diff options
Diffstat (limited to 'arch/powerpc/cpu/ppc4xx/denali_spd_ddr2.c')
| -rw-r--r-- | arch/powerpc/cpu/ppc4xx/denali_spd_ddr2.c | 1256 | 
1 files changed, 1256 insertions, 0 deletions
| diff --git a/arch/powerpc/cpu/ppc4xx/denali_spd_ddr2.c b/arch/powerpc/cpu/ppc4xx/denali_spd_ddr2.c new file mode 100644 index 000000000..080ea0af4 --- /dev/null +++ b/arch/powerpc/cpu/ppc4xx/denali_spd_ddr2.c @@ -0,0 +1,1256 @@ +/* + * arch/powerpc/cpu/ppc4xx/denali_spd_ddr2.c + * This SPD SDRAM detection code supports AMCC PPC44x CPUs with a Denali-core + * DDR2 controller, specifically the 440EPx/GRx. + * + * (C) Copyright 2007-2008 + * Larry Johnson, lrj@acm.org. + * + * Based primarily on arch/powerpc/cpu/ppc4xx/4xx_spd_ddr2.c, which is... + * + * (C) Copyright 2007 + * Stefan Roese, DENX Software Engineering, sr@denx.de. + * + * COPYRIGHT   AMCC   CORPORATION 2004 + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of + * the License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + * + */ + +/* define DEBUG for debugging output (obviously ;-)) */ +#if 0 +#define DEBUG +#endif + +#include <common.h> +#include <command.h> +#include <ppc4xx.h> +#include <i2c.h> +#include <asm/io.h> +#include <asm/processor.h> +#include <asm/mmu.h> +#include <asm/cache.h> + +#if defined(CONFIG_SPD_EEPROM) &&				\ +	(defined(CONFIG_440EPX) || defined(CONFIG_440GRX)) + +/*-----------------------------------------------------------------------------+ + * Defines + *-----------------------------------------------------------------------------*/ +#ifndef	TRUE +#define TRUE		1 +#endif +#ifndef FALSE +#define FALSE		0 +#endif + +#define MAXDIMMS	2 +#define MAXRANKS	2 + +#define ONE_BILLION	1000000000 + +#define MULDIV64(m1, m2, d)	(u32)(((u64)(m1) * (u64)(m2)) / (u64)(d)) + +#define DLL_DQS_DELAY	0x19 +#define DLL_DQS_BYPASS	0x0B +#define DQS_OUT_SHIFT	0x7F + +/* + * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory + * region. Right now the cache should still be disabled in U-Boot because of the + * EMAC driver, that need it's buffer descriptor to be located in non cached + * memory. + * + * If at some time this restriction doesn't apply anymore, just define + * CONFIG_4xx_DCACHE in the board config file and this code should setup + * everything correctly. + */ +#if defined(CONFIG_4xx_DCACHE) +#define MY_TLB_WORD2_I_ENABLE	0			/* enable caching on SDRAM */ +#else +#define MY_TLB_WORD2_I_ENABLE	TLB_WORD2_I_ENABLE	/* disable caching on SDRAM */ +#endif + +/*-----------------------------------------------------------------------------+ + * Prototypes + *-----------------------------------------------------------------------------*/ +extern int denali_wait_for_dlllock(void); +extern void denali_core_search_data_eye(void); +extern void dcbz_area(u32 start_address, u32 num_bytes); + +/* + * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed + */ +void __spd_ddr_init_hang(void) +{ +	hang(); +} +void spd_ddr_init_hang(void) +    __attribute__ ((weak, alias("__spd_ddr_init_hang"))); + +#if defined(DEBUG) +static void print_mcsr(void) +{ +	printf("MCSR = 0x%08X\n", mfspr(SPRN_MCSR)); +} + +static void denali_sdram_register_dump(void) +{ +	unsigned int sdram_data; + +	printf("\n  Register Dump:\n"); +	mfsdram(DDR0_00, sdram_data); +	printf("        DDR0_00 = 0x%08X", sdram_data); +	mfsdram(DDR0_01, sdram_data); +	printf("        DDR0_01 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_02, sdram_data); +	printf("        DDR0_02 = 0x%08X", sdram_data); +	mfsdram(DDR0_03, sdram_data); +	printf("        DDR0_03 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_04, sdram_data); +	printf("        DDR0_04 = 0x%08X", sdram_data); +	mfsdram(DDR0_05, sdram_data); +	printf("        DDR0_05 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_06, sdram_data); +	printf("        DDR0_06 = 0x%08X", sdram_data); +	mfsdram(DDR0_07, sdram_data); +	printf("        DDR0_07 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_08, sdram_data); +	printf("        DDR0_08 = 0x%08X", sdram_data); +	mfsdram(DDR0_09, sdram_data); +	printf("        DDR0_09 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_10, sdram_data); +	printf("        DDR0_10 = 0x%08X", sdram_data); +	mfsdram(DDR0_11, sdram_data); +	printf("        DDR0_11 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_12, sdram_data); +	printf("        DDR0_12 = 0x%08X", sdram_data); +	mfsdram(DDR0_14, sdram_data); +	printf("        DDR0_14 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_17, sdram_data); +	printf("        DDR0_17 = 0x%08X", sdram_data); +	mfsdram(DDR0_18, sdram_data); +	printf("        DDR0_18 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_19, sdram_data); +	printf("        DDR0_19 = 0x%08X", sdram_data); +	mfsdram(DDR0_20, sdram_data); +	printf("        DDR0_20 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_21, sdram_data); +	printf("        DDR0_21 = 0x%08X", sdram_data); +	mfsdram(DDR0_22, sdram_data); +	printf("        DDR0_22 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_23, sdram_data); +	printf("        DDR0_23 = 0x%08X", sdram_data); +	mfsdram(DDR0_24, sdram_data); +	printf("        DDR0_24 