diff options
Diffstat (limited to 'arch/arm/cpu/armv7/omap4/emif.c')
| -rw-r--r-- | arch/arm/cpu/armv7/omap4/emif.c | 1135 | 
1 files changed, 5 insertions, 1130 deletions
| diff --git a/arch/arm/cpu/armv7/omap4/emif.c b/arch/arm/cpu/armv7/omap4/emif.c index 988b2050f..ca4823dd7 100644 --- a/arch/arm/cpu/armv7/omap4/emif.c +++ b/arch/arm/cpu/armv7/omap4/emif.c @@ -26,645 +26,15 @@   */  #include <common.h> -#include <asm/arch/emif.h> -#include <asm/arch/clocks.h> +#include <asm/emif.h>  #include <asm/arch/sys_proto.h> -#include <asm/omap_common.h>  #include <asm/utils.h> -static inline u32 emif_num(u32 base) -{ -	if (base == OMAP44XX_EMIF1) -		return 1; -	else if (base == OMAP44XX_EMIF2) -		return 2; -	else -		return 0; -} - -static inline u32 get_mr(u32 base, u32 cs, u32 mr_addr) -{ -	u32 mr; -	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; - -	mr_addr |= cs << OMAP44XX_REG_CS_SHIFT; -	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg); -	if (omap_revision() == OMAP4430_ES2_0) -		mr = readl(&emif->emif_lpddr2_mode_reg_data_es2); -	else -		mr = readl(&emif->emif_lpddr2_mode_reg_data); -	debug("get_mr: EMIF%d cs %d mr %08x val 0x%x\n", emif_num(base), -	      cs, mr_addr, mr); -	return mr; -} - -static inline void set_mr(u32 base, u32 cs, u32 mr_addr, u32 mr_val) -{ -	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; - -	mr_addr |= cs << OMAP44XX_REG_CS_SHIFT; -	writel(mr_addr, &emif->emif_lpddr2_mode_reg_cfg); -	writel(mr_val, &emif->emif_lpddr2_mode_reg_data); -} - -void emif_reset_phy(u32 base) -{ -	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; -	u32 iodft; - -	iodft = readl(&emif->emif_iodft_tlgc); -	iodft |= OMAP44XX_REG_RESET_PHY_MASK; -	writel(iodft, &emif->emif_iodft_tlgc); -} - -static void do_lpddr2_init(u32 base, u32 cs) -{ -	u32 mr_addr; - -	/* Wait till device auto initialization is complete */ -	while (get_mr(base, cs, LPDDR2_MR0) & LPDDR2_MR0_DAI_MASK) -		; -	set_mr(base, cs, LPDDR2_MR10, MR10_ZQ_ZQINIT); -	/* -	 * tZQINIT = 1 us -	 * Enough loops assuming a maximum of 2GHz -	 */ -	sdelay(2000); -	set_mr(base, cs, LPDDR2_MR1, MR1_BL_8_BT_SEQ_WRAP_EN_NWR_3); -	set_mr(base, cs, LPDDR2_MR16, MR16_REF_FULL_ARRAY); -	/* -	 * Enable refresh along with writing MR2 -	 * Encoding of RL in MR2 is (RL - 2) -	 */ -	mr_addr = LPDDR2_MR2 | OMAP44XX_REG_REFRESH_EN_MASK; -	set_mr(base, cs, mr_addr, RL_FINAL - 2); -} - -static void lpddr2_init(u32 base, const struct emif_regs *regs) -{ -	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; - -	/* Not NVM */ -	clrbits_le32(&emif->emif_lpddr2_nvm_config, OMAP44XX_REG_CS1NVMEN_MASK); - -	/* -	 * Keep REG_INITREF_DIS = 1 to prevent re-initialization of SDRAM -	 * when EMIF_SDRAM_CONFIG register is written -	 */ -	setbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK); - -	/* -	 * Set the SDRAM_CONFIG and PHY_CTRL for the -	 * un-locked frequency & default RL -	 */ -	writel(regs->sdram_config_init, &emif->emif_sdram_config); -	writel(regs->emif_ddr_phy_ctlr_1_init, &emif->emif_ddr_phy_ctrl_1); - -	do_lpddr2_init(base, CS0); -	if (regs->sdram_config & OMAP44XX_REG_EBANK_MASK) -		do_lpddr2_init(base, CS1); - -	writel(regs->sdram_config, &emif->emif_sdram_config); -	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1); - -	/* Enable refresh now */ -	clrbits_le32(&emif->emif_sdram_ref_ctrl, OMAP44XX_REG_INITREF_DIS_MASK); - -} - -static void emif_update_timings(u32 base, const struct emif_regs *regs) -{ -	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; - -	writel(regs->ref_ctrl, &emif->emif_sdram_ref_ctrl_shdw); -	writel(regs->sdram_tim1, &emif->emif_sdram_tim_1_shdw); -	writel(regs->sdram_tim2, &emif->emif_sdram_tim_2_shdw); -	writel(regs->sdram_tim3, &emif->emif_sdram_tim_3_shdw); -	if (omap_revision() == OMAP4430_ES1_0) { -		/* ES1 bug EMIF should be in force idle during freq_update */ -		writel(0, &emif->emif_pwr_mgmt_ctrl); -	} else { -		writel(EMIF_PWR_MGMT_CTRL, &emif->emif_pwr_mgmt_ctrl); -		writel(EMIF_PWR_MGMT_CTRL_SHDW, &emif->emif_pwr_mgmt_ctrl_shdw); -	} -	writel(regs->read_idle_ctrl, &emif->emif_read_idlectrl_shdw); -	writel(regs->zq_config, &emif->emif_zq_config); -	writel(regs->temp_alert_config, &emif->emif_temp_alert_config); -	writel(regs->emif_ddr_phy_ctlr_1, &emif->emif_ddr_phy_ctrl_1_shdw); - -	if (omap_revision() >= OMAP4460_ES1_0) { -		