diff options
| author | Wolfgang Denk <wd@pollux.denx.de> | 2005-08-17 12:55:25 +0200 | 
|---|---|---|
| committer | Wolfgang Denk <wd@pollux.denx.de> | 2005-08-17 12:55:25 +0200 | 
| commit | 932394ac43e2e778e664eeb6e456fecd0fae6e59 (patch) | |
| tree | 170e594a6818d35081c9184f5b7dc06eaf0497af | |
| parent | 024447b186cca55c2d803ab96b4c8f8674363b86 (diff) | |
| download | olio-uboot-2014.01-932394ac43e2e778e664eeb6e456fecd0fae6e59.tar.xz olio-uboot-2014.01-932394ac43e2e778e664eeb6e456fecd0fae6e59.zip | |
Rewrite of NAND code based on what is in 2.6.12 Linux kernel
Patch by Ladislav Michl, 29 Jun 2005
| -rw-r--r-- | CHANGELOG | 7 | ||||
| -rw-r--r-- | common/cmd_nand.c | 2033 | ||||
| -rw-r--r-- | drivers/nand/Makefile | 17 | ||||
| -rw-r--r-- | drivers/nand/diskonchip.c | 1782 | ||||
| -rw-r--r-- | drivers/nand/nand.c | 71 | ||||
| -rw-r--r-- | drivers/nand/nand_base.c | 2630 | ||||
| -rw-r--r-- | drivers/nand/nand_bbt.c | 1056 | ||||
| -rw-r--r-- | drivers/nand/nand_ecc.c | 244 | ||||
| -rw-r--r-- | drivers/nand/nand_ids.c | 127 | ||||
| -rw-r--r-- | fs/jffs2/jffs2_nand_1pass.c | 1045 | ||||
| -rw-r--r-- | fs/jffs2/jffs2_nand_private.h | 133 | ||||
| -rw-r--r-- | include/linux/mtd/compat.h | 44 | ||||
| -rw-r--r-- | include/linux/mtd/mtd-abi.h | 99 | ||||
| -rw-r--r-- | include/linux/mtd/mtd.h | 214 | ||||
| -rw-r--r-- | include/linux/mtd/nand.h | 501 | ||||
| -rw-r--r-- | include/linux/mtd/nand_ecc.h | 30 | ||||
| -rw-r--r-- | include/linux/mtd/nand_ids.h | 1 | ||||
| -rw-r--r-- | include/nand.h | 56 | 
18 files changed, 8216 insertions, 1874 deletions
| @@ -1,4 +1,11 @@  ====================================================================== +Changes for U-Boot 1.1.4: +====================================================================== + +* Rewrite of NAND code based on what is in 2.6.12 Linux kernel +  Patch by Ladislav Michl, 29 Jun 2005 + +======================================================================  Changes for U-Boot 1.1.3:  ====================================================================== diff --git a/common/cmd_nand.c b/common/cmd_nand.c index 449991785..ae4c68ac1 100644 --- a/common/cmd_nand.c +++ b/common/cmd_nand.c @@ -1,18 +1,15 @@  /* - * Driver for NAND support, Rick Bronson - * borrowed heavily from: - * (c) 1999 Machine Vision Holdings, Inc. - * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> - * - * Added 16-bit nand support - * (C) 2004 Texas Instruments + * Rick Bronson and Pantelis Antoniou   */  #include <common.h> + +#if (CONFIG_COMMANDS & CFG_CMD_NAND) +  #include <command.h> -#include <malloc.h> -#include <asm/io.h>  #include <watchdog.h> +#include <malloc.h> +#include <asm/byteorder.h>  #ifdef CONFIG_SHOW_BOOT_PROGRESS  # include <status_led.h> @@ -21,289 +18,311 @@  # define SHOW_BOOT_PROGRESS(arg)  #endif -#if (CONFIG_COMMANDS & CFG_CMD_NAND) - -#include <linux/mtd/nand.h> -#include <linux/mtd/nand_ids.h>  #include <jffs2/jffs2.h> +#include <nand.h> -#ifdef CONFIG_OMAP1510 -void archflashwp(void *archdata, int wp); -#endif +extern nand_info_t nand_info[];       /* info for NAND chips */ -#define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1))) +static int nand_dump_oob(nand_info_t *nand, ulong off) +{ +	return 0; +} -/* - * Definition of the out of band configuration structure - */ -struct nand_oob_config { -	int ecc_pos[6];		/* position of ECC bytes inside oob */ -	int badblock_pos;	/* position of bad block flag inside oob -1 = inactive */ -	int eccvalid_pos;	/* position of ECC valid flag inside oob -1 = inactive */ -} oob_config = { {0}, 0, 0}; +static int nand_dump(nand_info_t *nand, ulong off) +{ +	int i; +	u_char *buf, *p; -#undef	NAND_DEBUG -#undef	PSYCHO_DEBUG +	buf = malloc(nand->oobblock + nand->oobsize); +	if (!buf) { +		puts("No memory for page buffer\n"); +		return 1; +	} +	off &= ~(nand->oobblock - 1); +	i = nand_read_raw(nand, buf, off, nand->oobblock, nand->oobsize); +	if (i < 0) { +		printf("Error (%d) reading page %08x\n", i, off); +		free(buf); +		return 1; +	} +	printf("Page %08x dump:\n", off); +	i = nand->oobblock >> 4; p = buf; +	while (i--) { +		printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x" +			"  %02x %02x %02x %02x %02x %02x %02x %02x\n", +			p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7], +			p[8], p[9], p[10], p[11], p[12], p[13], p[14], p[15]); +		p += 16; +	} +	puts("OOB:\n"); +	i = nand->oobsize >> 3; +	while (i--) { +		printf( "\t%02x %02x %02x %02x %02x %02x %02x %02x\n", +			p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); +		p += 8; +	} +	free(buf); -/* ****************** WARNING ********************* - * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will - * erase (or at least attempt to erase) blocks that are marked - * bad. This can be very handy if you are _sure_ that the block - * is OK, say because you marked a good block bad to test bad - * block handling and you are done testing, or if you have - * accidentally marked blocks bad. - * - * Erasing factory marked bad blocks is a _bad_ idea. If the - * erase succeeds there is no reliable way to find them again, - * and attempting to program or erase bad blocks can affect - * the data in _other_ (good) blocks. - */ -#define	 ALLOW_ERASE_BAD_DEBUG 0 +	return 0; +} -#define CONFIG_MTD_NAND_ECC  /* enable ECC */ -#define CONFIG_MTD_NAND_ECC_JFFS2 +/* ------------------------------------------------------------------------- */ -/* bits for nand_rw() `cmd'; or together as needed */ -#define NANDRW_READ	0x01 -#define NANDRW_WRITE	0x00 -#define NANDRW_JFFS2	0x02 -#define NANDRW_JFFS2_SKIP	0x04 +static void +arg_off_size(int argc, char *argv[], ulong *off, ulong *size, ulong totsize) +{ +	*off = 0; +	*size = 0; -/* - * Function Prototypes - */ -static void nand_print(struct nand_chip *nand); -int nand_rw (struct nand_chip* nand, int cmd, -	    size_t start, size_t len, -	    size_t * retlen, u_char * buf); -int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean); -static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, -		 size_t * retlen, u_char *buf, u_char *ecc_code); -static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, -			   size_t * retlen, const u_char * buf, u_char * ecc_code); -static void nand_print_bad(struct nand_chip *nand); -static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, -		 size_t * retlen, u_char * buf); -static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, -		 size_t * retlen, const u_char * buf); -static int NanD_WaitReady(struct nand_chip *nand, int ale_wait); -#ifdef CONFIG_MTD_NAND_ECC -static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc); -static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code); +#if defined(CONFIG_JFFS2_NAND) && defined(CFG_JFFS_CUSTOM_PART) +	if (argc >= 1 && strcmp(argv[0], "partition") == 0) { +		int part_num; +		struct part_info *part; +		const char *partstr; + +		if (argc >= 2) +			partstr = argv[1]; +		else +			partstr = getenv("partition"); + +		if (partstr) +			part_num = (int)simple_strtoul(partstr, NULL, 10); +		else +			part_num = 0; + +		part = jffs2_part_info(part_num); +		if (part == NULL) { +			printf("\nInvalid partition %d\n", part_num); +			return; +		} +		*size = part->size; +		*off = (ulong)part->offset; +	} else  #endif +	{ +		if (argc >= 1) +			*off = (ulong)simple_strtoul(argv[0], NULL, 16); +		else +			*off = 0; -struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}}; +		if (argc >= 2) +			*size = (ulong)simple_strtoul(argv[1], NULL, 16); +		else +			*size = totsize - *off; -/* Current NAND Device	*/ -static int curr_device = -1; +	} -/* ------------------------------------------------------------------------- */ +} -int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) +int do_nand(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])  { -    int rcode = 0; +	int i, dev, ret; +	ulong addr, off, size; +	char *cmd, *s; +	nand_info_t *nand; -    switch (argc) { -    case 0: -    case 1: -	printf ("Usage:\n%s\n", cmdtp->usage); -	return 1; -    case 2: -	if (strcmp(argv[1],"info") == 0) { -		int i; +	/* at least two arguments please */ +	if (argc < 2) +		goto usage; -		putc ('\n'); +	cmd = argv[1]; -		for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) { -			if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) -				continue; /* list only known devices */ -			printf ("Device %d: ", i); -			nand_print(&nand_dev_desc[i]); -		} -		return 0; +	if (strcmp(cmd, "info") == 0) { -	} else if (strcmp(argv[1],"device") == 0) { -		if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) { -			puts ("\nno devices available\n"); -			return 1; +		putc('\n'); +		for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) { +			if (nand_info[i].name) +				printf("Device %d: %s\n", i, nand_info[i].name);  		} -		printf ("\nDevice %d: ", curr_device); -		nand_print(&nand_dev_desc[curr_device]);  		return 0; - -	} else if (strcmp(argv[1],"bad") == 0) { -		if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) { -			puts ("\nno devices available\n"); -			return 1; -		} -		printf ("\nDevice %d bad blocks:\n", curr_device); -		nand_print_bad(&nand_dev_desc[curr_device]); -		return 0; -  	} -	printf ("Usage:\n%s\n", cmdtp->usage); -	return 1; -    case 3: -	if (strcmp(argv[1],"device") == 0) { -		int dev = (int)simple_strtoul(argv[2], NULL, 10); -		printf ("\nDevice %d: ", dev); -		if (dev >= CFG_MAX_NAND_DEVICE) { -			puts ("unknown device\n"); -			return 1; -		} -		nand_print(&nand_dev_desc[dev]); -		/*nand_print (dev);*/ +	if (strcmp(cmd, "device") == 0) { -		if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) { +		if (argc < 3) { +			if ((nand_curr_device < 0) || +			    (nand_curr_device >= CFG_MAX_NAND_DEVICE)) +				puts("\nno devices available\n"); +			else +				printf("\nDevice %d: %s\n", nand_curr_device, +					nand_info[nand_curr_device].name); +			return 0; +		} +		dev = (int)simple_strtoul(argv[2], NULL, 10); +		if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) { +			puts("No such device\n");  			return 1;  		} +		printf("Device %d: %s", dev, nand_info[dev].name); +		puts("... is now current device\n"); +		nand_curr_device = dev; +		return 0; +	} -		curr_device = dev; +	if (strcmp(cmd, "bad") != 0 && strcmp(cmd, "erase") != 0 && +	    strncmp(cmd, "dump", 4) != 0 && +	    strncmp(cmd, "read", 4) != 0 && strncmp(cmd, "write", 5) != 0 +#ifdef CONFIG_MTD_NAND_UNSAFE +	    && strcmp(cmd, "scrub") != 0 && strcmp(cmd, "biterr") != 0 +	    && strcmp(cmd, "markbad") != 0 +#endif +	    ) +		goto usage; -		puts ("... is now current device\n"); +	/* the following commands operate on the current device */ +	if (nand_curr_device < 0 || nand_curr_device >= CFG_MAX_NAND_DEVICE || +	    !nand_info[nand_curr_device].name) { +		puts("\nno devices available\n"); +		return 1; +	} +	nand = &nand_info[nand_curr_device]; +	if (strcmp(cmd, "bad") == 0) { +		printf("\nDevice %d bad blocks:\n", nand_curr_device); +		for (off = 0; off < nand->size; off += nand->erasesize) +			if (nand_block_isbad(nand, off)) +				printf("  %08x\n", off);  		return 0;  	} -	else if (strcmp(argv[1],"erase") == 0 && strcmp(argv[2], "clean") == 0) { -		struct nand_chip* nand = &nand_dev_desc[curr_device]; -		ulong off = 0; -		ulong size = nand->totlen; -		int ret; -		printf ("\nNAND erase: device %d offset %ld, size %ld ... ", -			curr_device, off, size); +	if (strcmp(cmd, "erase") == 0 +#ifdef CONFIG_MTD_NAND_UNSAFE +	    || strcmp(cmd, "scrub") == 0 +#endif +	    ) { -		ret = nand_erase (nand, off, size, 1); +#ifdef CONFIG_MTD_NAND_UNSAFE +		i = strcmp(cmd, "scrub") == 0;	/* 1 scrub, 0 = erase */ +#endif + +		arg_off_size(argc - 2, argv + 2, &off, &size, nand->size); +		if (off == 0 && size == 0) +			return 1; + +		printf("\nNAND %s: device %d offset 0x%x, size 0x%x ", +#ifdef CONFIG_MTD_NAND_UNSAFE +		       i ? "scrub" : +#endif +		       "erase", +		       nand_curr_device, off, size); + +#ifdef CONFIG_MTD_NAND_UNSAFE +		if (i) +			ret = nand_scrub(nand, off, size); +		else +#endif +			ret = nand_erase(nand, off, size);  		printf("%s\n", ret ? "ERROR" : "OK"); -		return ret; +		return ret == 0 ? 