		 * -		 * sdram_cfg[0]   = 1 (ddr sdram logic enable) -		 * sdram_cfg[1]   = 1 (self-refresh-enable) -		 * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) -		 *			010 DDR 1 SDRAM -		 *			011 DDR 2 SDRAM -		 */ -		sdram_type = (mem_type == SPD_MEMTYPE_DDR) ? 2 : 3; -		sdram_cfg_1 = (0 -			       | (1 << 31)		/* Enable */ -			       | (1 << 30)		/* Self refresh */ -			       | (sdram_type << 24)	/* SDRAM type */ -			       ); - -		/* -		 * sdram_cfg[3] = RD_EN - registered DIMM enable -		 *   A value of 0x26 indicates micron registered -		 *   DIMMS (micron.com) -		 */ -		mod_attr = no_dimm2 ? spd1.mod_attr : spd2.mod_attr; -		if (mem_type == SPD_MEMTYPE_DDR && mod_attr == 0x26) { -			sdram_cfg_1 |= 0x10000000;		/* RD_EN */ -		} - -#if defined(CONFIG_DDR_ECC) - -		config = no_dimm2 ? spd1.config : spd2.config; - -		/* -		 * If the user wanted ECC (enabled via sdram_cfg[2]) -		 */ -		if (config == 0x02) { -			ddr->err_disable = 0x00000000; -			asm volatile("sync;isync;"); -			ddr->err_sbe = 0x00ff0000; -			ddr->err_int_en = 0x0000000d; -			sdram_cfg_1 |= 0x20000000;		/* ECC_EN */ -		} -#endif - -		/* -		 * Set 1T or 2T timing based on 1 or 2 modules -		 */ -		{ -			if (!(no_dimm1 || no_dimm2)) { -				/* -				 * 2T timing,because both DIMMS are present. -				 * Enable 2T timing by setting sdram_cfg[16]. -				 */ -				sdram_cfg_1 |= 0x8000;		/* 2T_EN */ -			} -		} - -		/* -		 * 200 painful micro-seconds must elapse between -		 * the DDR clock setup and the DDR config enable. -		 */ -		udelay(200); - -		/* -		 * Go! -		 */ -		ddr->sdram_cfg_1 = sdram_cfg_1; - -		asm volatile("sync;isync"); -		udelay(500); - -		debug("DDR: sdram_cfg   = 0x%08x\n", ddr->sdram_cfg_1); - - -#if defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) -		d_init = 1; -		debug("DDR: memory initializing\n"); - -		/* -		 * Poll until memory is initialized. -		 * 512 Meg at 400 might hit this 200 times or so. -		 */ -		while ((ddr->sdram_cfg_2 & (d_init << 4)) != 0) { -			udelay(1000); -		} -		debug("DDR: memory initialized\n\n"); -#endif - -		debug("Enabled DDR Controller %d\n", ddr_num); -		return 1; -	} -} - - -long int -spd_sdram(void) -{ -	int memsize_ddr1_dimm1 = 0; -	int memsize_ddr1_dimm2 = 0; -	int memsize_ddr1 = 0; -	unsigned int law_size_ddr1; -#ifdef CONFIG_DDR_INTERLEAVE -	volatile immap_t *immap = (immap_t *)CFG_IMMR; -	volatile ccsr_ddr_t *ddr1 = &immap->im_ddr1; -#endif - -#if (CONFIG_NUM_DDR_CONTROLLERS > 1) -	int memsize_ddr2_dimm1 = 0; -	int memsize_ddr2_dimm2 = 0; -	int memsize_ddr2 = 0; -	unsigned int law_size_ddr2; -#endif - -	unsigned int ddr1_enabled = 0; -	unsigned int ddr2_enabled = 0; -	int memsize_total = 0; - -#ifdef CONFIG_DDR_INTERLEAVE -	unsigned int law_size_interleaved; -	volatile ccsr_ddr_t *ddr2 = &immap->im_ddr2; - -	memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1, -				      