writel(EMIF_L3_CONFIG_VAL_SYS_10_MPU_3_LL_0, -			&emif->emif_l3_config); -	} else { -		writel(EMIF_L3_CONFIG_VAL_SYS_10_LL_0, -			&emif->emif_l3_config); -	} -} -  #ifndef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS -#define print_timing_reg(reg) debug(#reg" - 0x%08x\n", (reg)) - -static u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM; -static u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN; -static u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE; - -/* - * Organization and refresh requirements for LPDDR2 devices of different - * types and densities. Derived from JESD209-2 section 2.4 - */ -const struct lpddr2_addressing addressing_table[] = { -	/* Banks tREFIx10     rowx32,rowx16      colx32,colx16	density */ -	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_7, COL_8} },/*64M */ -	{BANKS4, T_REFI_15_6, {ROW_12, ROW_12}, {COL_8, COL_9} },/*128M */ -	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_8, COL_9} },/*256M */ -	{BANKS4, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*512M */ -	{BANKS8, T_REFI_7_8, {ROW_13, ROW_13}, {COL_9, COL_10} },/*1GS4 */ -	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_9, COL_10} },/*2GS4 */ -	{BANKS8, T_REFI_3_9, {ROW_14, ROW_14}, {COL_10, COL_11} },/*4G */ -	{BANKS8, T_REFI_3_9, {ROW_15, ROW_15}, {COL_10, COL_11} },/*8G */ -	{BANKS4, T_REFI_7_8, {ROW_14, ROW_14}, {COL_9, COL_10} },/*1GS2 */ -	{BANKS4, T_REFI_3_9, {ROW_15, ROW_15}, {COL_9, COL_10} },/*2GS2 */ -}; - -static const u32 lpddr2_density_2_size_in_mbytes[] = { -	8,			/* 64Mb */ -	16,			/* 128Mb */ -	32,			/* 256Mb */ -	64,			/* 512Mb */ -	128,			/* 1Gb   */ -	256,			/* 2Gb   */ -	512,			/* 4Gb   */ -	1024,			/* 8Gb   */ -	2048,			/* 16Gb  */ -	4096			/* 32Gb  */ -}; - -/* - * Calculate the period of DDR clock from frequency value and set the - * denominator and numerator in global variables for easy access later - */ -static void set_ddr_clk_period(u32 freq) -{ -	/* -	 * period = 1/freq -	 * period_in_ns = 10^9/freq -	 */ -	*T_num = 1000000000; -	*T_den = freq; -	cancel_out(T_num, T_den, 200); - -} - -/* - * Convert time in nano seconds to number of cycles of DDR clock - */ -static inline u32 ns_2_cycles(u32 ns) -{ -	return ((ns * (*T_den)) + (*T_num) - 1) / (*T_num); -} - -/* - * ns_2_cycles with the difference that the time passed is 2 times the actual - * value(to avoid fractions). The cycles returned is for the original value of - * the timing parameter - */ -static inline u32 ns_x2_2_cycles(u32 ns) -{ -	return ((ns * (*T_den)) + (*T_num) * 2 - 1) / ((*T_num) * 2); -} - -/* - * Find addressing table index based on the device's type(S2 or S4) and - * density - */ -s8 addressing_table_index(u8 type, u8 density, u8 width) -{ -	u8 index; -	if ((density > LPDDR2_DENSITY_8Gb) || (width == LPDDR2_IO_WIDTH_8)) -		return -1; - -	/* -	 * Look at the way ADDR_TABLE_INDEX* values have been defined -	 * in emif.h compared to LPDDR2_DENSITY_* values -	 * The table is layed out in the increasing order of density -	 * (ignoring type). The exceptions 1GS2 and 2GS2 have been placed -	 * at the end -	 */ -	if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_1Gb)) -		index = ADDR_TABLE_INDEX1GS2; -	else if ((type == LPDDR2_TYPE_S2) && (density == LPDDR2_DENSITY_2Gb)) -		index = ADDR_TABLE_INDEX2GS2; -	else -		index = density; - -	debug("emif: addressing table index %d\n", index); - -	return index; -} - -/* - * Find the the right timing table from the array of timing - * tables of the device using DDR clock frequency - */ -static const struct lpddr2_ac_timings *get_timings_table(const struct -			lpddr2_ac_timings const *const *device_timings, -			u32 freq) -{ -	u32 i, temp, freq_nearest; -	const struct lpddr2_ac_timings *timings = 0; - -	emif_assert(freq <= MAX_LPDDR2_FREQ); -	emif_assert(device_timings); - -	/* -	 * Start with the maximum allowed frequency - that is always safe -	 */ -	freq_nearest = MAX_LPDDR2_FREQ; -	/* -	 * Find the timings table that has the max frequency value: -	 *   i.  