0 : 1;  	} -	printf ("Usage:\n%s\n", cmdtp->usage); -	return 1; -    default: -	/* at least 4 args */ +	if (strncmp(cmd, "dump", 4) == 0) { +		if (argc < 3) +			goto usage; -	if (strncmp(argv[1], "read", 4) == 0 || -	    strncmp(argv[1], "write", 5) == 0) { -		ulong addr = simple_strtoul(argv[2], NULL, 16); -		ulong off  = simple_strtoul(argv[3], NULL, 16); -		ulong size = simple_strtoul(argv[4], NULL, 16); -		int cmd    = (strncmp(argv[1], "read", 4) == 0) ? -				NANDRW_READ : NANDRW_WRITE; -		int ret, total; -		char* cmdtail = strchr(argv[1], '.'); +		s = strchr(cmd, '.'); +		off = (int)simple_strtoul(argv[2], NULL, 16); -		if (cmdtail && !strncmp(cmdtail, ".oob", 2)) { -			/* read out-of-band data */ -			if (cmd & NANDRW_READ) { -				ret = nand_read_oob(nand_dev_desc + curr_device, -						    off, size, &total, -						    (u_char*)addr); -			} -			else { -				ret = nand_write_oob(nand_dev_desc + curr_device, -						     off, size, &total, -						     (u_char*)addr); -			} -			return ret; -		} -		else if (cmdtail && !strncmp(cmdtail, ".jffs2", 2)) -			cmd |= NANDRW_JFFS2;	/* skip bad blocks */ -		else if (cmdtail && !strncmp(cmdtail, ".jffs2s", 2)) { -			cmd |= NANDRW_JFFS2;	/* skip bad blocks (on read too) */ -			if (cmd & NANDRW_READ) -				cmd |= NANDRW_JFFS2_SKIP;	/* skip bad blocks (on read too) */ +		if (s != NULL && strcmp(s, ".oob") == 0) +			ret = nand_dump_oob(nand, off); +		else +			ret = nand_dump(nand, off); + +		return ret == 0 ? 1 : 0; + +	} + +	/* read write */ +	if (strncmp(cmd, "read", 4) == 0 || strncmp(cmd, "write", 5) == 0) { +		if (argc < 4) +			goto usage; +/* +		s = strchr(cmd, '.'); +		clean = CLEAN_NONE; +		if (s != NULL) { +			if (strcmp(s, ".jffs2") == 0 || strcmp(s, ".e") == 0 +			    || strcmp(s, ".i")) +				clean = CLEAN_JFFS2;  		} -#ifdef SXNI855T -		/* need ".e" same as ".j" for compatibility with older units */ -		else if (cmdtail && !strcmp(cmdtail, ".e")) -			cmd |= NANDRW_JFFS2;	/* skip bad blocks */ -#endif -#ifdef CFG_NAND_SKIP_BAD_DOT_I -		/* need ".i" same as ".jffs2s" for compatibility with older units (esd) */ -		/* ".i" for image -> read skips bad block (no 0xff) */ -		else if (cmdtail && !strcmp(cmdtail, ".i")) -			cmd |= NANDRW_JFFS2;	/* skip bad blocks (on read too) */ -			if (cmd & NANDRW_READ) -				cmd |= NANDRW_JFFS2_SKIP;	/* skip bad blocks (on read too) */ -#endif /* CFG_NAND_SKIP_BAD_DOT_I */ -		else if (cmdtail) { -			printf ("Usage:\n%s\n", cmdtp->usage); +*/ +		addr = (ulong)simple_strtoul(argv[2], NULL, 16); + +		arg_off_size(argc - 3, argv + 3, &off, &size, nand->size); +		if (off == 0 && size == 0)  			return 1; -		} -		printf ("\nNAND %s: device %d offset %ld, size %ld ... ", -			(cmd & NANDRW_READ) ? "read" : "write", -			curr_device, off, size); +		i = strncmp(cmd, "read", 4) == 0;	/* 1 = read, 0 = write */ +		printf("\nNAND %s: device %d offset %u, size %u ... ", +		       i ? "read" : "write", nand_curr_device, off, size); -		ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size, -			     &total, (u_char*)addr); +		if (i) +			ret = nand_read(nand, off, &size, (u_char *)addr); +		else +			ret = nand_write(nand, off, &size, (u_char *)addr); -		printf (" %d bytes %s: %s\n", total, -			(cmd & NANDRW_READ) ? "read" : "written", -			ret ? "ERROR" : "OK"); +		printf(" %d bytes %s: %s\n", size, +		       i ? "read" : "written", ret ? "ERROR" : "OK"); -		return ret; -	} else if (strcmp(argv[1],"erase") == 0 && -		   (argc == 4 || strcmp("clean", argv[2]) == 0)) { -		int clean = argc == 5; -		ulong off = simple_strtoul(argv[2 + clean], NULL, 16); -		ulong size = simple_strtoul(argv[3 + clean], NULL, 16); -		int ret; +		return ret == 0 ? 0 : 1; +	} +#ifdef CONFIG_MTD_NAND_UNSAFE +	if (strcmp(cmd, "markbad") == 0 || strcmp(cmd, "biterr") == 0) { +		if (argc < 3) +			goto usage; -		printf ("\nNAND erase: device %d offset %ld, size %ld ... ", -			curr_device, off, size); +		i = strcmp(cmd, "biterr") == 0; -		ret = nand_erase (nand_dev_desc + curr_device, off, size, clean); +		off = (int)simple_strtoul(argv[2], NULL, 16); -		printf("%s\n", ret ? "ERROR" : "OK"); +		if (i) +			ret = nand_make_bit_error(nand, off); +		else +			ret = nand_mark_bad(nand, off); -		return ret; -	} else { -		printf ("Usage:\n%s\n", cmdtp->usage); -		rcode = 1; +		return ret == 0 ? 0 : 1;  	} +#endif -	return rcode; -    } +usage: +	printf("Usage:\n%s\n", cmdtp->usage); +	return 1;  } -U_BOOT_CMD( -	nand,	5,	1,	do_nand, +U_BOOT_CMD(nand, 5, 1, do_nand,  	"nand    - NAND sub-system\n", -	"info  - show available NAND devices\n" -	"nand device [dev] - show or set current device\n" -	"nand read[.jffs2[s]]  addr off size\n" -	"nand write[.jffs2] addr off size - read/write `size' bytes starting\n" +	"info                  - show available NAND devices\n" +	"nand device [dev]     - show or set current device\n" +	"nand read[.jffs2]     - addr off size\n" +	"nand write[.jffs2]    - addr off size - read/write `size' bytes starting\n"  	"    at offset `off' to/from memory address `addr'\n"  	"nand erase [clean] [off size] - erase `size' bytes from\n"  	"    offset `off' (entire device if not specified)\n"  	"nand bad - show bad blocks\n" -	"nand read.oob addr off size - read out-of-band data\n" -	"nand write.oob addr off size - read out-of-band data\n" -); +	"nand dump[.oob] off - dump page\n" +	"nand scrub - really clean NAND erasing bad blocks (UNSAFE)\n" +	"nand markbad off - mark bad block at offset (UNSAFE)\n" +	"nand biterr off - make a bit error at offset (UNSAFE)\n"); -int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) +int do_nandboot(cmd_tbl_t * cmdtp, int flag, int argc, char *argv[])  {  	char *boot_device = NULL;  	char *ep;  	int dev; -	ulong cnt; -	ulong addr; -	ulong offset = 0; +	int r; +	ulong addr, cnt, offset = 0;  	image_header_t *hdr; -	int rcode = 0; +	nand_info_t *nand; +  	switch (argc) {  	case 1:  		addr = CFG_LOAD_ADDR; -		boot_device = getenv ("bootdevice"); +		boot_device = getenv("bootdevice");  		break;  	case 2:  		addr = simple_strtoul(argv[1], NULL, 16); -		boot_device = getenv ("bootdevice"); +		boot_device = getenv("bootdevice");  		break;  	case 3:  		addr = simple_strtoul(argv[1], NULL, 16); @@ -315,55 +334,53 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])  		offset = simple_strtoul(argv[3], NULL, 16);  		break;  	default: -		printf ("Usage:\n%s\n", cmdtp->usage); -		SHOW_BOOT_PROGRESS (-1); +		printf("Usage:\n%s\n", cmdtp->usage); +		SHOW_BOOT_PROGRESS(-1);  		return 1;  	}  	if (!boot_device) { -		puts ("\n** No boot device **\n"); -		SHOW_BOOT_PROGRESS (-1); +		puts("\n** No boot device **\n"); +		SHOW_BOOT_PROGRESS(-1);  		return 1;  	}  	dev = simple_strtoul(boot_device, &ep, 16); -	if ((dev >= CFG_MAX_NAND_DEVICE) || -	    (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) { -		printf ("\n** Device %d not available\n", dev); -		SHOW_BOOT_PROGRESS (-1); +	if (dev < 0 || dev >= CFG_MAX_NAND_DEVICE || !nand_info[dev].name) { +		printf("\n** Device %d not available\n", dev); +		SHOW_BOOT_PROGRESS(-1);  		return 1;  	} -	printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n", -		dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR, -		offset); +	nand = &nand_info[dev]; +	printf("\nLoading from device %d: %s (offset 0x%lx)\n", +	       dev, nand->name, offset); -	if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset, -		    SECTORSIZE, NULL, (u_char *)addr)) { -		printf ("** Read error on %d\n", dev); -		SHOW_BOOT_PROGRESS (-1); +	cnt = nand->oobblock; +	r = nand_read(nand, offset, &cnt, (u_char *) addr); +	if (r) { +		printf("** Read error on %d\n", dev); +		SHOW_BOOT_PROGRESS(-1);  		return 1;  	} -	hdr = (image_header_t *)addr; +	hdr = (image_header_t *) addr; -	if (ntohl(hdr->ih_magic) == IH_MAGIC) { - -		print_image_hdr (hdr); - -		cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t)); -		cnt -= SECTORSIZE; -	} else { -		printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic); -		SHOW_BOOT_PROGRESS (-1); +	if (ntohl(hdr->ih_magic) != IH_MAGIC) { +		printf("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic); +		SHOW_BOOT_PROGRESS(-1);  		return 1;  	} -	if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset + SECTORSIZE, cnt, -		    NULL, (u_char *)(addr+SECTORSIZE))) { -		printf ("** Read error on %d\n", dev); -		SHOW_BOOT_PROGRESS (-1); +	print_image_hdr(hdr); + +	cnt = (ntohl(hdr->ih_size) + sizeof (image_header_t)); + +	r = nand_read(nand, offset, &cnt, (u_char *) addr); +	if (r) { +		printf("** Read error on %d\n", dev); +		SHOW_BOOT_PROGRESS(-1);  		return 1;  	} @@ -372,1526 +389,24 @@ int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])  	load_addr = addr;  	/* Check if we should attempt an auto-start */ -	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { +	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep, "yes") == 0)) {  		char *local_args[2]; -		extern int do_bootm (cmd_tbl_t *, int, int, char *[]); +		extern int do_bootm(cmd_tbl_t *, int, int, char *[]);  		local_args[0] = argv[0];  		local_args[1] = NULL; -		printf ("Automatic boot of image at addr 0x%08lx ...\n", addr); - -		do_bootm (cmdtp, 0, 1, local_args); -		rcode = 1; -	} -	return rcode; -} +		printf("Automatic boot of image at addr 0x%08lx ...