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_25, sdram_data); +	printf("        DDR0_25 = 0x%08X", sdram_data); +	mfsdram(DDR0_26, sdram_data); +	printf("        DDR0_26 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_27, sdram_data); +	printf("        DDR0_27 = 0x%08X", sdram_data); +	mfsdram(DDR0_28, sdram_data); +	printf("        DDR0_28 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_31, sdram_data); +	printf("        DDR0_31 = 0x%08X", sdram_data); +	mfsdram(DDR0_32, sdram_data); +	printf("        DDR0_32 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_33, sdram_data); +	printf("        DDR0_33 = 0x%08X", sdram_data); +	mfsdram(DDR0_34, sdram_data); +	printf("        DDR0_34 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_35, sdram_data); +	printf("        DDR0_35 = 0x%08X", sdram_data); +	mfsdram(DDR0_36, sdram_data); +	printf("        DDR0_36 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_37, sdram_data); +	printf("        DDR0_37 = 0x%08X", sdram_data); +	mfsdram(DDR0_38, sdram_data); +	printf("        DDR0_38 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_39, sdram_data); +	printf("        DDR0_39 = 0x%08X", sdram_data); +	mfsdram(DDR0_40, sdram_data); +	printf("        DDR0_40 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_41, sdram_data); +	printf("        DDR0_41 = 0x%08X", sdram_data); +	mfsdram(DDR0_42, sdram_data); +	printf("        DDR0_42 = 0x%08X\n", sdram_data); +	mfsdram(DDR0_43, sdram_data); +	printf("        DDR0_43 = 0x%08X", sdram_data); +	mfsdram(DDR0_44, sdram_data); +	printf("        DDR0_44 = 0x%08X\n", sdram_data); +} +#else +static inline void denali_sdram_register_dump(void) +{ +} + +inline static void print_mcsr(void) +{ +} +#endif /* defined(DEBUG) */ + +static int is_ecc_enabled(void) +{ +	u32 val; + +	mfsdram(DDR0_22, val); +	return 0x3 == DDR0_22_CTRL_RAW_DECODE(val); +} + +static unsigned char spd_read(u8 chip, unsigned int addr) +{ +	u8 data[2]; + +	if (0 != i2c_probe(chip) || 0 != i2c_read(chip, addr, 1, data, 1)) { +		debug("spd_read(0x%02X, 0x%02X) failed\n", chip, addr); +		return 0; +	} +	debug("spd_read(0x%02X, 0x%02X) returned 0x%02X\n", +	      chip, addr, data[0]); +	return data[0]; +} + +static unsigned long get_tcyc(unsigned char reg) +{ +	/* +	 * Byte 9, et al: Cycle time for CAS Latency=X, is split into two +	 * nibbles: the higher order nibble (bits 4-7) designates the cycle time +	 * to a granularity of 1ns; the value presented by the lower order +	 * nibble (bits 0-3) has a granularity of .1ns and is added to the value +	 * designated by the higher nibble. In addition, four lines of the lower +	 * order nibble are assigned to support +.25, +.33, +.66, and +.75. +	 */ + +	unsigned char subfield_b = reg & 0x0F; + +	switch (subfield_b & 0x0F) { +	case 0x0: +	case 0x1: +	case 0x2: +	case 0x3: +	case 0x4: +	case 0x5: +	case 0x6: +	case 0x7: +	case 0x8: +	case 0x9: +		return 1000 * (reg >> 4) + 100 * subfield_b; +	case 0xA: +		return 1000 * (reg >> 4) + 250; +	case 0xB: +		return 1000 * (reg >> 4) + 333; +	case 0xC: +		return 1000 * (reg >> 4) + 667; +	case 0xD: +		return 1000 * (reg >> 4) + 750; +	} +	return 0; +} + +/*------------------------------------------------------------------ + * Find the installed DIMMs, make sure that the are DDR2, and fill + * in the dimm_ranks array.  Then dimm_ranks[dimm_num] > 0 iff the + * DIMM and dimm_num is present. + * Note: Because there are only two chip-select lines, it is assumed + * that a board with a single socket can support two ranks on that + * socket, while a board with two sockets can support only one rank + * on each socket. + *-----------------------------------------------------------------*/ +static void get_spd_info(unsigned long dimm_ranks[], +			 unsigned long *ranks, +			 unsigned char const iic0_dimm_addr[], +			 unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long dimm_found = FALSE; +	unsigned long const max_ranks_per_dimm = (1 == num_dimm_banks) ? 2 : 1; +	unsigned char num_of_bytes; +	unsigned char total_size; + +	*ranks = 0; +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		num_of_bytes = 0; +		total_size = 0; + +		num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); +		total_size = spd_read(iic0_dimm_addr[dimm_num], 1); +		if ((num_of_bytes != 0) && (total_size != 0)) { +			unsigned char const dimm_type = +			    spd_read(iic0_dimm_addr[dimm_num], 2); + +			unsigned long ranks_on_dimm = +			    (spd_read(iic0_dimm_addr[dimm_num], 5) & 0x07) + 1; + +			if (8 != dimm_type) { +				switch (dimm_type) { +				case 1: +					printf("ERROR: Standard Fast Page Mode " +					       "DRAM DIMM"); +					break; +				case 2: +					printf("ERROR: EDO DIMM"); +					break; +				case 3: +					printf("ERROR: Pipelined Nibble DIMM"); +					break; +				case 4: +					printf("ERROR: SDRAM DIMM"); +					break; +				case 5: +					printf("ERROR: Multiplexed ROM DIMM"); +					break; +				case 6: +					printf("ERROR: SGRAM DIMM"); +					break; +				case 7: +					printf("ERROR: DDR1 DIMM"); +					break; +				default: +					printf("ERROR: Unknown DIMM (type %d)", +					       (unsigned int)dimm_type); +					break; +				} +				printf(" detected in slot %lu.