diff options
| author | wdenk <wdenk> | 2002-08-17 09:36:01 +0000 | 
|---|---|---|
| committer | wdenk <wdenk> | 2002-08-17 09:36:01 +0000 | 
| commit | affae2bff825c1a8d2cfeaf7b270188d251d39d2 (patch) | |
| tree | e025ca5a84cdcd70cff986e09f89e1aaa360499c /common/docecc.c | |
| parent | cf356ef708390102d493c53d18fd19a5963c6aa9 (diff) | |
| download | olio-uboot-2014.01-affae2bff825c1a8d2cfeaf7b270188d251d39d2.tar.xz olio-uboot-2014.01-affae2bff825c1a8d2cfeaf7b270188d251d39d2.zip | |
Initial revision
Diffstat (limited to 'common/docecc.c')
| -rw-r--r-- | common/docecc.c | 519 | 
1 files changed, 519 insertions, 0 deletions
| diff --git a/common/docecc.c b/common/docecc.c new file mode 100644 index 000000000..09e8233d8 --- /dev/null +++ b/common/docecc.c @@ -0,0 +1,519 @@ +/* + * ECC algorithm for M-systems disk on chip. We use the excellent Reed + * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the + * GNU GPL License. The rest is simply to convert the disk on chip + * syndrom into a standard syndom. + * + * Author: Fabrice Bellard (fabrice.bellard@netgem.com) + * Copyright (C) 2000 Netgem S.A. + * + * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA + */ + +#include <config.h> +#include <common.h> +#include <malloc.h> + +#include <linux/mtd/doc2000.h> + +#undef ECC_DEBUG +#undef PSYCHO_DEBUG + +#if (CONFIG_COMMANDS & CFG_CMD_DOC) + +#define min(x,y) ((x)<(y)?(x):(y)) + +/* need to undef it (from asm/termbits.h) */ +#undef B0 + +#define MM 10 /* Symbol size in bits */ +#define KK (1023-4) /* Number of data symbols per block */ +#define B0 510 /* First root of generator polynomial, alpha form */ +#define PRIM 1 /* power of alpha used to generate roots of generator poly */ +#define	NN ((1 << MM) - 1) + +typedef unsigned short dtype; + +/* 1+x^3+x^10 */ +static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; + +/* This defines the type used to store an element of the Galois Field + * used by the code. Make sure this is something larger than a char if + * if anything larger than GF(256) is used. + * + * Note: unsigned char will work up to GF(256) but int seems to run + * faster on the Pentium. + */ +typedef int gf; + +/* No legal value in index form represents zero, so + * we need a special value for this purpose + */ +#define A0	(NN) + +/* Compute x % NN, where NN is 2**MM - 1, + * without a slow divide + */ +static inline gf +modnn(int x) +{ +  while (x >= NN) { +    x -= NN; +    x = (x >> MM) + (x & NN); +  } +  return x; +} + +#define	CLEAR(a,n) {\ +int ci;\ +for(ci=(n)-1;ci >=0;ci--)\ +(a)[ci] = 0;\ +} + +#define	COPY(a,b,n) {\ +int ci;\ +for(ci=(n)-1;ci >=0;ci--)\ +(a)[ci] = (b)[ci];\ +} + +#define	COPYDOWN(a,b,n) {\ +int ci;\ +for(ci=(n)-1;ci >=0;ci--)\ +(a)[ci] = (b)[ci];\ +} + +#define Ldec 1 + +/* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] +   lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i; +                   polynomial form -> index form  index_of[j=alpha**i] = i +   alpha=2 is the primitive element of GF(2**m) +   HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: +        Let @ represent the primitive element commonly called "alpha" that +   is the root of the primitive polynomial p(x). Then in GF(2^m), for any +   0 <= i <= 2^m-2, +        @^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) +   where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation +   of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for +   example the polynomial representation of @^5 would be given by the binary +   representation of the integer "alpha_to[5]". +                   Similarily, index_of[] can be used as follows: +        As above, let @ represent the primitive element of GF(2^m) that is +   the root of the primitive polynomial p(x). In order to find the power +   of @ (alpha) that has the polynomial representation +        a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) +   we consider the integer "i" whose binary representation with a(0) being LSB +   