\n", addr); -U_BOOT_CMD( -	nboot,	4,	1,	do_nandboot, -	"nboot   - boot from NAND device\n", -	"loadAddr dev\n" -); - -/* returns 0 if block containing pos is OK: - *		valid erase block and - *		not marked bad, or no bad mark position is specified - * returns 1 if marked bad or otherwise invalid - */ -int check_block (struct nand_chip *nand, unsigned long pos) -{ -	int retlen; -	uint8_t oob_data; -	uint16_t oob_data16[6]; -	int page0 = pos & (-nand->erasesize); -	int page1 = page0 + nand->oobblock; -	int badpos = oob_config.badblock_pos; - -	if (pos >= nand->totlen) +		do_bootm(cmdtp, 0, 1, local_args);  		return 1; - -	if (badpos < 0) -		return 0;	/* no way to check, assume OK */ - -	if (nand->bus16) { -		if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16) -		    || (oob_data16[2] & 0xff00) != 0xff00) -			return 1; -		if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16) -		    || (oob_data16[2] & 0xff00) != 0xff00) -			return 1; -	} else { -		/* Note - bad block marker can be on first or second page */ -		if (nand_read_oob(nand, page0 + badpos, 1, &retlen, &oob_data) -		    || oob_data != 0xff -		    || nand_read_oob (nand, page1 + badpos, 1, &retlen, &oob_data) -		    || oob_data != 0xff) -			return 1; -	} - -	return 0; -} - -/* print bad blocks in NAND flash */ -static void nand_print_bad(struct nand_chip* nand) -{ -	unsigned long pos; - -	for (pos = 0; pos < nand->totlen; pos += nand->erasesize) { -		if (check_block(nand, pos)) -			printf(" 0x%8.8lx\n", pos); -	} -	puts("\n"); -} - -/* cmd: 0: NANDRW_WRITE			write, fail on bad block - *	1: NANDRW_READ			read, fail on bad block - *	2: NANDRW_WRITE | NANDRW_JFFS2	write, skip bad blocks - *	3: NANDRW_READ | NANDRW_JFFS2	read, data all 0xff for bad blocks - *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks - */ -int nand_rw (struct nand_chip* nand, int cmd, -	    size_t start, size_t len, -	    size_t * retlen, u_char * buf) -{ -	int ret = 0, n, total = 0; -	char eccbuf[6]; -	/* eblk (once set) is the start of the erase block containing the -	 * data being processed. -	 */ -	unsigned long eblk = ~0;	/* force mismatch on first pass */ -	unsigned long erasesize = nand->erasesize; - -	while (len) { -		if ((start & (-erasesize)) != eblk) { -			/* have crossed into new erase block, deal with -			 * it if it is sure marked bad. -			 */ -			eblk = start & (-erasesize); /* start of block */ -			if (check_block(nand, eblk)) { -				if (cmd == (NANDRW_READ | NANDRW_JFFS2)) { -					while (len > 0 && -					       start - eblk < erasesize) { -						*(buf++) = 0xff; -						++start; -						++total; -						--len; -					} -					continue; -				} else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) { -					start += erasesize; -					continue; -				} else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) { -					/* skip bad block */ -					start += erasesize; -					continue; -				} else { -					ret = 1; -					break; -				} -			} -		} -		/* The ECC will not be calculated correctly if -		   less than 512 is written or read */ -		/* Is request at least 512 bytes AND it starts on a proper boundry */ -		if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200)) -			printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n"); - -		if (cmd & NANDRW_READ) { -			ret = nand_read_ecc(nand, start, -					   min(len, eblk + erasesize - start), -					   &n, (u_char*)buf, eccbuf); -		} else { -			ret = nand_write_ecc(nand, start, -					    min(len, eblk + erasesize - start), -					    &n, (u_char*)buf, eccbuf); -		} - -		if (ret) -			break; - -		start  += n; -		buf   += n; -		total += n; -		len   -= n; -	} -	if (retlen) -		*retlen = total; - -	return ret; -} - -static void nand_print(struct nand_chip *nand) -{ -	if (nand->numchips > 1) { -		printf("%s at 0x%lx,\n" -		       "\t  %d chips %s, size %d MB, \n" -		       "\t  total size %ld MB, sector size %ld kB\n", -		       nand->name, nand->IO_ADDR, nand->numchips, -		       nand->chips_name, 1 << (nand->chipshift - 20), -		       nand->totlen >> 20, nand->erasesize >> 10); -	} -	else { -		printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR); -		print_size(nand->totlen, ", "); -		print_size(nand->erasesize, " sector)\n"); -	} -} - -/* ------------------------------------------------------------------------- */ - -static int NanD_WaitReady(struct nand_chip *nand, int ale_wait) -{ -	/* This is inline, to optimise the common case, where it's ready instantly */ -	int ret = 0; - -#ifdef NAND_NO_RB	/* in config file, shorter delays currently wrap accesses */ -	if(ale_wait) -		NAND_WAIT_READY(nand);	/* do the worst case 25us wait */ -	else -		udelay(10); -#else	/* has functional r/b signal */ -	NAND_WAIT_READY(nand); -#endif -	return ret; -} - -/* NanD_Command: Send a flash command to the flash chip */ - -static inline int NanD_Command(struct nand_chip *nand, unsigned char command) -{ -	unsigned long nandptr = nand->IO_ADDR; - -	/* Assert the CLE (Command Latch Enable) line to the flash chip */ -	NAND_CTL_SETCLE(nandptr); - -	/* Send the command */ -	WRITE_NAND_COMMAND(command, nandptr); - -	/* Lower the CLE line */ -	NAND_CTL_CLRCLE(nandptr); - -#ifdef NAND_NO_RB -	if(command == NAND_CMD_RESET){ -		u_char ret_val; -		NanD_Command(nand, NAND_CMD_STATUS); -		do { -			ret_val = READ_NAND(nandptr);/* wait till ready */ -		} while((ret_val & 0x40) != 0x40); -	} -#endif -	return NanD_WaitReady(nand, 0); -} - -/* NanD_Address: Set the current address for the flash chip */ - -static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs) -{ -	unsigned long nandptr; -	int i; - -	nandptr = nand->IO_ADDR; - -	/* Assert the ALE (Address Latch Enable) line to the flash chip */ -	NAND_CTL_SETALE(nandptr); - -	/* Send the address */ -	/* Devices with 256-byte page are addressed as: -	 * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) -	 * there is no device on the market with page256 -	 * and more than 24 bits. -	 * Devices with 512-byte page are addressed as: -	 * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) -	 * 25-31 is sent only if the chip support it. -	 * bit 8 changes the read command to be sent -	 * (NAND_CMD_READ0 or NAND_CMD_READ1). -	 */ - -	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) -		WRITE_NAND_ADDRESS(ofs, nandptr); - -	ofs = ofs >> nand->page_shift; - -	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { -		for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) { -			WRITE_NAND_ADDRESS(ofs, nandptr); -		} -	} - -	/* Lower the ALE line */ -	NAND_CTL_CLRALE(nandptr); - -	/* Wait for the chip to respond */ -	return NanD_WaitReady(nand, 1); -} - -/* NanD_SelectChip: Select a given flash chip within the current floor */ - -static inline int NanD_SelectChip(struct nand_chip *nand, int chip) -{ -	/* Wait for it to be ready */ -	return NanD_WaitReady(nand, 0); -} - -/* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */ - -static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip) -{ -	int mfr, id, i; - -	NAND_ENABLE_CE(nand);  /* set pin low */ -	/* Reset the chip */ -	if (NanD_Command(nand, NAND_CMD_RESET)) { -#ifdef NAND_DEBUG -		printf("NanD_Command (reset) for %d,%d returned true\n", -		       floor, chip); -#endif -		NAND_DISABLE_CE(nand);  /* set pin high */ -		return 0; -	} - -	/* Read the NAND chip ID: 1. Send ReadID command */ -	if (NanD_Command(nand, NAND_CMD_READID)) { -#ifdef NAND_DEBUG -		printf("NanD_Command (ReadID) for %d,%d returned true\n", -		       floor, chip); -#endif -		NAND_DISABLE_CE(nand);  /* set pin high */ -		return 0; -	} - -	/* Read the NAND chip ID: 2. Send address byte zero */ -	NanD_Address(nand, ADDR_COLUMN, 0); - -	/* Read the manufacturer and device id codes from the device */ - -	mfr = READ_NAND(nand->IO_ADDR); - -	id = READ_NAND(nand->IO_ADDR); - -	NAND_DISABLE_CE(nand);  /* set pin high */ - -#ifdef NAND_DEBUG -	printf("NanD_Command (ReadID) got %x %x\n", mfr, id); -#endif -	if (mfr == 0xff || mfr == 0) { -		/* No response - return failure */ -		return 0; -	} - -	/* Check it's the same as the first chip we identified. -	 * M-Systems say that any given nand_chip device should only -	 * contain _one_ type of flash part, although that's not a -	 * hardware restriction. */ -	if (nand->mfr) { -		if (nand->mfr == mfr && nand->id == id) { -			return 1;	/* This is another the same the first */ -		} else { -			printf("Flash chip at floor %d, chip %d is different:\n", -			       floor, chip); -		} -	} - -	/* Print and store the manufacturer and ID codes. */ -	for (i = 0; nand_flash_ids[i].name != NULL; i++) { -		if (mfr == nand_flash_ids[i].manufacture_id && -		    id == nand_flash_ids[i].model_id) { -#ifdef NAND_DEBUG -			printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, " -			       "Chip ID: 0x%2.2X (%s)\n", mfr, id, -			       nand_flash_ids[i].name); -#endif -			if (!nand->mfr) { -				nand->mfr = mfr; -				nand->id = id; -				nand->chipshift = -				    nand_flash_ids[i].chipshift; -				nand->page256 = nand_flash_ids[i].page256; -				nand->eccsize = 256; -				if (nand->page256) { -					nand->oobblock = 256; -					nand->oobsize = 8; -					nand->page_shift = 8; -				} else { -					nand->oobblock = 512; -					nand->oobsize = 16; -					nand->page_shift = 9; -				} -				nand->pageadrlen = nand_flash_ids[i].pageadrlen; -				nand->erasesize  = nand_flash_ids[i].erasesize; -				nand->chips_name = nand_flash_ids[i].name; -				nand->bus16	 = nand_flash_ids[i].bus16; - 				return 1; -			} -			return 0; -		} -	} - - -#ifdef NAND_DEBUG -	/* We haven't fully identified the chip. Print as much as we know. */ -	printf("Unknown flash chip found: %2.2X %2.2X\n", -	       id, mfr); -#endif - -	return 0; -} - -/* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */ - -static void NanD_ScanChips(struct nand_chip *nand) -{ -	int floor, chip; -	int numchips[NAND_MAX_FLOORS]; -	int maxchips = NAND_MAX_CHIPS; -	int ret = 1; - -	nand->numchips = 0; -	nand->mfr = 0; -	nand->id = 0; - - -	/* For each floor, find the number of valid chips it contains */ -	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { -		ret = 1; -		numchips[floor] = 0; -		for (chip = 0; chip < maxchips && ret != 0; chip++) { - -			ret = NanD_IdentChip(nand, floor, chip); -			if (ret) { -				numchips[floor]++; -				nand->numchips++; -			} -		} -	} - -	/* If there are none at all that we recognise, bail */ -	if (!nand->numchips) { -#ifdef NAND_DEBUG -		puts ("No NAND flash chips recognised.