\n", dimm_num); +				printf("Only DDR2 SDRAM DIMMs are supported." +				       "\n"); +				printf("Replace the module with a DDR2 DIMM." +				       "\n\n"); +				spd_ddr_init_hang(); +			} +			dimm_found = TRUE; +			debug("DIMM slot %lu: populated with %lu-rank DDR2 DIMM" +			      "\n", dimm_num, ranks_on_dimm); +			if (ranks_on_dimm > max_ranks_per_dimm) { +				printf("WARNING: DRAM DIMM in slot %lu has %lu " +				       "ranks.\n", dimm_num, ranks_on_dimm); +				if (1 == max_ranks_per_dimm) { +					printf("Only one rank will be used.\n"); +				} else { +					printf +					    ("Only two ranks will be used.\n"); +				} +				ranks_on_dimm = max_ranks_per_dimm; +			} +			dimm_ranks[dimm_num] = ranks_on_dimm; +			*ranks += ranks_on_dimm; +		} else { +			dimm_ranks[dimm_num] = 0; +			debug("DIMM slot %lu: Not populated\n", dimm_num); +		} +	} +	if (dimm_found == FALSE) { +		printf("ERROR: No memory installed.\n"); +		printf("Install at least one DDR2 DIMM.\n\n"); +		spd_ddr_init_hang(); +	} +	debug("Total number of ranks = %d\n", *ranks); +} + +/*------------------------------------------------------------------ + * For the memory DIMMs installed, this routine verifies that + * frequency previously calculated is supported. + *-----------------------------------------------------------------*/ +static void check_frequency(unsigned long *dimm_ranks, +			    unsigned char const iic0_dimm_addr[], +			    unsigned long num_dimm_banks, +			    unsigned long sdram_freq) +{ +	unsigned long dimm_num; +	unsigned long cycle_time; +	unsigned long calc_cycle_time; + +	/* +	 * calc_cycle_time is calculated from DDR frequency set by board/chip +	 * and is expressed in picoseconds to match the way DIMM cycle time is +	 * calculated below. +	 */ +	calc_cycle_time = MULDIV64(ONE_BILLION, 1000, sdram_freq); + +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_ranks[dimm_num]) { +			cycle_time = +			    get_tcyc(spd_read(iic0_dimm_addr[dimm_num], 9)); +			debug("cycle_time=%d ps\n", cycle_time); + +			if (cycle_time > (calc_cycle_time + 10)) { +				/* +				 * the provided sdram cycle_time is too small +				 * for the available DIMM cycle_time. The +				 * additionnal 10ps is here to accept a small +				 * incertainty. +				 */ +				printf +				    ("ERROR: DRAM DIMM detected with cycle_time %d ps in " +				     "slot %d \n while calculated cycle time is %d ps.\n", +				     (unsigned int)cycle_time, +				     (unsigned int)dimm_num, +				     (unsigned int)calc_cycle_time); +				printf +				    ("Replace the DIMM, or change DDR frequency via " +				     "strapping bits.\n\n"); +				spd_ddr_init_hang(); +			} +		} +	} +} + +/*------------------------------------------------------------------ + * This routine gets size information for the installed memory + * DIMMs. + *-----------------------------------------------------------------*/ +static void get_dimm_size(unsigned long dimm_ranks[], +			  unsigned char const iic0_dimm_addr[], +			  unsigned long num_dimm_banks, +			  unsigned long *const rows, +			  unsigned long *const banks, +			  unsigned long *const cols, unsigned long *const width) +{ +	unsigned long dimm_num; + +	*rows = 0; +	*banks = 0; +	*cols = 0; +	*width = 0; +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_ranks[dimm_num]) { +			unsigned long t; + +			/* Rows */ +			t = spd_read(iic0_dimm_addr[dimm_num], 3); +			if (0 == *rows) { +				*rows = t; +			} else if (t != *rows) { +				printf("ERROR: DRAM DIMM modules do not all " +				       "have the same number of rows.\n\n"); +				spd_ddr_init_hang(); +			} +			/* Banks */ +			t = spd_read(iic0_dimm_addr[dimm_num], 17); +			if (0 == *banks) { +				*banks = t; +			} else if (t != *banks) { +				printf("ERROR: DRAM DIMM modules do not all " +				       "have the same number of banks.\n\n"); +				spd_ddr_init_hang(); +			} +			/* Columns */ +			t = spd_read(iic0_dimm_addr[dimm_num], 4); +			if (0 == *cols) { +				*cols = t; +			} else if (t != *cols) { +				printf("ERROR: DRAM DIMM modules do not all " +				       "have the same number of columns.\n\n"); +				spd_ddr_init_hang(); +			} +			/* Data width */ +			t = spd_read(iic0_dimm_addr[dimm_num], 6); +			if (0 == *width) { +				*width = t; +			} else if (t != *width) { +				printf("ERROR: DRAM DIMM modules do not all " +				       "have the same data width.\n\n"); +				spd_ddr_init_hang(); +			} +		} +	} +	debug("Number of rows = %d\n", *rows); +	debug("Number of columns = %d\n", *cols); +	debug("Number of banks = %d\n", *banks); +	debug("Data width = %d\n", *width); +	if (*rows > 14) { +		printf("ERROR: DRAM DIMM modules have %lu address rows.\n", +		       *rows); +		printf("Only modules with 14 or fewer rows are supported.\n\n"); +		spd_ddr_init_hang(); +	} +	if (4 != *banks && 8 != *banks) { +		printf("ERROR: DRAM DIMM modules have %lu banks.\n", *banks); +		printf("Only modules with 4 or 8 banks are supported.\n\n"); +		spd_ddr_init_hang(); +	} +	if (*cols > 12) { +		printf("ERROR: DRAM DIMM modules have %lu address columns.\n", +		       *cols); +		printf("Only modules with 12 or fewer columns are " +		       "supported.\n\n"); +		spd_ddr_init_hang(); +	} +	if (32 != *width && 40 != *width && 64 != *width && 72 != *width) { +		printf("ERROR: DRAM DIMM modules have a width of %lu bit.