Above or equal to the DDR frequency - safe -	 *   ii. The lowest that satisfies condition (i) - optimal -	 */ -	for (i = 0; (i < MAX_NUM_SPEEDBINS) && device_timings[i]; i++) { -		temp = device_timings[i]->max_freq; -		if ((temp >= freq) && (temp <= freq_nearest)) { -			freq_nearest = temp; -			timings = device_timings[i]; -		} -	} -	debug("emif: timings table: %d\n", freq_nearest); -	return timings; -} - -/* - * Finds the value of emif_sdram_config_reg - * All parameters are programmed based on the device on CS0. - * If there is a device on CS1, it will be same as that on CS0 or - * it will be NVM. We don't support NVM yet. - * If cs1_device pointer is NULL it is assumed that there is no device - * on CS1 - */ -static u32 get_sdram_config_reg(const struct lpddr2_device_details *cs0_device, -				const struct lpddr2_device_details *cs1_device, -				const struct lpddr2_addressing *addressing, -				u8 RL) -{ -	u32 config_reg = 0; - -	config_reg |=  (cs0_device->type + 4) << OMAP44XX_REG_SDRAM_TYPE_SHIFT; -	config_reg |=  EMIF_INTERLEAVING_POLICY_MAX_INTERLEAVING << -			OMAP44XX_REG_IBANK_POS_SHIFT; - -	config_reg |= cs0_device->io_width << OMAP44XX_REG_NARROW_MODE_SHIFT; - -	config_reg |= RL << OMAP44XX_REG_CL_SHIFT; - -	config_reg |= addressing->row_sz[cs0_device->io_width] << -			OMAP44XX_REG_ROWSIZE_SHIFT; - -	config_reg |= addressing->num_banks << OMAP44XX_REG_IBANK_SHIFT; - -	config_reg |= (cs1_device ? EBANK_CS1_EN : EBANK_CS1_DIS) << -			OMAP44XX_REG_EBANK_SHIFT; - -	config_reg |= addressing->col_sz[cs0_device->io_width] << -			OMAP44XX_REG_PAGESIZE_SHIFT; - -	return config_reg; -} - -static u32 get_sdram_ref_ctrl(u32 freq, -			      const struct lpddr2_addressing *addressing) -{ -	u32 ref_ctrl = 0, val = 0, freq_khz; -	freq_khz = freq / 1000; -	/* -	 * refresh rate to be set is 'tREFI * freq in MHz -	 * division by 10000 to account for khz and x10 in t_REFI_us_x10 -	 */ -	val = addressing->t_REFI_us_x10 * freq_khz / 10000; -	ref_ctrl |= val << OMAP44XX_REG_REFRESH_RATE_SHIFT; - -	return ref_ctrl; -} - -static u32 get_sdram_tim_1_reg(const struct lpddr2_ac_timings *timings, -			       const struct lpddr2_min_tck *min_tck, -			       const struct lpddr2_addressing *addressing) -{ -	u32 tim1 = 0, val = 0; -	val = max(min_tck->tWTR, ns_x2_2_cycles(timings->tWTRx2)) - 1; -	tim1 |= val << OMAP44XX_REG_T_WTR_SHIFT; - -	if (addressing->num_banks == BANKS8) -		val = (timings->tFAW * (*T_den) + 4 * (*T_num) - 1) / -							(4 * (*T_num)) - 1; -	else -		val = max(min_tck->tRRD, ns_2_cycles(timings->tRRD)) - 1; - -	tim1 |= val << OMAP44XX_REG_T_RRD_SHIFT; - -	val = ns_2_cycles(timings->tRASmin + timings->tRPab) - 1; -	tim1 |= val << OMAP44XX_REG_T_RC_SHIFT; - -	val = max(min_tck->tRAS_MIN, ns_2_cycles(timings->tRASmin)) - 1; -	tim1 |= val << OMAP44XX_REG_T_RAS_SHIFT; - -	val = max(min_tck->tWR, ns_2_cycles(timings->tWR)) - 1; -	tim1 |= val << OMAP44XX_REG_T_WR_SHIFT; - -	val = max(min_tck->tRCD, ns_2_cycles(timings->tRCD)) - 1; -	tim1 |= val << OMAP44XX_REG_T_RCD_SHIFT; - -	val = max(min_tck->tRP_AB, ns_2_cycles(timings->tRPab)) - 1; -	tim1 |= val << OMAP44XX_REG_T_RP_SHIFT; - -	return tim1; -} - -static u32 get_sdram_tim_2_reg(const struct lpddr2_ac_timings *timings, -			       const struct lpddr2_min_tck *min_tck) -{ -	u32 tim2 = 0, val = 0; -	val = max(min_tck->tCKE, timings->tCKE) - 1; -	tim2 |= val << OMAP44XX_REG_T_CKE_SHIFT; - -	val = max(min_tck->tRTP, ns_x2_2_cycles(timings->tRTPx2)) - 1; -	tim2 |= val << OMAP44XX_REG_T_RTP_SHIFT; - -	/* -	 * tXSRD = tRFCab + 10 ns. XSRD and XSNR should have the -	 * same value -	 */ -	val = ns_2_cycles(timings->tXSR) - 1; -	tim2 |= val << OMAP44XX_REG_T_XSRD_SHIFT; -	tim2 |= val << OMAP44XX_REG_T_XSNR_SHIFT; - -	val = max(min_tck->tXP, ns_x2_2_cycles(timings->tXPx2)) - 1; -	tim2 |= val << OMAP44XX_REG_T_XP_SHIFT; - -	return tim2; -} - -static u32 get_sdram_tim_3_reg(const struct lpddr2_ac_timings *timings, -			       const struct lpddr2_min_tck *min_tck, -			       const struct lpddr2_addressing *addressing) -{ -	u32 tim3 = 0, val = 0; -	val = min(timings->tRASmax * 10 / addressing->t_REFI_us_x10 - 1, 0xF); -	tim3 |= val << OMAP44XX_REG_T_RAS_MAX_SHIFT; - -	val = ns_2_cycles(timings->tRFCab) - 1; -	tim3 |= val << OMAP44XX_REG_T_RFC_SHIFT; - -	val = ns_x2_2_cycles(timings->tDQSCKMAXx2) - 1; -	tim3 |= val << OMAP44XX_REG_T_TDQSCKMAX_SHIFT; - -	val = ns_2_cycles(timings->tZQCS) - 1; -	tim3 |= val << OMAP44XX_REG_ZQ_ZQCS_SHIFT; - -	val = max(min_tck->tCKESR, ns_2_cycles(timings->tCKESR)) - 1; -	tim3 |= val << OMAP44XX_REG_T_CKESR_SHIFT; - -	return tim3; -} - -static u32 