\n"); -#endif -		return; -	} - -	/* Allocate an array to hold the information for each chip */ -	nand->chips = malloc(sizeof(struct Nand) * nand->numchips); -	if (!nand->chips) { -		puts ("No memory for allocating chip info structures\n"); -		return; -	} - -	ret = 0; - -	/* Fill out the chip array with {floor, chipno} for each -	 * detected chip in the device. */ -	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { -		for (chip = 0; chip < numchips[floor]; chip++) { -			nand->chips[ret].floor = floor; -			nand->chips[ret].chip = chip; -			nand->chips[ret].curadr = 0; -			nand->chips[ret].curmode = 0x50; -			ret++; -		} -	} - -	/* Calculate and print the total size of the device */ -	nand->totlen = nand->numchips * (1 << nand->chipshift); - -#ifdef NAND_DEBUG -	printf("%d flash chips found. Total nand_chip size: %ld MB\n", -	       nand->numchips, nand->totlen >> 20); -#endif -} - -/* we need to be fast here, 1 us per read translates to 1 second per meg */ -static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr) -{ -	unsigned long nandptr = nand->IO_ADDR; - -	NanD_Command (nand, NAND_CMD_READ0); - -	if (nand->bus16) { -		u16 val; - -		while (cntr >= 16) { -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			cntr -= 16; -		} - -		while (cntr > 0) { -			val = READ_NAND (nandptr); -			*data_buf++ = val & 0xff; -			*data_buf++ = val >> 8; -			cntr -= 2; -		} -	} else { -		while (cntr >= 16) { -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			*data_buf++ = READ_NAND (nandptr); -			cntr -= 16; -		} - -		while (cntr > 0) { -			*data_buf++ = READ_NAND (nandptr); -			cntr--; -		} -	} -} - -/* - * NAND read with ECC - */ -static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, -		 size_t * retlen, u_char *buf, u_char *ecc_code) -{ -	int col, page; -	int ecc_status = 0; -#ifdef CONFIG_MTD_NAND_ECC -	int j; -	int ecc_failed = 0; -	u_char *data_poi; -	u_char ecc_calc[6]; -#endif - -	/* Do not allow reads past end of device */ -	if ((start + len) > nand->totlen) { -		printf ("%s: Attempt read beyond end of device %x %x %x\n", -			__FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen); -		*retlen = 0; -		return -1; -	} - -	/* First we calculate the starting page */ -	/*page = shr(start, nand->page_shift);*/ -	page = start >> nand->page_shift; - -	/* Get raw starting column */ -	col = start & (nand->oobblock - 1); - -	/* Initialize return value */ -	*retlen = 0; - -	/* Select the NAND device */ -	NAND_ENABLE_CE(nand);  /* set pin low */ - -	/* Loop until all data read */ -	while (*retlen < len) { - -#ifdef CONFIG_MTD_NAND_ECC -		/* Do we have this page in cache ? */ -		if (nand->cache_page == page) -			goto readdata; -		/* Send the read command */ -		NanD_Command(nand, NAND_CMD_READ0); -		if (nand->bus16) { - 			NanD_Address(nand, ADDR_COLUMN_PAGE, -				     (page << nand->page_shift) + (col >> 1)); -		} else { - 			NanD_Address(nand, ADDR_COLUMN_PAGE, -				     (page << nand->page_shift) + col); -		} - -		/* Read in a page + oob data */ -		NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize); - -		/* copy data into cache, for read out of cache and if ecc fails */ -		if (nand->data_cache) { -			memcpy (nand->data_cache, nand->data_buf, -				nand->oobblock + nand->oobsize); -		} - -		/* Pick the ECC bytes out of the oob data */ -		for (j = 0; j < 6; j++) { -			ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])]; -		} - -		/* Calculate the ECC and verify it */ -		/* If block was not written with ECC, skip ECC */ -		if (oob_config.eccvalid_pos != -1 && -		    (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) { - -			nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]); -			switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) { -			case -1: -				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); -				ecc_failed++; -				break; -			case 1: -			case 2:	/* transfer ECC corrected data to cache */ -				if (nand->data_cache) -					memcpy (nand->data_cache, nand->data_buf, 256); -				break; -			} -		} - -		if (oob_config.eccvalid_pos != -1 && -		    nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) { - -			nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]); -			switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) { -			case -1: -				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); -				ecc_failed++; -				break; -			case 1: -			case 2:	/* transfer ECC corrected data to cache */ -				if (nand->data_cache) -					memcpy (&nand->data_cache[256], &nand->data_buf[256], 256); -				break; -			} -		} -readdata: -		/* Read the data from ECC data buffer into return buffer */ -		data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf; -		data_poi += col; -		if ((*retlen + (nand->oobblock - col)) >= len) { -			memcpy (buf + *retlen, data_poi, len - *retlen); -			*retlen = len; -		} else { -			memcpy (buf + *retlen, data_poi,  nand->oobblock - col); -			*retlen += nand->oobblock - col; -		} -		/* Set cache page address, invalidate, if ecc_failed */ -		nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1; - -		ecc_status += ecc_failed; -		ecc_failed = 0; - -#else -		/* Send the read command */ -		NanD_Command(nand, NAND_CMD_READ0); -		if (nand->bus16) { -			NanD_Address(nand, ADDR_COLUMN_PAGE, -				     (page << nand->page_shift) + (col >> 1)); -		} else { -			NanD_Address(nand, ADDR_COLUMN_PAGE, -				     (page << nand->page_shift) + col); -		} - -		/* Read the data directly into the return buffer */ -		if ((*retlen + (nand->oobblock - col)) >= len) { -			NanD_ReadBuf(nand, buf + *retlen, len - *retlen); -			*retlen = len; -			/* We're done */ -			continue; -		} else { -			NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col); -			*retlen += nand->oobblock - col; -			} -#endif -		/* For subsequent reads align to page boundary. */ -		col = 0; -		/* Increment page address */ -		page++; -	} - -	/* De-select the NAND device */ -	NAND_DISABLE_CE(nand);  /* set pin high */ - -	/* -	 * Return success, if no ECC failures, else -EIO -	 * fs driver will take care of that, because -	 * retlen == desired len and result == -EIO -	 */ -	return ecc_status ? -1 : 0; -} - -/* - *	Nand_page_program function is used for write and writev ! - */ -static int nand_write_page (struct nand_chip *nand, -			    int page, int col, int last, u_char * ecc_code) -{ - -	int i; -	unsigned long nandptr = nand->IO_ADDR; - -#ifdef CONFIG_MTD_NAND_ECC -#ifdef CONFIG_MTD_NAND_VERIFY_WRITE -	int ecc_bytes = (nand->oobblock == 512) ? 6 : 3; -#endif -#endif -	/* pad oob area */ -	for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++) -		nand->data_buf[i] = 0xff; - -#ifdef CONFIG_MTD_NAND_ECC -	/* Zero out the ECC array */ -	for (i = 0; i < 6; i++) -		ecc_code[i] = 0x00; - -	/* Read back previous written data, if col > 0 */ -	if (col) { -		NanD_Command (nand, NAND_CMD_READ0); -		if (nand->bus16) { -			NanD_Address (nand, ADDR_COLUMN_PAGE, -				      (page << nand->page_shift) + (col >> 1)); -		} else { -			NanD_Address (nand, ADDR_COLUMN_PAGE, -				      (page << nand->page_shift) + col); -		} - -		if (nand->bus16) { -			u16 val; - -			for (i = 0; i < col; i += 2) { -				val = READ_NAND (nandptr); -				nand->data_buf[i] = val & 0xff; -				nand->data_buf[i + 1] = val >> 8; -			} -		} else { -			for (i = 0; i < col; i++) -				nand->data_buf[i] = READ_NAND (nandptr); -		} -	} - -	/* Calculate and write the ECC if we have enough data */ -	if ((col < nand->eccsize) && (last >= nand->eccsize)) { -		nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0])); -		for (i = 0; i < 3; i++) { -			nand->data_buf[(nand->oobblock + -					oob_config.ecc_pos[i])] = ecc_code[i]; -		} -		if (oob_config.eccvalid_pos != -1) { -			nand->data_buf[nand->oobblock + -				       oob_config.eccvalid_pos] = 0xf0; -		} -	} - -	/* Calculate and write the second ECC if we have enough data */ -	if ((nand->oobblock == 512) && (last == nand->oobblock)) { -		nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3])); -		for (i = 3; i < 6; i++) { -			nand->data_buf[(nand->oobblock + -					oob_config.ecc_pos[i])] = ecc_code[i]; -		} -		if (oob_config.eccvalid_pos != -1) { -			nand->data_buf[nand->oobblock + -				       oob_config.eccvalid_pos] &= 0x0f; -		} -	} -#endif -	/* Prepad for partial page programming !!! */ -	for (i = 0; i < col; i++) -		nand->data_buf[i] = 0xff; - -	/* Postpad for partial page programming !!! oob is already padded */ -	for (i = last; i < nand->oobblock; i++) -		nand->data_buf[i] = 0xff; - -	/* Send command to begin auto page programming */ -	NanD_Command (nand, NAND_CMD_READ0); -	NanD_Command (nand, NAND_CMD_SEQIN); -	if (nand->bus16) { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + (col >> 1)); -	} else { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + col); -	} - -	/* Write out complete page of data */ -	if (nand->bus16) { -		for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) { -			WRITE_NAND (nand->data_buf[i] + -				    (nand->data_buf[i + 1] << 8), -				    nand->IO_ADDR); -		} -	} else { -		for (i = 0; i < (nand->oobblock + nand->oobsize); i++) -			WRITE_NAND (nand->data_buf[i], nand->IO_ADDR); -	} - -	/* Send command to actually program the data */ -	NanD_Command (nand, NAND_CMD_PAGEPROG); -	NanD_Command (nand, NAND_CMD_STATUS); -#ifdef NAND_NO_RB -	{ -		u_char ret_val; - -		do { -			ret_val = READ_NAND (nandptr);	/* wait till ready */ -		} while ((ret_val & 0x40) != 0x40); -	} -#endif -	/* See if device thinks it succeeded */ -	if (READ_NAND (nand->IO_ADDR) & 0x01) { -		printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__, -			page); -		return -1; -	} -#ifdef CONFIG_MTD_NAND_VERIFY_WRITE -	/* -	 * The NAND device assumes that it is always writing to -	 * a cleanly erased page. Hence, it performs its internal -	 * write verification only on bits that transitioned from -	 * 1 to 0. The device does NOT verify the whole page on a -	 * byte by byte basis. It is possible that the page was -	 * not completely erased or the page is becoming unusable -	 * due to wear. The read with ECC would catch the error -	 * later when the ECC page check fails, but we would rather -	 * catch it early in the page write stage. Better to write -	 * no data than invalid data. -	 */ - -	/* Send command to read back the page */ -	if (col < nand->eccsize) -		NanD_Command (nand, NAND_CMD_READ0); -	else -		NanD_Command (nand, NAND_CMD_READ1); -	if (nand->bus16) { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + (col >> 1)); -	} else { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + col);  	} - -	/* Loop through and verify the data */ -	if (nand->bus16) { -		for (i = col; i < last; i = +2) { -			if ((nand->data_buf[i] + -			     (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) { -				printf ("%s: Failed write verify, page 0x%08x ", -					__FUNCTION__, page); -				return -1; -			} -		} -	} else { -		for (i = col; i < last; i++) { -			if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) { -				printf ("%s: Failed write verify, page 0x%08x ", -					__FUNCTION__, page); -				return -1; -			} -		} -	} - -#ifdef CONFIG_MTD_NAND_ECC -	/* -	 * We also want to check that the ECC bytes wrote -	 * correctly for the same reasons stated above. -	 */ -	NanD_Command (nand, NAND_CMD_READOOB); -	if (nand->bus16) { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + (col >> 1)); -	} else { -		NanD_Address (nand, ADDR_COLUMN_PAGE, -			      (page << nand->page_shift) + col); -	} -	if (nand->bus16) { -		for (i = 0; i < nand->oobsize; i += 2) { -			u16 val; - -			val = READ_NAND (nand->IO_ADDR); -			nand->data_buf[i] = val & 0xff; -			nand->data_buf[i + 1] = val >> 8; -		} -	} else { -		for (i = 0; i < nand->oobsize; i++) { -			nand->data_buf[i] = READ_NAND (nand->IO_ADDR); -		} -	} -	for (i = 0; i < ecc_bytes; i++) { -		if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) { -			printf ("%s: Failed ECC write " -				"verify, page 0x%08x, " -				"%6i bytes were succesful\n", -				__FUNCTION__, page, i); -			return -1; -		} -	} -#endif	/* CONFIG_MTD_NAND_ECC */ -#endif	/* CONFIG_MTD_NAND_VERIFY_WRITE */  	return 0;  } -static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, -			   size_t * retlen, const u_char * buf, u_char * ecc_code) -{ -	int i, page, col, cnt, ret = 0; - -	/* Do not allow write past end of device */ -	if ((to + len) > nand->totlen) { -		printf ("%s: Attempt to write past end of page\n", __FUNCTION__); -		return -1; -	} - -	/* Shift to get page */ -	page = ((int) to) >> nand->page_shift; - -	/* Get the starting column */ -	col = to & (nand->oobblock - 1); - -	/* Initialize return length value */ -	*retlen = 0; - -	/* Select the NAND device */ -#ifdef CONFIG_OMAP1510 -	archflashwp(0,0); -#endif -#ifdef CFG_NAND_WP -	NAND_WP_OFF(); -#endif - -    	NAND_ENABLE_CE(nand);  /* set pin low */ - -	/* Check the WP bit */ -	NanD_Command(nand, NAND_CMD_STATUS); -	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { -		printf ("%s: Device is write protected!!!