\n", +		       *width); +		printf("Only modules with widths of 32, 40, 64, and 72 bits " +		       "are supported.\n\n"); +		spd_ddr_init_hang(); +	} +} + +/*------------------------------------------------------------------ + * Only 1.8V modules are supported.  This routine verifies this. + *-----------------------------------------------------------------*/ +static void check_voltage_type(unsigned long dimm_ranks[], +			       unsigned char const iic0_dimm_addr[], +			       unsigned long num_dimm_banks) +{ +	unsigned long dimm_num; +	unsigned long voltage_type; + +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		if (dimm_ranks[dimm_num]) { +			voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); +			if (0x05 != voltage_type) {	/* 1.8V for DDR2 */ +				printf("ERROR: Slot %lu provides 1.8V for DDR2 " +				       "DIMMs.\n", dimm_num); +				switch (voltage_type) { +				case 0x00: +					printf("This DIMM is 5.0 Volt/TTL.\n"); +					break; +				case 0x01: +					printf("This DIMM is LVTTL.\n"); +					break; +				case 0x02: +					printf("This DIMM is 1.5 Volt.\n"); +					break; +				case 0x03: +					printf("This DIMM is 3.3 Volt/TTL.\n"); +					break; +				case 0x04: +					printf("This DIMM is 2.5 Volt.\n"); +					break; +				default: +					printf("This DIMM is an unknown " +					       "voltage.\n"); +					break; +				} +				printf("Replace it with a 1.8V DDR2 DIMM.\n\n"); +				spd_ddr_init_hang(); +			} +		} +	} +} + +static void program_ddr0_03(unsigned long dimm_ranks[], +			    unsigned char const iic0_dimm_addr[], +			    unsigned long num_dimm_banks, +			    unsigned long sdram_freq, +			    unsigned long rows, unsigned long *cas_latency) +{ +	unsigned long dimm_num; +	unsigned long cas_index; +	unsigned long cycle_2_0_clk; +	unsigned long cycle_3_0_clk; +	unsigned long cycle_4_0_clk; +	unsigned long cycle_5_0_clk; +	unsigned long max_2_0_tcyc_ps = 100; +	unsigned long max_3_0_tcyc_ps = 100; +	unsigned long max_4_0_tcyc_ps = 100; +	unsigned long max_5_0_tcyc_ps = 100; +	unsigned char cas_available = 0x3C;	/* value for DDR2 */ +	u32 ddr0_03 = DDR0_03_BSTLEN_ENCODE(0x2) | DDR0_03_INITAREF_ENCODE(0x2); +	unsigned int const tcyc_addr[3] = { 9, 23, 25 }; + +	/*------------------------------------------------------------------ +	 * Get the board configuration info. +	 *-----------------------------------------------------------------*/ +	debug("sdram_freq = %d\n", sdram_freq); + +	/*------------------------------------------------------------------ +	 * Handle the timing.  We need to find the worst case timing of all +	 * the dimm modules installed. +	 *-----------------------------------------------------------------*/ +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		/* If a dimm is installed in a particular slot ... */ +		if (dimm_ranks[dimm_num]) { +			unsigned char const cas_bit = +			    spd_read(iic0_dimm_addr[dimm_num], 18); +			unsigned char cas_mask; + +			cas_available &= cas_bit; +			for (cas_mask = 0x80; cas_mask; cas_mask >>= 1) { +				if (cas_bit & cas_mask) +					break; +			} +			debug("cas_bit (SPD byte 18) = %02X, cas_mask = %02X\n", +			      cas_bit, cas_mask); + +			for (cas_index = 0; cas_index < 3; +			     cas_mask >>= 1, cas_index++) { +				unsigned long cycle_time_ps; + +				if (!(cas_available & cas_mask)) { +					continue; +				} +				cycle_time_ps = +				    get_tcyc(spd_read(iic0_dimm_addr[dimm_num], +						      tcyc_addr[cas_index])); + +				debug("cas_index = %d: cycle_time_ps = %d\n", +				      cas_index, cycle_time_ps); +				/* +				 * DDR2 devices use the following bitmask for CAS latency: +				 *  Bit   7    6    5    4    3    2    1    0 +				 *       TBD  6.0  5.0  4.0  3.0  2.0  TBD  TBD +				 */ +				switch (cas_mask) { +				case 0x20: +					max_5_0_tcyc_ps = +					    max(max_5_0_tcyc_ps, cycle_time_ps); +					break; +				case 0x10: +					max_4_0_tcyc_ps = +					    max(max_4_0_tcyc_ps, cycle_time_ps); +					break; +				case 0x08: +					max_3_0_tcyc_ps = +					    max(max_3_0_tcyc_ps, cycle_time_ps); +					break; +				case 0x04: +					max_2_0_tcyc_ps = +					    max(max_2_0_tcyc_ps, cycle_time_ps); +					break; +				} +			} +		} +	} +	debug("cas_available (bit map) = 0x%02X\n", cas_available); + +	/*------------------------------------------------------------------ +	 * Set the SDRAM mode, SDRAM_MMODE +	 *-----------------------------------------------------------------*/ + +	/* add 10 here because of rounding problems */ +	cycle_2_0_clk = MULDIV64(ONE_BILLION, 1000, max_2_0_tcyc_ps) + 10; +	cycle_3_0_clk = MULDIV64(ONE_BILLION, 1000, max_3_0_tcyc_ps) + 10; +	cycle_4_0_clk = MULDIV64(ONE_BILLION, 1000, max_4_0_tcyc_ps) + 10; +	cycle_5_0_clk = MULDIV64(ONE_BILLION, 1000, max_5_0_tcyc_ps) + 10; +	debug("cycle_2_0_clk = %d\n", cycle_2_0_clk); +	debug("cycle_3_0_clk = %d\n", cycle_3_0_clk); +	debug("cycle_4_0_clk = %d\n", cycle_4_0_clk); +	debug("cycle_5_0_clk = %d\n", cycle_5_0_clk); + +	if ((cas_available & 0x04) && (sdram_freq <= cycle_2_0_clk)) { +		*cas_latency = 2; +		ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x2) | +		    DDR0_03_CASLAT_LIN_ENCODE(0x4); +	} else if ((cas_available & 0x08) && (sdram_freq <= cycle_3_0_clk)) { +		*cas_latency = 3; +		ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x3) | +		    DDR0_03_CASLAT_LIN_ENCODE(0x6); +	} else if ((cas_available & 0x10) && (sdram_freq <= cycle_4_0_clk)) { +		*cas_latency = 4; +		ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x4) | +		    DDR0_03_CASLAT_LIN_ENCODE(0x8); +	} else if ((cas_available & 0x20) && (sdram_freq <= cycle_5_0_clk)) { +		*cas_latency = 5; +		ddr0_03 |= DDR0_03_CASLAT_ENCODE(0x5) | +		    DDR0_03_CASLAT_LIN_ENCODE(0xA); +	} else { +		printf("ERROR: Cannot find a supported CAS latency with the " +		       "installed DIMMs.