get_zq_config_reg(const struct lpddr2_device_details *cs1_device, -			     const struct lpddr2_addressing *addressing, -			     u8 volt_ramp) -{ -	u32 zq = 0, val = 0; -	if (volt_ramp) -		val = -		    EMIF_ZQCS_INTERVAL_DVFS_IN_US * 10 / -		    addressing->t_REFI_us_x10; -	else -		val = -		    EMIF_ZQCS_INTERVAL_NORMAL_IN_US * 10 / -		    addressing->t_REFI_us_x10; -	zq |= val << OMAP44XX_REG_ZQ_REFINTERVAL_SHIFT; - -	zq |= (REG_ZQ_ZQCL_MULT - 1) << OMAP44XX_REG_ZQ_ZQCL_MULT_SHIFT; - -	zq |= (REG_ZQ_ZQINIT_MULT - 1) << OMAP44XX_REG_ZQ_ZQINIT_MULT_SHIFT; - -	zq |= REG_ZQ_SFEXITEN_ENABLE << OMAP44XX_REG_ZQ_SFEXITEN_SHIFT; - -	/* -	 * Assuming that two chipselects have a single calibration resistor -	 * If there are indeed two calibration resistors, then this flag should -	 * be enabled to take advantage of dual calibration feature. -	 * This data should ideally come from board files. But considering -	 * that none of the boards today have calibration resistors per CS, -	 * it would be an unnecessary overhead. -	 */ -	zq |= REG_ZQ_DUALCALEN_DISABLE << OMAP44XX_REG_ZQ_DUALCALEN_SHIFT; - -	zq |= REG_ZQ_CS0EN_ENABLE << OMAP44XX_REG_ZQ_CS0EN_SHIFT; - -	zq |= (cs1_device ? 1 : 0) << OMAP44XX_REG_ZQ_CS1EN_SHIFT; - -	return zq; -} - -static u32 get_temp_alert_config(const struct lpddr2_device_details *cs1_device, -				 const struct lpddr2_addressing *addressing, -				 u8 is_derated) -{ -	u32 alert = 0, interval; -	interval = -	    TEMP_ALERT_POLL_INTERVAL_MS * 10000 / addressing->t_REFI_us_x10; -	if (is_derated) -		interval *= 4; -	alert |= interval << OMAP44XX_REG_TA_REFINTERVAL_SHIFT; - -	alert |= TEMP_ALERT_CONFIG_DEVCT_1 << OMAP44XX_REG_TA_DEVCNT_SHIFT; - -	alert |= TEMP_ALERT_CONFIG_DEVWDT_32 << OMAP44XX_REG_TA_DEVWDT_SHIFT; - -	alert |= 1 << OMAP44XX_REG_TA_SFEXITEN_SHIFT; - -	alert |= 1 << OMAP44XX_REG_TA_CS0EN_SHIFT; - -	alert |= (cs1_device ? 1 : 0) << OMAP44XX_REG_TA_CS1EN_SHIFT; - -	return alert; -} - -static u32 get_read_idle_ctrl_reg(u8 volt_ramp) -{ -	u32 idle = 0, val = 0; -	if (volt_ramp) -		val = ns_2_cycles(READ_IDLE_INTERVAL_DVFS) / 64 - 1; -	else -		/*Maximum value in normal conditions - suggested by hw team */ -		val = 0x1FF; -	idle |= val << OMAP44XX_REG_READ_IDLE_INTERVAL_SHIFT; - -	idle |= EMIF_REG_READ_IDLE_LEN_VAL << OMAP44XX_REG_READ_IDLE_LEN_SHIFT; - -	return idle; -} - -static u32 get_ddr_phy_ctrl_1(u32 freq, u8 RL) -{ -	u32 phy = 0, val = 0; - -	phy |= (RL + 2) << OMAP44XX_REG_READ_LATENCY_SHIFT; - -	if (freq <= 100000000) -		val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS; -	else if (freq <= 200000000) -		val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ; -	else -		val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ; -	phy |= val << OMAP44XX_REG_DLL_SLAVE_DLY_CTRL_SHIFT; - -	/* Other fields are constant magic values. Hardcode them together */ -	phy |= EMIF_DDR_PHY_CTRL_1_BASE_VAL << -		OMAP44XX_EMIF_DDR_PHY_CTRL_1_BASE_VAL_SHIFT; - -	return phy; -} - -static u32 get_emif_mem_size(struct emif_device_details *devices) -{ -	u32 size_mbytes = 0, temp; - -	if (!devices) -		return 0; - -	if (devices->cs0_device_details) { -		temp = devices->cs0_device_details->density; -		size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; -	} - -	if (devices->cs1_device_details) { -		temp = devices->cs1_device_details->density; -		size_mbytes += lpddr2_density_2_size_in_mbytes[temp]; -	} -	/* convert to bytes */ -	return size_mbytes << 20; -} - -/* Gets the encoding corresponding to a given DMM section size */ -u32 get_dmm_section_size_map(u32 section_size) -{ -	/* -	 * Section size mapping: -	 * 0x0: 16-MiB section -	 * 0x1: 32-MiB section -	 * 0x2: 64-MiB section -	 * 0x3: 128-MiB section -	 * 0x4: 256-MiB section -	 * 0x5: 512-MiB section -	 * 0x6: 1-GiB section -	 * 0x7: 2-GiB section -	 */ -	section_size >>= 24; /* divide by 16 MB */ -	return log_2_n_round_down(section_size); -} - -static void emif_calculate_regs( -		const struct emif_device_details *emif_dev_details, -		u32 freq, struct emif_regs *regs) -{ -	u32 temp, sys_freq; -	const struct lpddr2_addressing *addressing; -	const struct lpddr2_ac_timings *timings; -	const struct lpddr2_min_tck *min_tck; -	const struct lpddr2_device_details *cs0_dev_details = -					emif_dev_details->cs0_device_details; -	const struct lpddr2_device_details *cs1_dev_details = -					emif_dev_details->cs1_device_details; -	const struct lpddr2_device_timings *cs0_dev_timings = -					emif_dev_details->cs0_device_timings; - -	emif_assert(emif_dev_details); -	emif_assert(regs); -	/* -	 * You can not have a device on CS1 without one on CS0 -	 * So configuring EMIF without a device on CS0 doesn't -	 * make sense -	 */ -	emif_assert(cs0_dev_details); -	emif_assert(cs0_dev_details->type != LPDDR2_TYPE_NVM); -	/* -	 * If there is a device on CS1 it should be same type as CS0 -	 * (or NVM. But NVM is not supported in this driver yet) -	 */ -	emif_assert((cs1_dev_details == NULL) || -		    (cs1_dev_details->type == LPDDR2_TYPE_NVM) || -		    (cs0_dev_details->type == cs1_dev_details->type)); -	emif_assert(freq <= MAX_LPDDR2_FREQ); - -	set_ddr_clk_period(freq); - -	/* -	 * The device on CS0 is used for all timing calculations -	 * There is only one set of registers for timings per EMIF. So, if the -	 * second CS(CS1) has a device, it should have the same timings as the -	 * device on CS0 -	 */ -	timings = get_timings_table(cs0_dev_timings->ac_timings, freq); -	emif_assert(timings); -	min_tck = cs0_dev_timings->min_tck; - -	temp = addressing_table_index(cs0_dev_details->type, -				      cs0_dev_details->density, -				      cs0_dev_details->io_width); - -	emif_assert((temp >= 0)); -	addressing = &(addressing_table[temp]); -	emif_assert(addressing); - -	sys_freq = get_sys_clk_freq(); - -	regs->sdram_config_init = get_sdram_config_reg(cs0_dev_details, -							cs1_dev_details, -							addressing, RL_BOOT); - -	regs->sdram_config = get_sdram_config_reg(cs0_dev_details, -						cs1_dev_details, -						addressing, RL_FINAL); - -	regs->ref_ctrl = get_sdram_ref_ctrl(freq, addressing); - -	regs->sdram_tim1 = get_sdram_tim_1_reg(timings, min_tck, addressing); - -	regs->sdram_tim2 = get_sdram_tim_2_reg(timings, min_tck); - -	regs->sdram_tim3 = get_sdram_tim_3_reg(timings, min_tck, addressing); - -	regs->read_idle_ctrl = get_read_idle_ctrl_reg(LPDDR2_VOLTAGE_STABLE); - -	regs->temp_alert_config = -	    get_temp_alert_config(cs1_dev_details, addressing, 0); - -	regs->zq_config = get_zq_config_reg(cs1_dev_details, addressing, -					    LPDDR2_VOLTAGE_STABLE); - -	regs->emif_ddr_phy_ctlr_1_init = -			get_ddr_phy_ctrl_1(sys_freq / 2, RL_BOOT); - -	regs->emif_ddr_phy_ctlr_1 = -			get_ddr_phy_ctrl_1(freq, RL_FINAL); - -	regs->freq = freq; - -	print_timing_reg(regs->sdram_config_init); -	print_timing_reg(regs->sdram_config); -	print_timing_reg(regs->ref_ctrl); -	print_timing_reg(regs->sdram_tim1); -	print_timing_reg(regs->sdram_tim2); -	print_timing_reg(regs->sdram_tim3); -	print_timing_reg(regs->read_idle_ctrl); -	print_timing_reg(regs->temp_alert_config); -	print_timing_reg(regs->zq_config); -	print_timing_reg(regs->emif_ddr_phy_ctlr_1); -	print_timing_reg(regs->emif_ddr_phy_ctlr_1_init); -} -#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ +u32 *const T_num = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_NUM; +u32 *const T_den = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_T_DEN; +u32 *const emif_sizes = (u32 *)OMAP4_SRAM_SCRATCH_EMIF_SIZE; +#endif  #ifdef CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS  /* Base AC Timing values specified by JESD209-2 for 400MHz operation */ @@ -691,30 +61,6 @@ static const struct lpddr2_ac_timings timings_jedec_400_mhz = {  	.tFAW = 50  }; -/* Base AC Timing values specified by JESD209-2 for 333 MHz operation */ -static const struct lpddr2_ac_timings timings_jedec_333_mhz = { -	.max_freq = 333000000, -	.RL = 5, -	.tRPab = 21, -	.tRCD = 18, -	.tWR = 15, -	.tRASmin = 42, -	.tRRD = 10, -	.tWTRx2 = 15, -	.tXSR = 140, -	.tXPx2 = 15, -	.tRFCab = 130, -	.tRTPx2 = 15, -	.tCKE = 3, -	.tCKESR = 15, -	.tZQCS = 90, -	.tZQCL = 360, -	.tZQINIT = 1000, -	.tDQSCKMAXx2 = 11, -	.tRASmax = 70, -	.tFAW = 50 -}; -  /* Base AC Timing values specified by JESD209-2 for 200 MHz operation */  static const struct lpddr2_ac_timings timings_jedec_200_mhz = {  	.max_freq = 200000000, @@ -764,7 +110,6 @@ static const struct lpddr2_min_tck min_tck_jedec = {  static const struct lpddr2_ac_timings const*  			jedec_ac_timings[MAX_NUM_SPEEDBINS] = {  	&timings_jedec_200_mhz, -	&timings_jedec_333_mhz,  	&timings_jedec_400_mhz  }; @@ -782,473 +127,3 @@ void emif_get_device_timings(u32 