\n", __FUNCTION__); -		ret = -1; -		goto out; -	} - -	/* Loop until all data is written */ -	while (*retlen < len) { -		/* Invalidate cache, if we write to this page */ -		if (nand->cache_page == page) -			nand->cache_page = -1; - -		/* Write data into buffer */ -		if ((col + len) >= nand->oobblock) { -			for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) { -				nand->data_buf[i] = buf[(*retlen + cnt)]; -			} -		} else { -			for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) { -				nand->data_buf[i] = buf[(*retlen + cnt)]; -			} -		} -		/* We use the same function for write and writev !) */ -		ret = nand_write_page (nand, page, col, i, ecc_code); -		if (ret) -			goto out; - -		/* Next data start at page boundary */ -		col = 0; - -		/* Update written bytes count */ -		*retlen += cnt; - -		/* Increment page address */ -		page++; -	} - -	/* Return happy */ -	*retlen = len; - -out: -	/* De-select the NAND device */ -	NAND_DISABLE_CE(nand);  /* set pin high */ -#ifdef CONFIG_OMAP1510 -    	archflashwp(0,1); -#endif -#ifdef CFG_NAND_WP -	NAND_WP_ON(); -#endif - -	return ret; -} - -/* read from the 16 bytes of oob data that correspond to a 512 byte - * page or 2 256-byte pages. - */ -static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, -			 size_t * retlen, u_char * buf) -{ -	int len256 = 0; -	struct Nand *mychip; -	int ret = 0; - -	mychip = &nand->chips[ofs >> nand->chipshift]; - -	/* update address for 2M x 8bit devices. OOB starts on the second */ -	/* page to maintain compatibility with nand_read_ecc. */ -	if (nand->page256) { -		if (!(ofs & 0x8)) -			ofs += 0x100; -		else -			ofs -= 0x8; -	} - -	NAND_ENABLE_CE(nand);  /* set pin low */ -	NanD_Command(nand, NAND_CMD_READOOB); -	if (nand->bus16) { - 		NanD_Address(nand, ADDR_COLUMN_PAGE, -			     ((ofs >> nand->page_shift) << nand->page_shift) + - 				((ofs & (nand->oobblock - 1)) >> 1)); -	} else { -		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); -	} - -	/* treat crossing 8-byte OOB data for 2M x 8bit devices */ -	/* Note: datasheet says it should automaticaly wrap to the */ -	/*       next OOB block, but it didn't work here. mf.      */ -	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { -		len256 = (ofs | 0x7) + 1 - ofs; -		NanD_ReadBuf(nand, buf, len256); - -		NanD_Command(nand, NAND_CMD_READOOB); -		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); -	} - -	NanD_ReadBuf(nand, &buf[len256], len - len256); - -	*retlen = len; -	/* Reading the full OOB data drops us off of the end of the page, -	 * causing the flash device to go into busy mode, so we need -	 * to wait until ready 11.4.1 and Toshiba TC58256FT nands */ - -	ret = NanD_WaitReady(nand, 1); -	NAND_DISABLE_CE(nand);  /* set pin high */ - -	return ret; - -} - -/* write to the 16 bytes of oob data that correspond to a 512 byte - * page or 2 256-byte pages. - */ -static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, -		  size_t * retlen, const u_char * buf) -{ -	int len256 = 0; -	int i; -	unsigned long nandptr = nand->IO_ADDR; - -#ifdef PSYCHO_DEBUG -	printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", -	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3], -	       buf[8], buf[9], buf[14],buf[15]); -#endif - -	NAND_ENABLE_CE(nand);  /* set pin low to enable chip */ - -	/* Reset the chip */ -	NanD_Command(nand, NAND_CMD_RESET); - -	/* issue the Read2 command to set the pointer to the Spare Data Area. */ -	NanD_Command(nand, NAND_CMD_READOOB); -	if (nand->bus16) { - 		NanD_Address(nand, ADDR_COLUMN_PAGE, -			     ((ofs >> nand->page_shift) << nand->page_shift) + - 				((ofs & (nand->oobblock - 1)) >> 1)); -	} else { - 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); -	} - -	/* update address for 2M x 8bit devices. OOB starts on the second */ -	/* page to maintain compatibility with nand_read_ecc. */ -	if (nand->page256) { -		if (!(ofs & 0x8)) -			ofs += 0x100; -		else -			ofs -= 0x8; -	} - -	/* issue the Serial Data In command to initial the Page Program process */ -	NanD_Command(nand, NAND_CMD_SEQIN); -	if (nand->bus16) { - 		NanD_Address(nand, ADDR_COLUMN_PAGE, -			     ((ofs >> nand->page_shift) << nand->page_shift) + - 				((ofs & (nand->oobblock - 1)) >> 1)); -	} else { - 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); -	} - -	/* treat crossing 8-byte OOB data for 2M x 8bit devices */ -	/* Note: datasheet says it should automaticaly wrap to the */ -	/*       next OOB block, but it didn't work here. mf.      */ -	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { -		len256 = (ofs | 0x7) + 1 - ofs; -		for (i = 0; i < len256; i++) -			WRITE_NAND(buf[i], nandptr); - -		NanD_Command(nand, NAND_CMD_PAGEPROG); -		NanD_Command(nand, NAND_CMD_STATUS); -#ifdef NAND_NO_RB -   		{ u_char ret_val; -			do { -				ret_val = READ_NAND(nandptr); /* wait till ready */ -			} while ((ret_val & 0x40) != 0x40); -		} -#endif -		if (READ_NAND(nandptr) & 1) { -			puts ("Error programming oob data\n"); -			/* There was an error */ -			NAND_DISABLE_CE(nand);  /* set pin high */ -			*retlen = 0; -			return -1; -		} -		NanD_Command(nand, NAND_CMD_SEQIN); -		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); -	} - -	if (nand->bus16) { -		for (i = len256; i < len; i += 2) { -			WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr); -		} -	} else { -		for (i = len256; i < len; i++) -			WRITE_NAND(buf[i], nandptr); -	} - -	NanD_Command(nand, NAND_CMD_PAGEPROG); -	NanD_Command(nand, NAND_CMD_STATUS); -#ifdef NAND_NO_RB -	{	u_char ret_val; -		do { -			ret_val = READ_NAND(nandptr); /* wait till ready */ -		} while ((ret_val & 0x40) != 0x40); -	} -#endif -	if (READ_NAND(nandptr) & 1) { -		puts ("Error programming oob data\n"); -		/* There was an error */ -		NAND_DISABLE_CE(nand);  /* set pin high */ -		*retlen = 0; -		return -1; -	} - -	NAND_DISABLE_CE(nand);  /* set pin high */ -	*retlen = len; -	return 0; - -} - -int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean) -{ -	/* This is defined as a structure so it will work on any system -	 * using native endian jffs2 (the default). -	 */ -	static struct jffs2_unknown_node clean_marker = { -		JFFS2_MAGIC_BITMASK, -		JFFS2_NODETYPE_CLEANMARKER, -		8		/* 8 bytes in this node */ -	}; -	unsigned long nandptr; -	struct Nand *mychip; -	int ret = 0; - -	if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) { -		printf ("Offset and size must be sector aligned, erasesize = %d\n", -			(int) nand->erasesize); -		return -1; -	} - -	nandptr = nand->IO_ADDR; - -	/* Select the NAND device */ -#ifdef CONFIG_OMAP1510 -	archflashwp(0,0); -#endif -#ifdef CFG_NAND_WP -	NAND_WP_OFF(); -#endif -    NAND_ENABLE_CE(nand);  /* set pin low */ - -	/* Check the WP bit */ -	NanD_Command(nand, NAND_CMD_STATUS); -	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { -		printf ("nand_write_ecc: Device is write protected!!!\n"); -		ret = -1; -		goto out; -	} - -	/* Check the WP bit */ -	NanD_Command(nand, NAND_CMD_STATUS); -	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { -		printf ("%s: Device is write protected!!!\n", __FUNCTION__); -		ret = -1; -		goto out; -	} - -	/* FIXME: Do nand in the background. Use timers or schedule_task() */ -	while(len) { -		/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/ -		mychip = &nand->chips[ofs >> nand->chipshift]; - -		/* always check for bad block first, genuine bad blocks -		 * should _never_  be erased. -		 */ -		if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) { -			/* Select the NAND device */ -			NAND_ENABLE_CE(nand);  /* set pin low */ - -			NanD_Command(nand, NAND_CMD_ERASE1); -			NanD_Address(nand, ADDR_PAGE, ofs); -			NanD_Command(nand, NAND_CMD_ERASE2); - -			NanD_Command(nand, NAND_CMD_STATUS); - -#ifdef NAND_NO_RB -			{	u_char ret_val; -				do { -					ret_val = READ_NAND(nandptr); /* wait till ready */ -				} while ((ret_val & 0x40) != 0x40); -			} -#endif -			if (READ_NAND(nandptr) & 1) { -				printf ("%s: Error erasing at 0x%lx\n", -					__FUNCTION__, (long)ofs); -				/* There was an error */ -				ret = -1; -				goto out; -			} -			if (clean) { -				int n;	/* return value not used */ -				int p, l; - -				/* clean marker position and size depend -				 * on the page size, since 256 byte pages -				 * only have 8 bytes of oob data -				 */ -				if (nand->page256) { -					p = NAND_JFFS2_OOB8_FSDAPOS; -					l = NAND_JFFS2_OOB8_FSDALEN; -				} else { -					p = NAND_JFFS2_OOB16_FSDAPOS; -					l = NAND_JFFS2_OOB16_FSDALEN; -				} - -				ret = nand_write_oob(nand, ofs + p, l, &n, -						     (u_char *)&clean_marker); -				/* quit here if write failed */ -				if (ret) -					goto out; -			} -		} -		ofs += nand->erasesize; -		len -= nand->erasesize; -	} - -out: -	/* De-select the NAND device */ -	NAND_DISABLE_CE(nand);  /* set pin high */ -#ifdef CONFIG_OMAP1510 -    	archflashwp(0,1); -#endif -#ifdef CFG_NAND_WP -	NAND_WP_ON(); -#endif - -	return ret; -} - -static inline int nandcheck(unsigned long potential, unsigned long physadr) -{ -	return 0; -} - -unsigned long nand_probe(unsigned long physadr) -{ -	struct nand_chip *nand = NULL; -	int i = 0, ChipID = 1; - -#ifdef CONFIG_MTD_NAND_ECC_JFFS2 -	oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0; -	oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1; -	oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2; -	oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3; -	oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4; -	oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5; -	oob_config.eccvalid_pos = 4; -#else -	oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0; -	oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1; -	oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2; -	oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3; -	oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4; -	oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5; -	oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS; -#endif -	oob_config.badblock_pos = 5; - -	for (i=0; i<CFG_MAX_NAND_DEVICE; i++) { -		if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) { -			nand = &nand_dev_desc[i]; -			break; -		} -	} -	if (!nand) -		return (0); - -	memset((char *)nand, 0, sizeof(struct nand_chip)); - -	nand->IO_ADDR = physadr; -	nand->cache_page = -1;  /* init the cache page */ -	NanD_ScanChips(nand); - -	if (nand->totlen == 0) { -		/* no chips found, clean up and quit */ -		memset((char *)nand, 0, sizeof(struct nand_chip)); -		nand->ChipID = NAND_ChipID_UNKNOWN; -		return (0); -	} - -	nand->ChipID = ChipID; -	if (curr_device == -1) -		curr_device = i; - -	nand->data_buf = malloc (nand->oobblock + nand->oobsize); -	if (!nand->data_buf) { -		puts ("Cannot allocate memory for data structures.