and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry +   "index_of[i]". Now, @^index_of[i] is that element whose polynomial +    representation is (a(0),a(1),a(2),...,a(m-1)). +   NOTE: +        The element alpha_to[2^m-1] = 0 always signifying that the +   representation of "@^infinity" = 0 is (0,0,0,...,0). +        Similarily, the element index_of[0] = A0 always signifying +   that the power of alpha which has the polynomial representation +   (0,0,...,0) is "infinity". + +*/ + +static void +generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) +{ +  register int i, mask; + +  mask = 1; +  Alpha_to[MM] = 0; +  for (i = 0; i < MM; i++) { +    Alpha_to[i] = mask; +    Index_of[Alpha_to[i]] = i; +    /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ +    if (Pp[i] != 0) +      Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */ +    mask <<= 1;	/* single left-shift */ +  } +  Index_of[Alpha_to[MM]] = MM; +  /* +   * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by +   * poly-repr of @^i shifted left one-bit and accounting for any @^MM +   * term that may occur when poly-repr of @^i is shifted. +   */ +  mask >>= 1; +  for (i = MM + 1; i < NN; i++) { +    if (Alpha_to[i - 1] >= mask) +      Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); +    else +      Alpha_to[i] = Alpha_to[i - 1] << 1; +    Index_of[Alpha_to[i]] = i; +  } +  Index_of[0] = A0; +  Alpha_to[NN] = 0; +} + +/* + * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content + * of the feedback shift register after having processed the data and + * the ECC. + * + * Return number of symbols corrected, or -1 if codeword is illegal + * or uncorrectable. If eras_pos is non-null, the detected error locations + * are written back. NOTE! This array must be at least NN-KK elements long. + * The corrected data are written in eras_val[]. They must be xor with the data + * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . + * + * First "no_eras" erasures are declared by the calling program. Then, the + * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). + * If the number of channel errors is not greater than "t_after_eras" the + * transmitted codeword will be recovered. Details of algorithm can be found + * in R. Blahut's "Theory ... of Error-Correcting Codes". + + * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure + * will result. The decoder *could* check for this condition, but it would involve + * extra time on every decoding operation. + * */ +static int +eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], +            gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], +            int no_eras) +{ +  int deg_lambda, el, deg_omega; +  int i, j, r,k; +  gf u,q,tmp,num1,num2,den,discr_r; +  gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly +					 * and syndrome poly */ +  gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; +  gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; +  int syn_error, count; + +  syn_error = 0; +  for(i=0;i<NN-KK;i++) +      syn_error |= bb[i]; + +  if (!syn_error) { +    /* if remainder is zero, data[] is a codeword and there are no +     * errors to correct. So return data[] unmodified +     */ +    count = 0; +    goto finish; +  } + +  for(i=1;i<=NN-KK;i++){ +    s[i] = bb[0]; +  } +  for(j=1;j<NN-KK;j++){ +    if(bb[j] == 0) +      continue; +    tmp = Index_of[bb[j]]; + +    for(i=1;i<=NN-KK;i++) +      s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; +  } + +  /* undo the feedback register implicit multiplication and convert +     syndromes to index form */ + +  for(i=1;i<=NN-KK;i++) { +      tmp = Index_of[s[i]]; +      if (tmp != A0) +          tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); +      s[i] = tmp; +  } + +  CLEAR(&lambda[1],NN-KK); +  lambda[0] = 1; + +  if (no_eras > 0) { +    /* Init lambda to be the erasure locator polynomial */ +    lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; +    for (i = 1; i < no_eras; i++) { +      