emif_nr,  	*cs1_device_timings = &jedec_default_timings;  }  #endif /* CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS */ - -#ifdef CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION -const char *get_lpddr2_type(u8 type_id) -{ -	switch (type_id) { -	case LPDDR2_TYPE_S4: -		return "LPDDR2-S4"; -	case LPDDR2_TYPE_S2: -		return "LPDDR2-S2"; -	default: -		return NULL; -	} -} - -const char *get_lpddr2_io_width(u8 width_id) -{ -	switch (width_id) { -	case LPDDR2_IO_WIDTH_8: -		return "x8"; -	case LPDDR2_IO_WIDTH_16: -		return "x16"; -	case LPDDR2_IO_WIDTH_32: -		return "x32"; -	default: -		return NULL; -	} -} - -const char *get_lpddr2_manufacturer(u32 manufacturer) -{ -	switch (manufacturer) { -	case LPDDR2_MANUFACTURER_SAMSUNG: -		return "Samsung"; -	case LPDDR2_MANUFACTURER_QIMONDA: -		return "Qimonda"; -	case LPDDR2_MANUFACTURER_ELPIDA: -		return "Elpida"; -	case LPDDR2_MANUFACTURER_ETRON: -		return "Etron"; -	case LPDDR2_MANUFACTURER_NANYA: -		return "Nanya"; -	case LPDDR2_MANUFACTURER_HYNIX: -		return "Hynix"; -	case LPDDR2_MANUFACTURER_MOSEL: -		return "Mosel"; -	case LPDDR2_MANUFACTURER_WINBOND: -		return "Winbond"; -	case LPDDR2_MANUFACTURER_ESMT: -		return "ESMT"; -	case LPDDR2_MANUFACTURER_SPANSION: -		return "Spansion"; -	case LPDDR2_MANUFACTURER_SST: -		return "SST"; -	case LPDDR2_MANUFACTURER_ZMOS: -		return "ZMOS"; -	case LPDDR2_MANUFACTURER_INTEL: -		return "Intel"; -	case LPDDR2_MANUFACTURER_NUMONYX: -		return "Numonyx"; -	case LPDDR2_MANUFACTURER_MICRON: -		return "Micron"; -	default: -		return NULL; -	} -} - -static void display_sdram_details(u32 emif_nr, u32 cs, -				  struct lpddr2_device_details *device) -{ -	const char *mfg_str; -	const char *type_str; -	char density_str[10]; -	u32 density; - -	debug("EMIF%d CS%d\t", emif_nr, cs); - -	if (!device) { -		debug("None\n"); -		return; -	} - -	mfg_str = get_lpddr2_manufacturer(device->manufacturer); -	type_str = get_lpddr2_type(device->type); - -	density = lpddr2_density_2_size_in_mbytes[device->density]; -	if ((density / 1024 * 1024) == density) { -		density /= 1024; -		sprintf(density_str, "%d GB", density); -	} else -		sprintf(density_str, "%d MB", density); -	if (mfg_str && type_str) -		debug("%s\t\t%s\t%s\n", mfg_str, type_str, density_str); -} - -static u8 is_lpddr2_sdram_present(u32 base, u32 cs, -				  struct lpddr2_device_details *lpddr2_device) -{ -	u32 mr = 0, temp; - -	mr = get_mr(base, cs, LPDDR2_MR0); -	if (mr > 0xFF) { -		/* Mode register value bigger than 8 bit */ -		return 0; -	} - -	temp = (mr & LPDDR2_MR0_DI_MASK) >> LPDDR2_MR0_DI_SHIFT; -	if (temp) { -		/* Not SDRAM */ -		return 0; -	} -	temp = (mr & LPDDR2_MR0_DNVI_MASK) >> LPDDR2_MR0_DNVI_SHIFT; - -	if (temp) { -		/* DNV supported - But DNV is only supported for NVM */ -		return 0; -	} - -	mr = get_mr(base, cs, LPDDR2_MR4); -	if (mr > 0xFF) { -		/* Mode register value bigger than 8 bit */ -		return 0; -	} - -	mr = get_mr(base, cs, LPDDR2_MR5); -	if (mr >= 0xFF) { -		/* Mode register value bigger than 8 bit */ -		return 0; -	} - -	if (!get_lpddr2_manufacturer(mr)) { -		/* Manufacturer not identified */ -		return 0; -	} -	lpddr2_device->manufacturer = mr; - -	mr = get_mr(base, cs, LPDDR2_MR6); -	if (mr >= 0xFF) { -		/* Mode register value bigger than 8 bit */ -		return 0; -	} - -	mr = get_mr(base, cs, LPDDR2_MR7); -	if (mr >= 0xFF) { -		/* Mode register value bigger than 8 bit */ -		return 0; -	} - -	mr = get_mr(base, cs, LPDDR2_MR8); -	if (mr >= 0xFF) { -		/* Mode register value bigger than 8 bit */ -		return 0; -	} - -	temp = (mr & MR8_TYPE_MASK) >> MR8_TYPE_SHIFT; -	if (!get_lpddr2_type(temp)) { -		/* Not SDRAM */ -		return 0; -	} -	lpddr2_device->type = temp; - -	temp = (mr & MR8_DENSITY_MASK) >> MR8_DENSITY_SHIFT; -	if (temp > LPDDR2_DENSITY_32Gb) { -		/* Density not supported */ -		return 0; -	} -	lpddr2_device->density = temp; - -	temp = (mr & MR8_IO_WIDTH_MASK) >> MR8_IO_WIDTH_SHIFT; -	if (!get_lpddr2_io_width(temp)) { -		/* IO width unsupported value */ -		return 0; -	} -	lpddr2_device->io_width = temp; - -	/* -	 * If all the above tests pass we should -	 * have a device on this chip-select -	 */ -	return 1; -} - -struct lpddr2_device_details *emif_get_device_details(u32 emif_nr, u8 cs, -			struct lpddr2_device_details *lpddr2_dev_details) -{ -	u32 phy; -	u32 base = (emif_nr == 1) ? OMAP44XX_EMIF1 : OMAP44XX_EMIF2; -	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; - -	if (!lpddr2_dev_details) -		return NULL; - -	/* Do the minimum init for mode register accesses */ -	if (!running_from_sdram()) { -		phy = get_ddr_phy_ctrl_1(get_sys_clk_freq() / 2, RL_BOOT); -		writel(phy, &emif->emif_ddr_phy_ctrl_1); -	} - -	if (!