\n"); +		printf("Only DDR2 DIMMs with CAS latencies of 2.0, 3.0, 4.0, " +		       "and 5.0 are supported.\n"); +		printf("Make sure the PLB speed is within the supported range " +		       "of the DIMMs.\n"); +		printf("sdram_freq=%ld cycle2=%ld cycle3=%ld cycle4=%ld " +		       "cycle5=%ld\n\n", sdram_freq, cycle_2_0_clk, +		       cycle_3_0_clk, cycle_4_0_clk, cycle_5_0_clk); +		spd_ddr_init_hang(); +	} +	debug("CAS latency = %d\n", *cas_latency); +	mtsdram(DDR0_03, ddr0_03); +} + +static void program_ddr0_04(unsigned long dimm_ranks[], +			    unsigned char const iic0_dimm_addr[], +			    unsigned long num_dimm_banks, +			    unsigned long sdram_freq) +{ +	unsigned long dimm_num; +	unsigned long t_rc_ps = 0; +	unsigned long t_rrd_ps = 0; +	unsigned long t_rtp_ps = 0; +	unsigned long t_rc_clk; +	unsigned long t_rrd_clk; +	unsigned long t_rtp_clk; + +	/*------------------------------------------------------------------ +	 * Handle the timing.  We need to find the worst case timing of all +	 * the dimm modules installed. +	 *-----------------------------------------------------------------*/ +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		/* If a dimm is installed in a particular slot ... */ +		if (dimm_ranks[dimm_num]) { +			unsigned long ps; + +			/* tRC */ +			ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 41); +			switch (spd_read(iic0_dimm_addr[dimm_num], 40) >> 4) { +			case 0x1: +				ps += 250; +				break; +			case 0x2: +				ps += 333; +				break; +			case 0x3: +				ps += 500; +				break; +			case 0x4: +				ps += 667; +				break; +			case 0x5: +				ps += 750; +				break; +			} +			t_rc_ps = max(t_rc_ps, ps); +			/* tRRD */ +			ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 28); +			t_rrd_ps = max(t_rrd_ps, ps); +			/* tRTP */ +			ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 38); +			t_rtp_ps = max(t_rtp_ps, ps); +		} +	} +	debug("t_rc_ps  = %d\n", t_rc_ps); +	t_rc_clk = (MULDIV64(sdram_freq, t_rc_ps, ONE_BILLION) + 999) / 1000; +	debug("t_rrd_ps = %d\n", t_rrd_ps); +	t_rrd_clk = (MULDIV64(sdram_freq, t_rrd_ps, ONE_BILLION) + 999) / 1000; +	debug("t_rtp_ps = %d\n", t_rtp_ps); +	t_rtp_clk = (MULDIV64(sdram_freq, t_rtp_ps, ONE_BILLION) + 999) / 1000; +	mtsdram(DDR0_04, DDR0_04_TRC_ENCODE(t_rc_clk) | +		DDR0_04_TRRD_ENCODE(t_rrd_clk) | +		DDR0_04_TRTP_ENCODE(t_rtp_clk)); +} + +static void program_ddr0_05(unsigned long dimm_ranks[], +			    unsigned char const iic0_dimm_addr[], +			    unsigned long num_dimm_banks, +			    unsigned long sdram_freq) +{ +	unsigned long dimm_num; +	unsigned long t_rp_ps = 0; +	unsigned long t_ras_ps = 0; +	unsigned long t_rp_clk; +	unsigned long t_ras_clk; +	u32 ddr0_05 = DDR0_05_TMRD_ENCODE(0x2) | DDR0_05_TEMRS_ENCODE(0x2); + +	/*------------------------------------------------------------------ +	 * Handle the timing.  We need to find the worst case timing of all +	 * the dimm modules installed. +	 *-----------------------------------------------------------------*/ +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		/* If a dimm is installed in a particular slot ... */ +		if (dimm_ranks[dimm_num]) { +			unsigned long ps; + +			/* tRP */ +			ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 27); +			t_rp_ps = max(t_rp_ps, ps); +			/* tRAS */ +			ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 30); +			t_ras_ps = max(t_ras_ps, ps); +		} +	} +	debug("t_rp_ps  = %d\n", t_rp_ps); +	t_rp_clk = (MULDIV64(sdram_freq, t_rp_ps, ONE_BILLION) + 999) / 1000; +	debug("t_ras_ps = %d\n", t_ras_ps); +	t_ras_clk = (MULDIV64(sdram_freq, t_ras_ps, ONE_BILLION) + 999) / 1000; +	mtsdram(DDR0_05, ddr0_05 | DDR0_05_TRP_ENCODE(t_rp_clk) | +		DDR0_05_TRAS_MIN_ENCODE(t_ras_clk)); +} + +static void program_ddr0_06(unsigned long dimm_ranks[], +			    unsigned char const iic0_dimm_addr[], +			    unsigned long num_dimm_banks, +			    unsigned long sdram_freq) +{ +	unsigned long dimm_num; +	unsigned char spd_40; +	unsigned long t_wtr_ps = 0; +	unsigned long t_rfc_ps = 0; +	unsigned long t_wtr_clk; +	unsigned long t_rfc_clk; +	u32 ddr0_06 = +	    DDR0_06_WRITEINTERP_ENCODE(0x1) | DDR0_06_TDLL_ENCODE(200); + +	/*------------------------------------------------------------------ +	 * Handle the timing.  