u = modnn(PRIM*eras_pos[i]); +      for (j = i+1; j > 0; j--) { +	tmp = Index_of[lambda[j - 1]]; +	if(tmp != A0) +	  lambda[j] ^= Alpha_to[modnn(u + tmp)]; +      } +    } +#ifdef ECC_DEBUG +    /* Test code that verifies the erasure locator polynomial just constructed +       Needed only for decoder debugging. */ + +    /* find roots of the erasure location polynomial */ +    for(i=1;i<=no_eras;i++) +      reg[i] = Index_of[lambda[i]]; +    count = 0; +    for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { +      q = 1; +      for (j = 1; j <= no_eras; j++) +	if (reg[j] != A0) { +	  reg[j] = modnn(reg[j] + j); +	  q ^= Alpha_to[reg[j]]; +	} +      if (q != 0) +	continue; +      /* store root and error location number indices */ +      root[count] = i; +      loc[count] = k; +      count++; +    } +    if (count != no_eras) { +      printf("\n lambda(x) is WRONG\n"); +      count = -1; +      goto finish; +    } +#ifdef PSYCHO_DEBUG +    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); +    for (i = 0; i < count; i++) +      printf("%d ", loc[i]); +    printf("\n"); +#endif +#endif +  } +  for(i=0;i<NN-KK+1;i++) +    b[i] = Index_of[lambda[i]]; + +  /* +   * Begin Berlekamp-Massey algorithm to determine error+erasure +   * locator polynomial +   */ +  r = no_eras; +  el = no_eras; +  while (++r <= NN-KK) {	/* r is the step number */ +    /* Compute discrepancy at the r-th step in poly-form */ +    discr_r = 0; +    for (i = 0; i < r; i++){ +      if ((lambda[i] != 0) && (s[r - i] != A0)) { +	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; +      } +    } +    discr_r = Index_of[discr_r];	/* Index form */ +    if (discr_r == A0) { +      /* 2 lines below: B(x) <-- x*B(x) */ +      COPYDOWN(&b[1],b,NN-KK); +      b[0] = A0; +    } else { +      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ +      t[0] = lambda[0]; +      for (i = 0 ; i < NN-KK; i++) { +	if(b[i] != A0) +	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; +	else +	  t[i+1] = lambda[i+1]; +      } +      if (2 * el <= r + no_eras - 1) { +	el = r + no_eras - el; +	/* +	 * 2 lines below: B(x) <-- inv(discr_r) * +	 * lambda(x) +	 */ +	for (i = 0; i <= NN-KK; i++) +	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); +      } else { +	/* 2 lines below: B(x) <-- x*B(x) */ +	COPYDOWN(&b[1],b,NN-KK); +	b[0] = A0; +      } +      COPY(lambda,t,NN-KK+1); +    } +  } + +  /* Convert lambda to index form and compute deg(lambda(x)) */ +  deg_lambda = 0; +  for(i=0;i<NN-KK+1;i++){ +    lambda[i] = Index_of[lambda[i]]; +    if(lambda[i] != A0) +      deg_lambda = i; +  } +  /* +   * Find roots of the error+erasure locator polynomial by Chien +   * Search +   */ +  COPY(®[1],&lambda[1],NN-KK); +  count = 0;		/* Number of roots of lambda(x) */ +  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { +    q = 1; +    for (j = deg_lambda; j > 0; j--){ +      if (reg[j] != A0) { +	reg[j] = modnn(reg[j] + j); +	q ^= Alpha_to[reg[j]]; +      } +    } +    if (q != 0) +      continue; +    /* store root (index-form) and error location number */ +    root[count] = i; +    loc[count] = k; +    /* If we've already found max possible roots, +     * abort the search to save time +     */ +    if(++count == deg_lambda) +      break; +  } +  if (deg_lambda != count) { +    /* +     * deg(lambda) unequal to number of roots => uncorrectable +     * error detected +     */ +    count = -1; +    goto finish; +  } +  /* +   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo +   * x**(NN-KK)). in index form. Also find deg(omega). +   */ +  deg_omega = 0; +  for (i = 0; i < NN-KK;i++){ +    tmp = 0; +    j = (deg_lambda < i) ? deg_lambda : i; +    for(;j >= 0; j--){ +      if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) +	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; +    } +    if(tmp != 0) +      deg_omega = i; +    omega[i] = Index_of[tmp]; +  } +  omega[NN-KK] = A0; + +  /* +   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = +   * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form +   */ +  for (j = count-1; j >=0; j--) { +    num1 = 0; +    for (i = deg_omega; i >= 0; i--) { +      if (omega[i] != A0) +	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])]; +    } +    num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; +    den = 0; + +    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ +    for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { +      if(lambda[i+1] != A0) +	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; +    } +    if (den == 0) { +#ifdef ECC_DEBUG +      printf("\n ERROR: denominator = 0\n"); +#endif +      /* Convert to dual- basis */ +      count = -1; +      goto finish; +    } +    /* Apply error to data */ +    if (num1 != 0) { +        eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; +    } else { +        eras_val[j] = 0; +    } +  } + finish: +  for(i=0;i<count;i++) +      eras_pos[i] = loc[i]; +  return count; +} + +/***************************************************************************/ +/* The DOC specific code begins here */ + +#define SECTOR_SIZE 512 +/* The sector bytes are packed into NB_DATA MM bits words */ +#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) + +/* + * Correct the errors in 'sector[]' by using 'ecc1[]' which is the + * content of the feedback shift register applyied to the sector and + * the ECC. Return the number of errors corrected (and correct them in + * sector), or -1 if error + */ +int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) +{ +    int parity, i, nb_errors; +    gf bb[NN - KK + 1]; +    gf error_val[NN-KK]; +    int error_pos[NN-KK], pos, bitpos, index, val; +    dtype *Alpha_to, *Index_of; + +    /* init log and exp tables here to save memory. However, it is slower */ +    Alpha_to = malloc((NN + 1) * sizeof(dtype)); +    if (!Alpha_to) +        return -1; + +    Index_of = malloc((NN + 1) * sizeof(dtype)); +    if (!Index_of) { +        free(Alpha_to); +        return -1; +    } + +    generate_gf(Alpha_to, Index_of); + +    parity = ecc1[1]; + +    bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); +    bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); +    bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); +    bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); + +    nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, +                            error_val, error_pos, 0); +    if (nb_errors <= 0) +        goto the_end; + +    /* correct the errors */ +    for(i=0;i<nb_errors;i++) { +        pos = error_pos[i]; +        if (pos >= NB_DATA && pos < KK) { +            nb_errors = -1; +            goto the_end; +        } +        if (pos < NB_DATA) { +            /* extract bit position (MSB first) */ +            pos = 10 * (NB_DATA - 1 - pos) - 6; +            /* now correct the following 10 bits. At most two bytes +               can be modified since pos is even */ +            index = (pos >> 3) ^ 1; +            bitpos = pos & 7; +            if ((index >= 0 && index < SECTOR_SIZE) || +                index == (SECTOR_SIZE + 1)) { +                val = error_val[i] >> (2 + bitpos); +                parity ^= val; +                if (index < SECTOR_SIZE) +                    sector[index] ^= val; +            } +            index = ((pos >> 3) + 1) ^ 1; +            bitpos = (bitpos + 10) & 7; +            if (bitpos == 0) +                bitpos = 8; +            if ((index >= 0 && index < SECTOR_SIZE) || +                index == (SECTOR_SIZE + 1)) { +                val = error_val[i] << (8 - bitpos); +                parity ^= val; +                if (index < SECTOR_SIZE) +                    sector[index] ^= val; +            } +        } +    } + +    /* use parity to test extra errors */ +    if ((parity & 0xff) != 0) +        nb_errors = -1; + + the_end: +    free(Alpha_to); +    free(Index_of); +    return nb_errors; +} + +#endif /* (CONFIG_COMMANDS & CFG_CMD_DOC) */ |