(is_lpddr2_sdram_present(base, cs, lpddr2_dev_details))) -		return NULL; - -	display_sdram_details(emif_num(base), cs, lpddr2_dev_details); - -	return lpddr2_dev_details; -} -#endif /* CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION */ - -static void do_sdram_init(u32 base) -{ -	const struct emif_regs *regs; -	u32 in_sdram, emif_nr; - -	debug(">>do_sdram_init() %x\n", base); - -	in_sdram = running_from_sdram(); -	emif_nr = (base == OMAP44XX_EMIF1) ? 1 : 2; - -#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS -	emif_get_reg_dump(emif_nr, ®s); -	if (!regs) { -		debug("EMIF: reg dump not provided\n"); -		return; -	} -#else -	/* -	 * The user has not provided the register values. We need to -	 * calculate it based on the timings and the DDR frequency -	 */ -	struct emif_device_details dev_details; -	struct emif_regs calculated_regs; - -	/* -	 * Get device details: -	 * - Discovered if CONFIG_SYS_AUTOMATIC_SDRAM_DETECTION is set -	 * - Obtained from user otherwise -	 */ -	struct lpddr2_device_details cs0_dev_details, cs1_dev_details; -	emif_reset_phy(base); -	dev_details.cs0_device_details = emif_get_device_details(base, CS0, -						&cs0_dev_details); -	dev_details.cs1_device_details = emif_get_device_details(base, CS1, -						&cs1_dev_details); -	emif_reset_phy(base); - -	/* Return if no devices on this EMIF */ -	if (!dev_details.cs0_device_details && -	    !dev_details.cs1_device_details) { -		emif_sizes[emif_nr - 1] = 0; -		return; -	} - -	if (!in_sdram) -		emif_sizes[emif_nr - 1] = get_emif_mem_size(&dev_details); - -	/* -	 * Get device timings: -	 * - Default timings specified by JESD209-2 if -	 *   CONFIG_SYS_DEFAULT_LPDDR2_TIMINGS is set -	 * - Obtained from user otherwise -	 */ -	emif_get_device_timings(emif_nr, &dev_details.cs0_device_timings, -				&dev_details.cs1_device_timings); - -	/* Calculate the register values */ -	emif_calculate_regs(&dev_details, omap4_ddr_clk(), &calculated_regs); -	regs = &calculated_regs; -#endif /* CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS */ - -	/* -	 * Initializing the LPDDR2 device can not happen from SDRAM. -	 * Changing the timing registers in EMIF can happen(going from one -	 * OPP to another) -	 */ -	if (!in_sdram) -		lpddr2_init(base, regs); - -	/* Write to the shadow registers */ -	emif_update_timings(base, regs); - -	debug("<<do_sdram_init() %x\n", base); -} - -static void emif_post_init_config(u32 base) -{ -	struct emif_reg_struct *emif = (struct emif_reg_struct *)base; -	u32 omap4_rev = omap_revision(); - -	/* reset phy on ES2.0 */ -	if (omap4_rev == OMAP4430_ES2_0) -		emif_reset_phy(base); - -	/* Put EMIF back in smart idle on ES1.0 */ -	if (omap4_rev == OMAP4430_ES1_0) -		writel(0x80000000, &emif->emif_pwr_mgmt_ctrl); -} - -static void dmm_init(u32 base) -{ -	const struct dmm_lisa_map_regs *lisa_map_regs; - -#ifdef CONFIG_SYS_EMIF_PRECALCULATED_TIMING_REGS -	emif_get_dmm_regs(&lisa_map_regs); -#else -	u32 emif1_size, emif2_size, mapped_size, section_map = 0; -	u32 section_cnt, sys_addr; -	struct dmm_lisa_map_regs lis_map_regs_calculated = {0}; - -	mapped_size = 0; -	section_cnt = 3; -	sys_addr = CONFIG_SYS_SDRAM_BASE; -	emif1_size = emif_sizes[0]; -	emif2_size = emif_sizes[1]; -	debug("emif1_size 0x%x emif2_size 0x%x\n", emif1_size, emif2_size); - -	if (!emif1_size && !emif2_size) -		return; - -	/* symmetric interleaved section */ -	if (emif1_size && emif2_size) { -		mapped_size = min(emif1_size, emif2_size); -		section_map = DMM_LISA_MAP_INTERLEAVED_BASE_VAL; -		section_map |= 0 << OMAP44XX_SDRC_ADDR_SHIFT; -		/* only MSB */ -		section_map |= (sys_addr >> 24) << -				OMAP44XX_SYS_ADDR_SHIFT; -		section_map |= get_dmm_section_size_map(mapped_size * 2) -				<< OMAP44XX_SYS_SIZE_SHIFT; -		lis_map_regs_calculated.dmm_lisa_map_3 = section_map; -		emif1_size -= mapped_size; -		emif2_size -= mapped_size; -		sys_addr += (mapped_size * 2); -		section_cnt--; -	} - -	/* -	 * Single EMIF section(we can have a maximum