\n"); -		return (0); -	} - -	return (nand->totlen); -} - -#ifdef CONFIG_MTD_NAND_ECC -/* - * Pre-calculated 256-way 1 byte column parity - */ -static const u_char nand_ecc_precalc_table[] = { -	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, -	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, -	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, -	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, -	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, -	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, -	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, -	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, -	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, -	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, -	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, -	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, -	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, -	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, -	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, -	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, -	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, -	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, -	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, -	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, -	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, -	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, -	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, -	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, -	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, -	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, -	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, -	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, -	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, -	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, -	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, -	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 -}; - - -/* - * Creates non-inverted ECC code from line parity - */ -static void nand_trans_result(u_char reg2, u_char reg3, -	u_char *ecc_code) -{ -	u_char a, b, i, tmp1, tmp2; - -	/* Initialize variables */ -	a = b = 0x80; -	tmp1 = tmp2 = 0; - -	/* Calculate first ECC byte */ -	for (i = 0; i < 4; i++) { -		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */ -			tmp1 |= b; -		b >>= 1; -		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */ -			tmp1 |= b; -		b >>= 1; -		a >>= 1; -	} - -	/* Calculate second ECC byte */ -	b = 0x80; -	for (i = 0; i < 4; i++) { -		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */ -			tmp2 |= b; -		b >>= 1; -		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */ -			tmp2 |= b; -		b >>= 1; -		a >>= 1; -	} - -	/* Store two of the ECC bytes */ -	ecc_code[0] = tmp1; -	ecc_code[1] = tmp2; -} - -/* - * Calculate 3 byte ECC code for 256 byte block - */ -static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) -{ -	u_char idx, reg1, reg3; -	int j; - -	/* Initialize variables */ -	reg1 = reg3 = 0; -	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; - -	/* Build up column parity */ -	for(j = 0; j < 256; j++) { - -		/* Get CP0 - CP5 from table */ -		idx = nand_ecc_precalc_table[dat[j]]; -		reg1 ^= idx; - -		/* All bit XOR = 1 ? */ -		if (idx & 0x40) { -			reg3 ^= (u_char) j; -		} -	} - -	/* Create non-inverted ECC code from line parity */ -	nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code); - -	/* Calculate final ECC code */ -	ecc_code[0] = ~ecc_code[0]; -	ecc_code[1] = ~ecc_code[1]; -	ecc_code[2] = ((~reg1) << 2) | 0x03; -} - -/* - * Detect and correct a 1 bit error for 256 byte block - */ -static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) -{ -	u_char a, b, c, d1, d2, d3, add, bit, i; - -	/* Do error detection */ -	d1 = calc_ecc[0] ^ read_ecc[0]; -	d2 = calc_ecc[1] ^ read_ecc[1]; -	d3 = calc_ecc[2] ^ read_ecc[2]; - -	if ((d1 | d2 | d3) == 0) { -		/* No errors */ -		return 0; -	} else { -		a = (d1 ^ (d1 >> 1)) & 0x55; -		b = (d2 ^ (d2 >> 1)) & 0x55; -		c = (d3 ^ (d3 >> 1)) & 0x54; - -		/* Found and will correct single bit error in the data */ -		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { -			c = 0x80; -			add = 0; -			a = 0x80; -			for (i=0; i<4; i++) { -				if (d1 & c) -					add |= a; -				c >>= 2; -				a >>= 1; -			} -			c = 0x80; -			for (i=0; i<4; i++) { -				if (d2 & c) -					add |= a; -				c >>= 2; -				a >>= 1; -			} -			bit = 0; -			b = 0x04; -			c = 0x80; -			for (i=0; i<3; i++) { -				if (d3 & c) -					bit |= b; -				c >>= 2; -				b >>= 1; -			} -			b = 0x01; -			a = dat[add]; -			a ^= (b << bit); -			dat[add] = a; -			return 1; -		} -		else { -			i = 0; -			while (d1) { -				if (d1 & 0x01) -					++i; -				d1 >>= 1; -			} -			while (d2) { -				if (d2 & 0x01) -					++i; -				d2 >>= 1; -			} -			while (d3) { -				if (d3 & 0x01) -					++i; -				d3 >>= 1; -			} -			if (i == 1) { -				/* ECC Code Error Correction */ -				read_ecc[0] = calc_ecc[0]; -				read_ecc[1] = calc_ecc[1]; -				read_ecc[2] = calc_ecc[2]; -				return 2; -			} -			else { -				/* Uncorrectable Error */ -				return -1; -			} -		} -	} - -	/* Should never happen */ -	return -1; -} - -#endif - -#ifdef CONFIG_JFFS2_NAND - -int read_jffs2_nand(size_t start, size_t len, -		    size_t * retlen, u_char * buf, int nanddev) -{ -	return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2, -		       start, len, retlen, buf); -} +U_BOOT_CMD(nboot, 4, 1, do_nandboot, +	"nboot   - boot from NAND device\n", "loadAddr dev\n"); -#endif /* CONFIG_JFFS2_NAND */ +#endif				/* (CONFIG_COMMANDS & CFG_CMD_NAND) */ -#endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */ diff --git a/drivers/nand/Makefile b/drivers/nand/Makefile new file mode 100644 index 000000000..3906bf951 --- /dev/null +++ b/drivers/nand/Makefile @@ -0,0 +1,17 @@ +include $(TOPDIR)/config.mk + +LIB := libnand.a + +OBJS := nand.o nand_base.o nand_ids.o nand_ecc.o nand_bbt.o +all:	$(LIB) + +$(LIB):	$(OBJS) +	$(AR) crv $@ $(OBJS) + +######################################################################### + +.depend:	Makefile $(OBJS:.o=.c) +		$(CC) -M $(CFLAGS) $(OBJS:.o=.c) > $@ + +sinclude .depend + diff --git a/drivers/nand/diskonchip.c b/drivers/nand/diskonchip.c new file mode 100644 index 000000000..02135c3ac --- /dev/null +++ b/drivers/nand/diskonchip.c @@ -0,0 +1,1782 @@ +/*  + * drivers/mtd/nand/diskonchip.c + * + * (C) 2003 Red Hat, Inc. + * (C) 2004 Dan Brown <dan_brown@ieee.org> + * (C) 2004 Kalev Lember <kalev@smartlink.ee> + * + * Author: David Woodhouse <dwmw2@infradead.org> + * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> + * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> + *  + * Error correction code lifted from the old docecc code + * Author: Fabrice Bellard (fabrice.bellard@netgem.com)  + * Copyright (C) 2000 Netgem S.A. + * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> + *   + * Interface to generic NAND code for M-Systems DiskOnChip devices + * + * $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $ + */ + +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/rslib.h> +#include <linux/moduleparam.h> +#include <asm/io.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/doc2000.h> +#include <linux/mtd/compatmac.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/inftl.h> + +/* Where to look for the devices? */ +#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS +#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0 +#endif + +static unsigned long __initdata doc_locations[] = { +#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) +#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH +	0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,  +	0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, +	0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,  +	0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,  +	0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, +#else /*  CONFIG_MTD_DOCPROBE_HIGH */ +	0xc8000, 0xca000, 0xcc000, 0xce000,  +	0xd0000, 0xd2000, 0xd4000, 0xd6000, +	0xd8000, 0xda000, 0xdc000, 0xde000,  +	0xe0000, 0xe2000, 0xe4000, 0xe6000,  +	0xe8000, 0xea000, 0xec000, 0xee000, +#endif /*  CONFIG_MTD_DOCPROBE_HIGH */ +#elif defined(__PPC__) +	0xe4000000, +#elif defined(CONFIG_MOMENCO_OCELOT) +	0x2f000000, +        0xff000000, +#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C) +        0xff000000, +##else +#warning Unknown architecture for DiskOnChip. No default probe locations defined +#endif +	0xffffffff }; + +static struct mtd_info *doclist = NULL; + +struct doc_priv { +	void __iomem *virtadr; +	unsigned long physadr; +	u_char ChipID; +	u_char CDSNControl; +	int chips_per_floor; /* The number of chips detected on each floor */ +	int curfloor; +	int curchip; +	int mh0_page; +	int mh1_page; +	struct mtd_info *nextdoc; +}; + +/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL +   MediaHeader.  The spec says to just keep going, I think, but that's just +   silly. */ +#define MAX_MEDIAHEADER_SCAN 8 + +/* This is the syndrome computed by the HW ecc generator upon reading an empty +   page, one with all 0xff for data and stored ecc code. */ +static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a }; +/* This is the ecc value computed by the HW ecc generator upon writing an empty +   page, one with all 0xff for data. */ +static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; + +#define INFTL_BBT_RESERVED_BLOCKS 4 + +#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) +#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) +#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) + +static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd); +static void doc200x_select_chip(struct mtd_info *mtd, int chip); + +static int debug=0; +module_param(debug, int, 0); + +static int try_dword=1; +module_param(try_dword, int, 0); + +static int no_ecc_failures=0; +module_param(no_ecc_failures, int, 0); + +#ifdef CONFIG_MTD_PARTITIONS +static int no_autopart=0; +module_param(no_autopart, int, 0); +#endif + +#ifdef MTD_NAND_DISKONCHIP_BBTWRITE +static int inftl_bbt_write=1; +#else +static int inftl_bbt_write=0; +#endif +module_param(inftl_bbt_write, int, 0); + +static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS; +module_param(doc_config_location, ulong, 0); +MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); + + +/* Sector size for HW ECC */ +#define SECTOR_SIZE 512 +/* The sector bytes are packed into NB_DATA 10 bit words */ +#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) +/* Number of roots */ +#define NROOTS 4 +/* First consective root */ +#define FCR 510 +/* Number of