We need to find the worst case timing of all +	 * the dimm modules installed. +	 *-----------------------------------------------------------------*/ +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		/* If a dimm is installed in a particular slot ... */ +		if (dimm_ranks[dimm_num]) { +			unsigned long ps; + +			/* tWTR */ +			ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 37); +			t_wtr_ps = max(t_wtr_ps, ps); +			/* tRFC */ +			ps = 1000 * spd_read(iic0_dimm_addr[dimm_num], 42); +			spd_40 = spd_read(iic0_dimm_addr[dimm_num], 40); +			ps += 256000 * (spd_40 & 0x01); +			switch ((spd_40 & 0x0E) >> 1) { +			case 0x1: +				ps += 250; +				break; +			case 0x2: +				ps += 333; +				break; +			case 0x3: +				ps += 500; +				break; +			case 0x4: +				ps += 667; +				break; +			case 0x5: +				ps += 750; +				break; +			} +			t_rfc_ps = max(t_rfc_ps, ps); +		} +	} +	debug("t_wtr_ps = %d\n", t_wtr_ps); +	t_wtr_clk = (MULDIV64(sdram_freq, t_wtr_ps, ONE_BILLION) + 999) / 1000; +	debug("t_rfc_ps = %d\n", t_rfc_ps); +	t_rfc_clk = (MULDIV64(sdram_freq, t_rfc_ps, ONE_BILLION) + 999) / 1000; +	mtsdram(DDR0_06, ddr0_06 | DDR0_06_TWTR_ENCODE(t_wtr_clk) | +		DDR0_06_TRFC_ENCODE(t_rfc_clk)); +} + +static void program_ddr0_10(unsigned long dimm_ranks[], unsigned long ranks) +{ +	unsigned long csmap; + +	if (2 == ranks) { +		/* Both chip selects in use */ +		csmap = 0x03; +	} else { +		/* One chip select in use */ +		csmap = (1 == dimm_ranks[0]) ? 0x1 : 0x2; +	} +	mtsdram(DDR0_10, DDR0_10_WRITE_MODEREG_ENCODE(0x0) | +		DDR0_10_CS_MAP_ENCODE(csmap) | +		DDR0_10_OCD_ADJUST_PUP_CS_0_ENCODE(0)); +} + +static void program_ddr0_11(unsigned long sdram_freq) +{ +	unsigned long const t_xsnr_ps = 200000;	/* 200 ns */ +	unsigned long t_xsnr_clk; + +	debug("t_xsnr_ps = %d\n", t_xsnr_ps); +	t_xsnr_clk = +	    (MULDIV64(sdram_freq, t_xsnr_ps, ONE_BILLION) + 999) / 1000; +	mtsdram(DDR0_11, DDR0_11_SREFRESH_ENCODE(0) | +		DDR0_11_TXSNR_ENCODE(t_xsnr_clk) | DDR0_11_TXSR_ENCODE(200)); +} + +static void program_ddr0_22(unsigned long dimm_ranks[], +			    unsigned char const iic0_dimm_addr[], +			    unsigned long num_dimm_banks, unsigned long width) +{ +#if defined(CONFIG_DDR_ECC) +	unsigned long dimm_num; +	unsigned long ecc_available = width >= 64; +	u32 ddr0_22 = DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) | +	    DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) | +	    DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS); + +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		/* If a dimm is installed in a particular slot ... */ +		if (dimm_ranks[dimm_num]) { +			/* Check for ECC */ +			if (0 == (spd_read(iic0_dimm_addr[dimm_num], 11) & +				  0x02)) { +				ecc_available = FALSE; +			} +		} +	} +	if (ecc_available) { +		debug("ECC found on all DIMMs present\n"); +		mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x3)); +	} else { +		debug("ECC not found on some or all DIMMs present\n"); +		mtsdram(DDR0_22, ddr0_22 | DDR0_22_CTRL_RAW_ENCODE(0x0)); +	} +#else +	mtsdram(DDR0_22, DDR0_22_CTRL_RAW_ENCODE(0x0) | +		DDR0_22_DQS_OUT_SHIFT_BYPASS_ENCODE(0x26) | +		DDR0_22_DQS_OUT_SHIFT_ENCODE(DQS_OUT_SHIFT) | +		DDR0_22_DLL_DQS_BYPASS_8_ENCODE(DLL_DQS_BYPASS)); +#endif /* defined(CONFIG_DDR_ECC) */ +} + +static void program_ddr0_24(unsigned long ranks) +{ +	u32 ddr0_24 = DDR0_24_RTT_PAD_TERMINATION_ENCODE(0x1) |	/* 75 ohm */ +	    DDR0_24_ODT_RD_MAP_CS1_ENCODE(0x0); + +	if (2 == ranks) { +		/* Both chip selects in use */ +		ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x1) | +		    DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x2); +	} else { +		/* One chip select in use */ +		/* One of the two fields added to ddr0_24 is a "don't care" */ +		ddr0_24 |= DDR0_24_ODT_WR_MAP_CS1_ENCODE(0x2) | +		    DDR0_24_ODT_WR_MAP_CS0_ENCODE(0x1); +	} +	mtsdram(DDR0_24, ddr0_24); +} + +static void program_ddr0_26(unsigned long sdram_freq) +{ +	unsigned long const t_ref_ps = 7800000;	/* 7.8 us. refresh */ +	/* TODO: check definition of tRAS_MAX */ +	unsigned long const t_ras_max_ps = 9 * t_ref_ps; +	unsigned long t_ras_max_clk; +	unsigned long t_ref_clk; + +	/* Round down t_ras_max_clk and t_ref_clk */ +	debug("t_ras_max_ps = %d\n", t_ras_max_ps); +	t_ras_max_clk = MULDIV64(sdram_freq, t_ras_max_ps, ONE_BILLION) / 1000; +	debug("t_ref_ps     = %d\n", t_ref_ps); +	t_ref_clk = MULDIV64(sdram_freq, t_ref_ps, ONE_BILLION) / 1000; +	mtsdram(DDR0_26, DDR0_26_TRAS_MAX_ENCODE(t_ras_max_clk) | +		DDR0_26_TREF_ENCODE(t_ref_clk)); +} + +static void program_ddr0_27(unsigned long sdram_freq) +{ +	unsigned long const t_init_ps = 200000000;	/* 200 us. init */ +	unsigned long t_init_clk; + +	debug("t_init_ps = %d\n", t_init_ps); +	t_init_clk = +	    (MULDIV64(sdram_freq, t_init_ps, ONE_BILLION) + 999) / 1000; +	mtsdram(DDR0_27, DDR0_27_EMRS_DATA_ENCODE(0x0000) | +		DDR0_27_TINIT_ENCODE(t_init_clk)); +} + +static void program_ddr0_43(unsigned long dimm_ranks[], +			    unsigned char const iic0_dimm_addr[], +			    unsigned long num_dimm_banks, +			    unsigned long sdram_freq, +			    unsigned long cols, unsigned long banks) +{ +	unsigned long dimm_num; +	unsigned long t_wr_ps = 0; +	unsigned long t_wr_clk; +	u32 ddr0_43 = DDR0_43_APREBIT_ENCODE(10) | +	    DDR0_43_COLUMN_SIZE_ENCODE(12 - cols) | +	    DDR0_43_EIGHT_BANK_MODE_ENCODE(8 == banks ? 1 : 0); + +	/*------------------------------------------------------------------ +	 * Handle the timing.  