of 1 single EMIF -	 * section- either EMIF1 or EMIF2 or none, but not both) -	 */ -	if (emif1_size) { -		section_map = DMM_LISA_MAP_EMIF1_ONLY_BASE_VAL; -		section_map |= get_dmm_section_size_map(emif1_size) -				<< OMAP44XX_SYS_SIZE_SHIFT; -		/* only MSB */ -		section_map |= (mapped_size >> 24) << -				OMAP44XX_SDRC_ADDR_SHIFT; -		/* only MSB */ -		section_map |= (sys_addr >> 24) << OMAP44XX_SYS_ADDR_SHIFT; -		section_cnt--; -	} -	if (emif2_size) { -		section_map = DMM_LISA_MAP_EMIF2_ONLY_BASE_VAL; -		section_map |= get_dmm_section_size_map(emif2_size) << -				OMAP44XX_SYS_SIZE_SHIFT; -		/* only MSB */ -		section_map |= mapped_size >> 24 << OMAP44XX_SDRC_ADDR_SHIFT; -		/* only MSB */ -		section_map |= sys_addr >> 24 << OMAP44XX_SYS_ADDR_SHIFT; -		section_cnt--; -	} - -	if (section_cnt == 2) { -		/* Only 1 section - either symmetric or single EMIF */ -		lis_map_regs_calculated.dmm_lisa_map_3 = section_map; -		lis_map_regs_calculated.dmm_lisa_map_2 = 0; -		lis_map_regs_calculated.dmm_lisa_map_1 = 0; -	} else { -		/* 2 sections - 1 symmetric, 1 single EMIF */ -		lis_map_regs_calculated.dmm_lisa_map_2 = section_map; -		lis_map_regs_calculated.dmm_lisa_map_1 = 0; -	} - -	/* TRAP for invalid TILER mappings in section 0 */ -	lis_map_regs_calculated.dmm_lisa_map_0 = DMM_LISA_MAP_0_INVAL_ADDR_TRAP; - -	lisa_map_regs = &lis_map_regs_calculated; -#endif -	struct dmm_lisa_map_regs *hw_lisa_map_regs = -	    (struct dmm_lisa_map_regs *)base; - -	writel(0, &hw_lisa_map_regs->dmm_lisa_map_3); -	writel(0, &hw_lisa_map_regs->dmm_lisa_map_2); -	writel(0, &hw_lisa_map_regs->dmm_lisa_map_1); -	writel(0, &hw_lisa_map_regs->dmm_lisa_map_0); - -	writel(lisa_map_regs->dmm_lisa_map_3, -		&hw_lisa_map_regs->dmm_lisa_map_3); -	writel(lisa_map_regs->dmm_lisa_map_2, -		&hw_lisa_map_regs->dmm_lisa_map_2); -	writel(lisa_map_regs->dmm_lisa_map_1, -		&hw_lisa_map_regs->dmm_lisa_map_1); -	writel(lisa_map_regs->dmm_lisa_map_0, -		&hw_lisa_map_regs->dmm_lisa_map_0); - -	if (omap_revision() >= OMAP4460_ES1_0) { -		hw_lisa_map_regs = -		    (struct dmm_lisa_map_regs *)OMAP44XX_MA_LISA_MAP_BASE; - -		writel(lisa_map_regs->dmm_lisa_map_3, -			&hw_lisa_map_regs->dmm_lisa_map_3); -		writel(lisa_map_regs->dmm_lisa_map_2, -			&hw_lisa_map_regs->dmm_lisa_map_2); -		writel(lisa_map_regs->dmm_lisa_map_1, -			&hw_lisa_map_regs->dmm_lisa_map_1); -		writel(lisa_map_regs->dmm_lisa_map_0, -			&hw_lisa_map_regs->dmm_lisa_map_0); -	} -} - -/* - * SDRAM initialization: - * SDRAM initialization has two parts: - * 1. Configuring the SDRAM device - * 2. Update the AC timings related parameters in the EMIF module - * (1) should be done only once and should not be done while we are - * running from SDRAM. - * (2) can and should be done more than once if OPP changes. - * Particularly, this may be needed when we boot without SPL and - * and using Configuration Header(CH). ROM code supports only at 50% OPP - * at boot (low power boot). So u-boot has to switch to OPP100 and update - * the frequency. So, - * Doing (1) and (2) makes sense - first time initialization - * Doing (2) and not (1) makes sense - OPP change (when using CH) - * Doing (1) and not (2) doen't make sense - * See do_sdram_init() for the details - */ -void sdram_init(void) -{ -	u32 in_sdram, size_prog, size_detect; - -	debug(">>sdram_init()\n"); - -	if (omap4_hw_init_context() == OMAP_INIT_CONTEXT_UBOOT_AFTER_SPL) -		return; - -	in_sdram = running_from_sdram(); -	debug("in_sdram = %d\n", in_sdram); - -	if (!in_sdram) { -		bypass_dpll(&prcm->cm_clkmode_dpll_core); -	} - -	do_sdram_init(OMAP44XX_EMIF1); -	do_sdram_init(OMAP44XX_EMIF2); - -	if (!in_sdram) { -		dmm_init(OMAP44XX_DMM_LISA_MAP_BASE); -		emif_post_init_config(OMAP44XX_EMIF1); -		emif_post_init_config(OMAP44XX_EMIF2); - -	} - -	/* for the shadow registers to take effect */ -	freq_update_core(); - -	/* Do some testing after the init */ -	if (!in_sdram) { -		size_prog = omap4_sdram_size(); -		size_detect = get_ram_size((long *)CONFIG_SYS_SDRAM_BASE, -						size_prog); -		/* Compare with the size programmed */ -		if (size_detect != size_prog) { -			printf("SDRAM: identified size not same as expected" -				" size identified: %x expected: %x\n", -				size_detect, -				size_prog); -		} else -			debug("get_ram_size() successful"); -	} - -	debug("<<sdram_init()\n"); -} |