1, 1, -				      (unsigned int)memsize_total * 1024*1024); -	memsize_total += memsize_ddr1_dimm1; - -	memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3, -				      2, 1, -				      (unsigned int)memsize_total * 1024*1024); -	memsize_total += memsize_ddr2_dimm1; - -	if (memsize_ddr1_dimm1 != memsize_ddr2_dimm1) { -		if (memsize_ddr1_dimm1 <  memsize_ddr2_dimm1) -			memsize_total -= memsize_ddr1_dimm1; -		else -			memsize_total -= memsize_ddr2_dimm1; -		debug("Total memory available for interleaving 0x%08lx\n", -		      memsize_total * 1024 * 1024); -		debug("Adjusting CS0_BNDS to account for unequal DIMM sizes in interleaved memory\n"); -		ddr1->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24; -		ddr2->cs0_bnds = ((memsize_total * 1024 * 1024) - 1) >> 24; -		debug("DDR1: cs0_bnds   = 0x%08x\n", ddr1->cs0_bnds); -		debug("DDR2: cs0_bnds   = 0x%08x\n", ddr2->cs0_bnds); -	} - -	ddr1_enabled = enable_ddr(1); -	ddr2_enabled = enable_ddr(2); - -	/* -	 * Both controllers need to be enabled for interleaving. -	 */ -	if (ddr1_enabled && ddr2_enabled) { -		law_size_interleaved = 19 + __ilog2(memsize_total); - -		/* -		 * Set up LAWBAR for DDR 1 space. -		 */ -#ifdef CONFIG_FSL_LAW -		set_next_law(CFG_DDR_SDRAM_BASE, law_size_interleaved, LAW_TRGT_IF_DDR_INTRLV); -#endif -		debug("Interleaved memory size is 0x%08lx\n", memsize_total); - -#if (CFG_PAGE_INTERLEAVING == 1) -		printf("Page "); -#elif (CFG_BANK_INTERLEAVING == 1) -		printf("Bank "); -#elif (CFG_SUPER_BANK_INTERLEAVING == 1) -		printf("Super-bank "); -#else -		printf("Cache-line "); -#endif -		printf("Interleaved"); -		return memsize_total * 1024 * 1024; -	}  else { -		printf("Interleaved memory not enabled - check CS0 DIMM slots for both controllers.\n"); -		return 0; -	} - -#else -	/* -	 * Call spd_sdram() routine to init ddr1 - pass I2c address, -	 * controller number, dimm number, and starting address. -	 */ -	memsize_ddr1_dimm1 = spd_init(SPD_EEPROM_ADDRESS1, -				      1, 1, -				      (unsigned int)memsize_total * 1024*1024); -	memsize_total += memsize_ddr1_dimm1; - -#if defined(SPD_EEPROM_ADDRESS2) -	memsize_ddr1_dimm2 = spd_init(SPD_EEPROM_ADDRESS2, -				      1, 2, -				      (unsigned int)memsize_total * 1024*1024); -#endif -	memsize_total += memsize_ddr1_dimm2; - -	/* -	 * Enable the DDR controller - pass ddr controller number. -	 */ -	ddr1_enabled = enable_ddr(1); - -	/* Keep track of memory to be addressed by DDR1 */ -	memsize_ddr1 = memsize_ddr1_dimm1 + memsize_ddr1_dimm2; - -	/* -	 * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23.  