We need to find the worst case timing of all +	 * the dimm modules installed. +	 *-----------------------------------------------------------------*/ +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		/* If a dimm is installed in a particular slot ... */ +		if (dimm_ranks[dimm_num]) { +			unsigned long ps; + +			ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 36); +			t_wr_ps = max(t_wr_ps, ps); +		} +	} +	debug("t_wr_ps = %d\n", t_wr_ps); +	t_wr_clk = (MULDIV64(sdram_freq, t_wr_ps, ONE_BILLION) + 999) / 1000; +	mtsdram(DDR0_43, ddr0_43 | DDR0_43_TWR_ENCODE(t_wr_clk)); +} + +static void program_ddr0_44(unsigned long dimm_ranks[], +			    unsigned char const iic0_dimm_addr[], +			    unsigned long num_dimm_banks, +			    unsigned long sdram_freq) +{ +	unsigned long dimm_num; +	unsigned long t_rcd_ps = 0; +	unsigned long t_rcd_clk; + +	/*------------------------------------------------------------------ +	 * Handle the timing.  We need to find the worst case timing of all +	 * the dimm modules installed. +	 *-----------------------------------------------------------------*/ +	/* loop through all the DIMM slots on the board */ +	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { +		/* If a dimm is installed in a particular slot ... */ +		if (dimm_ranks[dimm_num]) { +			unsigned long ps; + +			ps = 250 * spd_read(iic0_dimm_addr[dimm_num], 29); +			t_rcd_ps = max(t_rcd_ps, ps); +		} +	} +	debug("t_rcd_ps = %d\n", t_rcd_ps); +	t_rcd_clk = (MULDIV64(sdram_freq, t_rcd_ps, ONE_BILLION) + 999) / 1000; +	mtsdram(DDR0_44, DDR0_44_TRCD_ENCODE(t_rcd_clk)); +} + +/*-----------------------------------------------------------------------------+ + * initdram.  Initializes the 440EPx/GPx DDR SDRAM controller. + * Note: This routine runs from flash with a stack set up in the chip's + * sram space.  It is important that the routine does not require .sbss, .bss or + * .data sections.  It also cannot call routines that require these sections. + *-----------------------------------------------------------------------------*/ +/*----------------------------------------------------------------------------- + * Function:	 initdram + * Description:  Configures SDRAM memory banks for DDR operation. + *		 Auto Memory Configuration option reads the DDR SDRAM EEPROMs + *		 via the IIC bus and then configures the DDR SDRAM memory + *		 banks appropriately. If Auto Memory Configuration is + *		 not used, it is assumed that no DIMM is plugged + *-----------------------------------------------------------------------------*/ +phys_size_t initdram(int board_type) +{ +	unsigned char const iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; +	unsigned long dimm_ranks[MAXDIMMS]; +	unsigned long ranks; +	unsigned long rows; +	unsigned long banks; +	unsigned long cols; +	unsigned long width; +	unsigned long const sdram_freq = get_bus_freq(0); +	unsigned long const num_dimm_banks = sizeof(iic0_dimm_addr);	/* on board dimm banks */ +	unsigned long cas_latency = 0;	/* to quiet initialization warning */ +	unsigned long dram_size; + +	debug("\nEntering initdram()\n"); + +	/*------------------------------------------------------------------ +	 * Stop the DDR-SDRAM controller. +	 *-----------------------------------------------------------------*/ +	mtsdram(DDR0_02, DDR0_02_START_ENCODE(0)); + +	/* +	 * Make sure I2C controller is initialized +	 * before continuing. +	 */ +	/* switch to correct I2C bus */ +	I2C_SET_BUS(CONFIG_SYS_SPD_BUS_NUM); +	i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); + +	/*------------------------------------------------------------------ +	 * Clear out the serial presence detect buffers. +	 * Perform IIC reads from the dimm.  Fill in the spds. +	 * Check to see if the dimm slots are populated +	 *-----------------------------------------------------------------*/ +	get_spd_info(dimm_ranks, &ranks, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Check the frequency supported for the dimms plugged. +	 *-----------------------------------------------------------------*/ +	check_frequency(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); + +	/*------------------------------------------------------------------ +	 * Check and get size information. +	 *-----------------------------------------------------------------*/ +	get_dimm_size(dimm_ranks, iic0_dimm_addr, num_dimm_banks, &rows, &banks, +		      &cols, &width); + +	/*------------------------------------------------------------------ +	 * Check the voltage type for the dimms plugged. +	 *-----------------------------------------------------------------*/ +	check_voltage_type(dimm_ranks, iic0_dimm_addr, num_dimm_banks); + +	/*------------------------------------------------------------------ +	 * Program registers for SDRAM controller. +	 *-----------------------------------------------------------------*/ +	mtsdram(DDR0_00, DDR0_00_DLL_INCREMENT_ENCODE(0x19) | +		DDR0_00_DLL_START_POINT_DECODE(0x0A)); + +	mtsdram(DDR0_01, DDR0_01_PLB0_DB_CS_LOWER_ENCODE(0x01) | +		DDR0_01_PLB0_DB_CS_UPPER_ENCODE(0x00) | +		DDR0_01_INT_MASK_ENCODE(0xFF)); + +	program_ddr0_03(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq, +			rows, &cas_latency); + +	program_ddr0_04(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); + +	program_ddr0_05(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); + +	program_ddr0_06(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); + +	/* +	 * TODO: tFAW not found in SPD.  