Fnord. -	 */ -	if (ddr1_enabled) { -		law_size_ddr1 = 19 + __ilog2(memsize_ddr1); - -		/* -		 * Set up LAWBAR for DDR 1 space. -		 */ -#ifdef CONFIG_FSL_LAW -		set_next_law(CFG_DDR_SDRAM_BASE, law_size_ddr1, LAW_TRGT_IF_DDR_1); -#endif -	} - -#if  (CONFIG_NUM_DDR_CONTROLLERS > 1) -	memsize_ddr2_dimm1 = spd_init(SPD_EEPROM_ADDRESS3, -				      2, 1, -				      (unsigned int)memsize_total * 1024*1024); -	memsize_total += memsize_ddr2_dimm1; - -	memsize_ddr2_dimm2 = spd_init(SPD_EEPROM_ADDRESS4, -				      2, 2, -				      (unsigned int)memsize_total * 1024*1024); -	memsize_total += memsize_ddr2_dimm2; - -	ddr2_enabled = enable_ddr(2); - -	/* Keep track of memory to be addressed by DDR2 */ -	memsize_ddr2 = memsize_ddr2_dimm1 + memsize_ddr2_dimm2; - -	if (ddr2_enabled) { -		law_size_ddr2 = 19 + __ilog2(memsize_ddr2); - -		/* -		 * Set up LAWBAR for DDR 2 space. -		 */ -#ifdef CONFIG_FSL_LAW -		set_next_law( -			(ddr1_enabled ? (memsize_ddr1 * 1024 * 1024) : CFG_DDR_SDRAM_BASE), -			law_size_ddr2, LAW_TRGT_IF_DDR_2); -#endif -	} - -	debug("\nMemory size of DDR2 = 0x%08lx\n", memsize_ddr2); - -#endif /* CONFIG_NUM_DDR_CONTROLLERS > 1 */ - -	debug("\nMemory size of DDR1 = 0x%08lx\n", memsize_ddr1); - -	/* -	 * If neither DDR controller is enabled return 0. -	 */ -	if (!ddr1_enabled && !ddr2_enabled) -		return 0; - -	printf("Non-interleaved"); -	return memsize_total * 1024 * 1024; - -#endif /* CONFIG_DDR_INTERLEAVE */ -} - - -#endif /* CONFIG_SPD_EEPROM */ - - -#if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) - -/* - * Initialize all of memory for ECC, then enable errors. - */ - -void -ddr_enable_ecc(unsigned int dram_size) -{ -	uint *p = 0; -	uint i = 0; -	volatile immap_t *immap = (immap_t *)CFG_IMMR; -	volatile ccsr_ddr_t *ddr1= &immap->im_ddr1; - -	dma_init(); - -	for (*p = 0; p < (uint *)(8 * 1024); p++) { -		if (((unsigned int)p & 0x1f) == 0) { -			ppcDcbz((unsigned long) p); -		} -		*p = (unsigned int)CONFIG_MEM_INIT_VALUE; -		if (((unsigned int)p & 0x1c) == 0x1c) { -			ppcDcbf((unsigned long) p); -		} -	} - -	dma_xfer((uint *)0x002000, 0x002000, (uint *)0); /* 8K */ -	dma_xfer((uint *)0x004000, 0x004000, (uint *)0); /* 16K */ -	dma_xfer((uint *)0x008000, 0x008000, (uint *)0); /* 32K */ -	dma_xfer((uint *)0x010000, 0x010000, (uint *)0); /* 64K */ -	dma_xfer((uint *)0x020000, 0x020000, (uint *)0); /* 128k */ -	dma_xfer((uint *)0x040000, 0x040000, (uint *)0); /* 256k */ -	dma_xfer((uint *)0x080000, 0x080000, (uint *)0); /* 512k */ -	dma_xfer((uint *)0x100000, 0x100000, (uint *)0); /* 1M */ -	dma_xfer((uint *)0x200000, 0x200000, (uint *)0); /* 2M */ -	dma_xfer((uint *)0x400000, 0x400000, (uint *)0); /* 4M */ - -	for (i = 1; i < dram_size / 0x800000; i++) { -		dma_xfer((uint *)(0x800000*i), 0x800000, (uint *)0); -	} - -	/* -	 * Enable errors for ECC. -	 */ -	debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable); -	ddr1->err_disable = 0x00000000; -	asm volatile("sync;isync"); -	debug("DMA DDR: err_disable = 0x%08x\n", ddr1->err_disable); -} - -#endif	/* CONFIG_DDR_ECC  && ! CONFIG_ECC_INIT_VIA_DDRCONTROLLER */  |