Value of 13 taken from Sequoia +	 * board SDRAM, but may be overly conservative. +	 */ +	mtsdram(DDR0_07, DDR0_07_NO_CMD_INIT_ENCODE(0) | +		DDR0_07_TFAW_ENCODE(13) | +		DDR0_07_AUTO_REFRESH_MODE_ENCODE(1) | +		DDR0_07_AREFRESH_ENCODE(0)); + +	mtsdram(DDR0_08, DDR0_08_WRLAT_ENCODE(cas_latency - 1) | +		DDR0_08_TCPD_ENCODE(200) | DDR0_08_DQS_N_EN_ENCODE(0) | +		DDR0_08_DDRII_ENCODE(1)); + +	mtsdram(DDR0_09, DDR0_09_OCD_ADJUST_PDN_CS_0_ENCODE(0x00) | +		DDR0_09_RTT_0_ENCODE(0x1) | +		DDR0_09_WR_DQS_SHIFT_BYPASS_ENCODE(0x1D) | +		DDR0_09_WR_DQS_SHIFT_ENCODE(DQS_OUT_SHIFT - 0x20)); + +	program_ddr0_10(dimm_ranks, ranks); + +	program_ddr0_11(sdram_freq); + +	mtsdram(DDR0_12, DDR0_12_TCKE_ENCODE(3)); + +	mtsdram(DDR0_14, DDR0_14_DLL_BYPASS_MODE_ENCODE(0) | +		DDR0_14_REDUC_ENCODE(width <= 40 ? 1 : 0) | +		DDR0_14_REG_DIMM_ENABLE_ENCODE(0)); + +	mtsdram(DDR0_17, DDR0_17_DLL_DQS_DELAY_0_ENCODE(DLL_DQS_DELAY)); + +	mtsdram(DDR0_18, DDR0_18_DLL_DQS_DELAY_4_ENCODE(DLL_DQS_DELAY) | +		DDR0_18_DLL_DQS_DELAY_3_ENCODE(DLL_DQS_DELAY) | +		DDR0_18_DLL_DQS_DELAY_2_ENCODE(DLL_DQS_DELAY) | +		DDR0_18_DLL_DQS_DELAY_1_ENCODE(DLL_DQS_DELAY)); + +	mtsdram(DDR0_19, DDR0_19_DLL_DQS_DELAY_8_ENCODE(DLL_DQS_DELAY) | +		DDR0_19_DLL_DQS_DELAY_7_ENCODE(DLL_DQS_DELAY) | +		DDR0_19_DLL_DQS_DELAY_6_ENCODE(DLL_DQS_DELAY) | +		DDR0_19_DLL_DQS_DELAY_5_ENCODE(DLL_DQS_DELAY)); + +	mtsdram(DDR0_20, DDR0_20_DLL_DQS_BYPASS_3_ENCODE(DLL_DQS_BYPASS) | +		DDR0_20_DLL_DQS_BYPASS_2_ENCODE(DLL_DQS_BYPASS) | +		DDR0_20_DLL_DQS_BYPASS_1_ENCODE(DLL_DQS_BYPASS) | +		DDR0_20_DLL_DQS_BYPASS_0_ENCODE(DLL_DQS_BYPASS)); + +	mtsdram(DDR0_21, DDR0_21_DLL_DQS_BYPASS_7_ENCODE(DLL_DQS_BYPASS) | +		DDR0_21_DLL_DQS_BYPASS_6_ENCODE(DLL_DQS_BYPASS) | +		DDR0_21_DLL_DQS_BYPASS_5_ENCODE(DLL_DQS_BYPASS) | +		DDR0_21_DLL_DQS_BYPASS_4_ENCODE(DLL_DQS_BYPASS)); + +	program_ddr0_22(dimm_ranks, iic0_dimm_addr, num_dimm_banks, width); + +	mtsdram(DDR0_23, DDR0_23_ODT_RD_MAP_CS0_ENCODE(0x0) | +		DDR0_23_FWC_ENCODE(0)); + +	program_ddr0_24(ranks); + +	program_ddr0_26(sdram_freq); + +	program_ddr0_27(sdram_freq); + +	mtsdram(DDR0_28, DDR0_28_EMRS3_DATA_ENCODE(0x0000) | +		DDR0_28_EMRS2_DATA_ENCODE(0x0000)); + +	mtsdram(DDR0_31, DDR0_31_XOR_CHECK_BITS_ENCODE(0x0000)); + +	mtsdram(DDR0_42, DDR0_42_ADDR_PINS_ENCODE(14 - rows) | +		DDR0_42_CASLAT_LIN_GATE_ENCODE(2 * cas_latency)); + +	program_ddr0_43(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq, +			cols, banks); + +	program_ddr0_44(dimm_ranks, iic0_dimm_addr, num_dimm_banks, sdram_freq); + +	denali_sdram_register_dump(); + +	dram_size = (width >= 64) ? 8 : 4; +	dram_size *= 1 << cols; +	dram_size *= banks; +	dram_size *= 1 << rows; +	dram_size *= ranks; +	debug("dram_size = %lu\n", dram_size); + +	/* Start the SDRAM controler */ +	mtsdram(DDR0_02, DDR0_02_START_ENCODE(1)); +	denali_wait_for_dlllock(); + +#if defined(CONFIG_DDR_DATA_EYE) +	/* +	 * Map the first 1 MiB of memory in the TLB, and perform the data eye +	 * search. +	 */ +	program_tlb(0, CONFIG_SYS_SDRAM_BASE, TLB_1MB_SIZE, TLB_WORD2_I_ENABLE); +	denali_core_search_data_eye(); +	denali_sdram_register_dump(); +	remove_tlb(CONFIG_SYS_SDRAM_BASE, TLB_1MB_SIZE); +#endif + +#if defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) +	program_tlb(0, CONFIG_SYS_SDRAM_BASE, dram_size, 0); +	sync(); +	/* Zero the memory */ +	debug("Zeroing SDRAM..."); +#if defined(CONFIG_SYS_MEM_TOP_HIDE) +	dcbz_area(CONFIG_SYS_SDRAM_BASE, dram_size - CONFIG_SYS_MEM_TOP_HIDE); +#else +#error Please define CONFIG_SYS_MEM_TOP_HIDE (see README) in your board config file +#endif +	/* Write modified dcache lines back to memory */ +	clean_dcache_range(CONFIG_SYS_SDRAM_BASE, CONFIG_SYS_SDRAM_BASE + dram_size - CONFIG_SYS_MEM_TOP_HIDE); +	debug("Completed\n"); +	sync(); +	remove_tlb(CONFIG_SYS_SDRAM_BASE, dram_size); + +#if defined(CONFIG_DDR_ECC) +	/* +	 * If ECC is enabled, clear and enable interrupts +	 */ +	if (is_ecc_enabled()) { +		u32 val; + +		sync(); +		/* Clear error status */ +		mfsdram(DDR0_00, val); +		mtsdram(DDR0_00, val | DDR0_00_INT_ACK_ALL); +		/* Set 'int_mask' parameter to functionnal value */ +		mfsdram(DDR0_01, val); +		mtsdram(DDR0_01, (val & ~DDR0_01_INT_MASK_MASK) | +			DDR0_01_INT_MASK_ALL_OFF); +#if defined(CONFIG_DDR_DATA_EYE) +		/* +		 * Running denali_core_search_data_eye() when ECC is enabled +		 * causes non-ECC machine checks.  This clears them. +		 */ +		print_mcsr(); +		mtspr(SPRN_MCSR, mfspr(SPRN_MCSR)); +		print_mcsr(); +#endif +		sync(); +	} +#endif /* defined(CONFIG_DDR_ECC) */ +#endif /* defined(CONFIG_ZERO_SDRAM) || defined(CONFIG_DDR_ECC) */ + +	program_tlb(0, CONFIG_SYS_SDRAM_BASE, dram_size, MY_TLB_WORD2_I_ENABLE); +	return dram_size; +} + +void board_add_ram_info(int use_default) +{ +	u32 val; + +	printf(" (ECC"); +	if (!is_ecc_enabled()) { +		printf(" not"); +	} +	printf(" enabled, %ld MHz", (2 * get_bus_freq(0)) / 1000000); + +	mfsdram(DDR0_03, val); +	printf(", CL%d)", DDR0_03_CASLAT_LIN_DECODE(val) >> 1); +} +#endif /* CONFIG_SPD_EEPROM */ |