symbols */ +#define NN 1023 + +/* the Reed Solomon control structure */ +static struct rs_control *rs_decoder; + +/*  + * The HW decoder in the DoC ASIC's provides us a error syndrome, + * which we must convert to a standard syndrom usable by the generic + * Reed-Solomon library code. + * + * Fabrice Bellard figured this out in the old docecc code. I added + * some comments, improved a minor bit and converted it to make use + * of the generic Reed-Solomon libary. tglx + */ +static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc) +{ +	int i, j, nerr, errpos[8]; +	uint8_t parity; +	uint16_t ds[4], s[5], tmp, errval[8], syn[4]; + +	/* Convert the ecc bytes into words */ +	ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); +	ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); +	ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); +	ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); +	parity = ecc[1]; + +	/* Initialize the syndrom buffer */ +	for (i = 0; i < NROOTS; i++) +		s[i] = ds[0]; +	/*  +	 *  Evaluate  +	 *  s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] +	 *  where x = alpha^(FCR + i) +	 */ +	for(j = 1; j < NROOTS; j++) { +		if(ds[j] == 0) +			continue; +		tmp = rs->index_of[ds[j]]; +		for(i = 0; i < NROOTS; i++) +			s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; +	} + +	/* Calc s[i] = s[i] / alpha^(v + i) */ +	for (i = 0; i < NROOTS; i++) { +		if (syn[i]) + 			syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); +	} +	/* Call the decoder library */ +	nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); + +	/* Incorrectable errors ? */ +	if (nerr < 0) +		return nerr; + +	/*  +	 * Correct the errors. The bitpositions are a bit of magic, +	 * but they are given by the design of the de/encoder circuit +	 * in the DoC ASIC's. +	 */ +	for(i = 0;i < nerr; i++) { +		int index, bitpos, pos = 1015 - errpos[i]; +		uint8_t val; +		if (pos >= NB_DATA && pos < 1019) +			continue; +		if (pos < NB_DATA) { +			/* extract bit position (MSB first) */ +			pos = 10 * (NB_DATA - 1 - pos) - 6; +			/* now correct the following 10 bits. At most two bytes +			   can be modified since pos is even */ +			index = (pos >> 3) ^ 1; +			bitpos = pos & 7; +			if ((index >= 0 && index < SECTOR_SIZE) ||  +			    index == (SECTOR_SIZE + 1)) { +				val = (uint8_t) (errval[i] >> (2 + bitpos)); +				parity ^= val; +				if (index < SECTOR_SIZE) +					data[index] ^= val; +			} +			index = ((pos >> 3) + 1) ^ 1; +			bitpos = (bitpos + 10) & 7; +			if (bitpos == 0) +				bitpos = 8; +			if ((index >= 0 && index < SECTOR_SIZE) ||  +			    index == (SECTOR_SIZE + 1)) { +				val = (uint8_t)(errval[i] << (8 - bitpos)); +				parity ^= val; +				if (index < SECTOR_SIZE) +					data[index] ^= val; +			} +		} +	} +	/* If the parity is wrong, no rescue possible */ +	return parity ? -1 : nerr; +} + +static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) +{ +	volatile char dummy; +	int i; +	 +	for (i = 0; i < cycles; i++) { +		if (DoC_is_Millennium(doc)) +			dummy = ReadDOC(doc->virtadr, NOP); +		else if (DoC_is_MillenniumPlus(doc)) +			dummy = ReadDOC(doc->virtadr, Mplus_NOP); +		else +			dummy = ReadDOC(doc->virtadr, DOCStatus); +	} +	 +} + +#define CDSN_CTRL_FR_B_MASK	(CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) + +/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ +static int _DoC_WaitReady(struct doc_priv *doc) +{ +        void __iomem *docptr = doc->virtadr; +	unsigned long timeo = jiffies + (HZ * 10); + +	if(debug) printk("_DoC_WaitReady...\n"); +	/* Out-of-line routine to wait for chip response */ +	if (DoC_is_MillenniumPlus(doc)) { +		while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { +			if (time_after(jiffies, timeo)) { +				printk("_DoC_WaitReady timed out.\n"); +				return -EIO; +			} +			udelay(1); +			cond_resched(); +		} +	} else { +		while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { +			if (time_after(jiffies, timeo)) { +				printk("_DoC_WaitReady timed out.\n"); +				return -EIO; +			} +			udelay(1); +			cond_resched(); +		} +	} + +	return 0; +} + +static inline int DoC_WaitReady(struct doc_priv *doc) +{ +        void __iomem *docptr = doc->virtadr; +	int ret = 0; + +	if (DoC_is_MillenniumPlus(doc)) { +		DoC_Delay(doc, 4); + +		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) +			/* Call the out-of-line routine to wait */ +			ret = _DoC_WaitReady(doc); +	} else { +		DoC_Delay(doc, 4); + +		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) +			/* Call the out-of-line routine to wait */ +			ret = _DoC_WaitReady(doc); +		DoC_Delay(doc, 2); +	} + +	if(debug) printk("DoC_WaitReady OK\n"); +	return ret; +} + +static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; + +	if(debug)printk("write_byte %02x\n", datum); +	WriteDOC(datum, docptr, CDSNSlowIO); +	WriteDOC(datum, docptr, 2k_CDSN_IO); +} + +static u_char doc2000_read_byte(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	u_char ret; + +	ReadDOC(docptr, CDSNSlowIO); +	DoC_Delay(doc, 2); +	ret = ReadDOC(docptr, 2k_CDSN_IO); +	if (debug) printk("read_byte returns %02x\n", ret); +	return ret; +} + +static void doc2000_writebuf(struct mtd_info *mtd,  +			     const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int i; +	if (debug)printk("writebuf of %d bytes: ", len); +	for (i=0; i < len; i++) { +		WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); +		if (debug && i < 16) +			printk("%02x ", buf[i]); +	} +	if (debug) printk("\n"); +} + +static void doc2000_readbuf(struct mtd_info *mtd,  +			    u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; + 	int i; + +	if (debug)printk("readbuf of %d bytes: ", len); + +	for (i=0; i < len; i++) { +		buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); +	} +} + +static void doc2000_readbuf_dword(struct mtd_info *mtd,  +			    u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; + 	int i; + +	if (debug) printk("readbuf_dword of %d bytes: ", len); + +	if (unlikely((((unsigned long)buf)|len) & 3)) { +		for (i=0; i < len; i++) { +			*(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); +		} +	} else { +		for (i=0; i < len; i+=4) { +			*(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); +		} +	} +} + +static int doc2000_verifybuf(struct mtd_info *mtd,  +			      const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int i; + +	for (i=0; i < len; i++) +		if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO)) +			return -EFAULT; +	return 0; +} + +static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	uint16_t ret; + +	doc200x_select_chip(mtd, nr); +	doc200x_hwcontrol(mtd, NAND_CTL_SETCLE); +	this->write_byte(mtd, NAND_CMD_READID); +	doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE); +	doc200x_hwcontrol(mtd, NAND_CTL_SETALE); +	this->write_byte(mtd, 0); +	doc200x_hwcontrol(mtd, NAND_CTL_CLRALE); + +	ret = this->read_byte(mtd) << 8; +	ret |= this->read_byte(mtd); + +	if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { +		/* First chip probe. See if we get same results by 32-bit access */ +		union { +			uint32_t dword; +			uint8_t byte[4]; +		} ident; +		void __iomem *docptr = doc->virtadr; + +		doc200x_hwcontrol(mtd, NAND_CTL_SETCLE); +		doc2000_write_byte(mtd, NAND_CMD_READID); +		doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE); +		doc200x_hwcontrol(mtd, NAND_CTL_SETALE); +		doc2000_write_byte(mtd, 0); +		doc200x_hwcontrol(mtd, NAND_CTL_CLRALE); + +		ident.dword = readl(docptr + DoC_2k_CDSN_IO); +		if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { +			printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); +			this->read_buf = &doc2000_readbuf_dword; +		} +	} +		 +	return ret; +} + +static void __init doc2000_count_chips(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	uint16_t mfrid; +	int i; + +	/* Max 4 chips per floor on DiskOnChip 2000 */ +	doc->chips_per_floor = 4; + +	/* Find out what the first chip is */ +	mfrid = doc200x_ident_chip(mtd, 0); + +	/* Find how many chips in each floor. */ +	for (i = 1; i < 4; i++) { +		if (doc200x_ident_chip(mtd, i) != mfrid) +			break; +	} +	doc->chips_per_floor = i; +	printk(KERN_DEBUG "Detected %d chips per floor.\n", i); +} + +static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state) +{ +	struct doc_priv *doc = this->priv; + +	int status; +	 +	DoC_WaitReady(doc); +	this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); +	DoC_WaitReady(doc); +	status = (int)this->read_byte(mtd); + +	return status; +} + +static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; + +	WriteDOC(datum, docptr, CDSNSlowIO); +	WriteDOC(datum, docptr, Mil_CDSN_IO); +	WriteDOC(datum, docptr, WritePipeTerm); +} + +static u_char doc2001_read_byte(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; + +	//ReadDOC(docptr, CDSNSlowIO); +	/* 11.4.5 -- delay twice to allow extended length cycle */ +	DoC_Delay(doc, 2); +	ReadDOC(docptr, ReadPipeInit); +	//return ReadDOC(docptr, Mil_CDSN_IO); +	return ReadDOC(docptr, LastDataRead); +} + +static void doc2001_writebuf(struct mtd_info *mtd,  +			     const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int i; + +	for (i=0; i < len; i++) +		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); +	/* Terminate write pipeline */ +	WriteDOC(0x00, docptr, WritePipeTerm); +} + +static void doc2001_readbuf(struct mtd_info *mtd,  +			    u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int i; + +	/* Start read pipeline */ +	ReadDOC(docptr, ReadPipeInit); + +	for (i=0; i < len-1; i++) +		buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); + +	/* Terminate read pipeline */ +	buf[i] = ReadDOC(docptr, LastDataRead); +} + +static int doc2001_verifybuf(struct mtd_info *mtd,  +			     const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int i; + +	/* Start read pipeline */ +	ReadDOC(docptr, ReadPipeInit); + +	for (i=0; i < len-1; i++) +		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { +			ReadDOC(docptr, LastDataRead); +			return i; +		} +	if (buf[i] != ReadDOC(docptr, LastDataRead)) +		return i; +	return 0; +} + +static u_char doc2001plus_read_byte(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	u_char ret; + +        ReadDOC(docptr, Mplus_ReadPipeInit); +        ReadDOC(docptr, Mplus_ReadPipeInit); +        ret = ReadDOC(docptr, Mplus_LastDataRead); +	if (debug) printk("read_byte returns %02x\n", ret); +	return ret; +} + +static void doc2001plus_writebuf(struct mtd_info *mtd,  +			     const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int i; + +	if (debug)printk("writebuf of %d bytes: ", len); +	for (i=0; i < len; i++) { +		WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); +		if (debug && i < 16) +			printk("%02x ", buf[i]); +	} +	if (debug) printk("\n"); +} + +static void doc2001plus_readbuf(struct mtd_info *mtd,  +			    u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int i; + +	if (debug)printk("readbuf of %d bytes: ", len); + +	/* Start read pipeline */ +	ReadDOC(docptr, Mplus_ReadPipeInit); +	ReadDOC(docptr, Mplus_ReadPipeInit); + +	for (i=0; i < len-2; i++) { +		buf[i] = ReadDOC(docptr, Mil_CDSN_IO); +		if (debug && i < 16) +			printk("%02x ", buf[i]); +	} + +	/* Terminate read pipeline */ +	buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead); +	if (debug && i < 16) +		printk("%02x ", buf[len-2]); +	buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead); +	if (debug && i < 16) +		printk("%02x ", buf[len-1]); +	if (debug) printk("\n"); +} + +static int doc2001plus_verifybuf(struct mtd_info *mtd,  +			     const u_char *buf, int len) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int i; + +	if (debug)printk("verifybuf of %d bytes: ", len); + +	/* Start read pipeline */ +	ReadDOC(docptr, Mplus_ReadPipeInit); +	ReadDOC(docptr, Mplus_ReadPipeInit); + +	for (i=0; i < len-2; i++) +		if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { +			ReadDOC(docptr, Mplus_LastDataRead); +			ReadDOC(docptr, Mplus_LastDataRead); +			return i; +		} +	if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead)) +		return len-2; +	if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead)) +		return len-1; +	return 0; +} + +static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int floor = 0; + +	if(debug)printk("select chip (%d)\n", chip); + +	if (chip == -1) { +		/* Disable flash internally */ +		WriteDOC(0, docptr, Mplus_FlashSelect); +		return; +	} + +	floor = chip / doc->chips_per_floor; +	chip -= (floor *  doc->chips_per_floor); + +	/* Assert ChipEnable and deassert WriteProtect */ +	WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); +	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + +	doc->curchip = chip; +	doc->curfloor = floor; +} + +static void doc200x_select_chip(struct mtd_info *mtd, int chip) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int floor = 0; + +	if(debug)printk("select chip (%d)\n", chip); + +	if (chip == -1) +		return; + +	floor = chip / doc->chips_per_floor; +	chip -= (floor *  doc->chips_per_floor); + +	/* 11.4.4 -- deassert CE before changing chip */ +	doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE); + +	WriteDOC(floor, docptr, FloorSelect); +	WriteDOC(chip, docptr, CDSNDeviceSelect); + +	doc200x_hwcontrol(mtd, NAND_CTL_SETNCE); + +	doc->curchip = chip; +	doc->curfloor = floor; +} + +static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; + +	switch(cmd) { +	case NAND_CTL_SETNCE: +		doc->CDSNControl |= CDSN_CTRL_CE; +		break; +	case NAND_CTL_CLRNCE: +		doc->CDSNControl &= ~CDSN_CTRL_CE; +		break; +	case NAND_CTL_SETCLE: +		doc->CDSNControl |= CDSN_CTRL_CLE; +		break; +	case NAND_CTL_CLRCLE: +		doc->CDSNControl &= ~CDSN_CTRL_CLE; +		break; +	case NAND_CTL_SETALE: +		doc->CDSNControl |= CDSN_CTRL_ALE; +		break; +	case NAND_CTL_CLRALE: +		doc->CDSNControl &= ~CDSN_CTRL_ALE; +		break; +	case NAND_CTL_SETWP: +		doc->CDSNControl |= CDSN_CTRL_WP; +		break; +	case NAND_CTL_CLRWP: +		doc->CDSNControl &= ~CDSN_CTRL_WP; +		break; +	} +	if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); +	WriteDOC(doc->CDSNControl, docptr, CDSNControl); +	/* 11.4.3 -- 4 NOPs after CSDNControl write */ +	DoC_Delay(doc, 4); +} + +static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; + +	/* +	 * Must terminate write pipeline before sending any commands +	 * to the device. +	 */ +	if (command == NAND_CMD_PAGEPROG) { +		WriteDOC(0x00, docptr, Mplus_WritePipeTerm); +		WriteDOC(0x00, docptr, Mplus_WritePipeTerm); +	} + +	/* +	 * Write out the command to the device. +	 */ +	if (command == NAND_CMD_SEQIN) { +		int readcmd; + +		if (column >= mtd->oobblock) { +			/* OOB area */ +			column -= mtd->oobblock; +			readcmd = NAND_CMD_READOOB; +		} else if (column < 256) { +			/* First 256 bytes --> READ0 */ +			readcmd = NAND_CMD_READ0; +		} else { +			column -= 256; +			readcmd = NAND_CMD_READ1; +		} +		WriteDOC(readcmd, docptr, Mplus_FlashCmd); +	} +	WriteDOC(command, docptr, Mplus_FlashCmd); +	WriteDOC(0, docptr, Mplus_WritePipeTerm); +	WriteDOC(0, docptr, Mplus_WritePipeTerm); + +	if (column != -1 || page_addr != -1) { +		/* Serially input address */ +		if (column != -1) { +			/* Adjust columns for 16 bit buswidth */ +			if (this->options & NAND_BUSWIDTH_16) +				column >>= 1; +			WriteDOC(column, docptr, Mplus_FlashAddress); +		} +		if (page_addr != -1) { +			WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress); +			WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); +			/* One more address cycle for higher density devices */ +			if (this->chipsize & 0x0c000000) { +				WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); +				printk("high density\n"); +			} +		} +		WriteDOC(0, docptr, Mplus_WritePipeTerm); +		WriteDOC(0, docptr, Mplus_WritePipeTerm); +		/* deassert ALE */ +		if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID) +			WriteDOC(0, docptr, Mplus_FlashControl); +	} + +	/*  +	 * program and erase have their own busy handlers +	 * status and sequential in needs no delay +	*/ +	switch (command) { + +	case NAND_CMD_PAGEPROG: +	case NAND_CMD_ERASE1: +	case NAND_CMD_ERASE2: +	case NAND_CMD_SEQIN: +	case NAND_CMD_STATUS: +		return; + +	case NAND_CMD_RESET: +		if (this->dev_ready) +			break; +		udelay(this->chip_delay); +		WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); +		WriteDOC(0, docptr, Mplus_WritePipeTerm); +		WriteDOC(0, docptr, Mplus_WritePipeTerm); +		while ( !(this->read_byte(mtd) & 0x40)); +		return; + +	/* This applies to read commands */ +	default: +		/*  +		 * If we don't have access to the busy pin, we apply the given +		 * command delay +		*/ +		if (!this->dev_ready) { +			udelay (this->chip_delay); +			return; +		} +	} + +	/* Apply this short delay always to ensure that we do wait tWB in +	 * any case on any machine. */ +	ndelay (100); +	/* wait until command is processed */ +	while (!this->dev_ready(mtd)); +} + +static int doc200x_dev_ready(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; + +	if (DoC_is_MillenniumPlus(doc)) { +		/* 11.4.2 -- must NOP four times before checking FR/B# */ +		DoC_Delay(doc, 4); +		if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { +			if(debug) +				printk("not ready\n"); +			return 0; +		} +		if (debug)printk("was ready\n"); +		return 1; +	} else { +		/* 11.4.2 -- must NOP four times before checking FR/B# */ +		DoC_Delay(doc, 4); +		if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { +			if(debug) +				printk("not ready\n"); +			return 0; +		} +		/* 11.4.2 -- Must NOP twice if it's ready */ +		DoC_Delay(doc, 2); +		if (debug)printk("was ready\n"); +		return 1; +	} +} + +static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ +	/* This is our last resort if we couldn't find or create a BBT.  Just +	   pretend all blocks are good. */ +	return 0; +} + +static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; + +	/* Prime the ECC engine */ +	switch(mode) { +	case NAND_ECC_READ: +		WriteDOC(DOC_ECC_RESET, docptr, ECCConf); +		WriteDOC(DOC_ECC_EN, docptr, ECCConf); +		break; +	case NAND_ECC_WRITE: +		WriteDOC(DOC_ECC_RESET, docptr, ECCConf); +		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); +		break; +	} +} + +static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; + +	/* Prime the ECC engine */ +	switch(mode) { +	case NAND_ECC_READ: +		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); +		WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); +		break; +	case NAND_ECC_WRITE: +		WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); +		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); +		break; +	} +} + +/* This code is only called on write */ +static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, +				 unsigned char *ecc_code) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	int i; +	int emptymatch = 1; + +	/* flush the pipeline */ +	if (DoC_is_2000(doc)) { +		WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); +		WriteDOC(0, docptr, 2k_CDSN_IO); +		WriteDOC(0, docptr, 2k_CDSN_IO); +		WriteDOC(0, docptr, 2k_CDSN_IO); +		WriteDOC(doc->CDSNControl, docptr, CDSNControl); +	} else if (DoC_is_MillenniumPlus(doc)) { +		WriteDOC(0, docptr, Mplus_NOP); +		WriteDOC(0, docptr, Mplus_NOP); +		WriteDOC(0, docptr, Mplus_NOP); +	} else { +		WriteDOC(0, docptr, NOP); +		WriteDOC(0, docptr, NOP); +		WriteDOC(0, docptr, NOP); +	} + +	for (i = 0; i < 6; i++) { +		if (DoC_is_MillenniumPlus(doc)) +			ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); +		else  +			ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); +		if (ecc_code[i] != empty_write_ecc[i]) +			emptymatch = 0; +	} +	if (DoC_is_MillenniumPlus(doc)) +		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); +	else +		WriteDOC(DOC_ECC_DIS, docptr, ECCConf); +#if 0 +	/* If emptymatch=1, we might have an all-0xff data buffer.  Check. */ +	if (emptymatch) { +		/* Note: this somewhat expensive test should not be triggered +		   often.  It could be optimized away by examining the data in +		   the writebuf routine, and remembering the result. */ +		for (i = 0; i < 512; i++) { +			if (dat[i] == 0xff) continue; +			emptymatch = 0; +			break; +		} +	} +	/* If emptymatch still =1, we do have an all-0xff data buffer. +	   Return all-0xff ecc value instead of the computed one, so +	   it'll look just like a freshly-erased page. */ +	if (emptymatch) memset(ecc_code, 0xff, 6); +#endif +	return 0; +} + +static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) +{ +	int i, ret = 0; +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +        void __iomem *docptr = doc->virtadr; +	volatile u_char dummy; +	int emptymatch = 1; +	 +	/* flush the pipeline */ +	if (DoC_is_2000(doc)) { +		dummy = ReadDOC(docptr, 2k_ECCStatus); +		dummy = ReadDOC(docptr, 2k_ECCStatus); +		dummy = ReadDOC(docptr, 2k_ECCStatus); +	} else if (DoC_is_MillenniumPlus(doc)) { +		dummy = ReadDOC(docptr, Mplus_ECCConf); +		dummy = ReadDOC(docptr, Mplus_ECCConf); +		dummy = ReadDOC(docptr, Mplus_ECCConf); +	} else { +		dummy = ReadDOC(docptr, ECCConf); +		dummy = ReadDOC(docptr, ECCConf); +		dummy = ReadDOC(docptr, ECCConf); +	} +	 +	/* Error occured ? */ +	if (dummy & 0x80) { +		for (i = 0; i < 6; i++) { +			if (DoC_is_MillenniumPlus(doc)) +				calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); +			else +				calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); +			if (calc_ecc[i] != empty_read_syndrome[i]) +				emptymatch = 0; +		} +		/* If emptymatch=1, the read syndrome is consistent with an +		   all-0xff data and stored ecc block.  Check the stored ecc. */ +		if (emptymatch) { +			for (i = 0; i < 6; i++) { +				if (read_ecc[i] == 0xff) continue; +				emptymatch = 0; +				break; +			} +		} +		/* If emptymatch still =1, check the data block. */ +		if (emptymatch) { +		/* Note: this somewhat expensive test should not be triggered +		   often.  It could be optimized away by examining the data in +		   the readbuf routine, and remembering the result. */ +			for (i = 0; i < 512; i++) { +				if (dat[i] == 0xff) continue; +				emptymatch = 0; +				break; +			} +		} +		/* If emptymatch still =1, this is almost certainly a freshly- +		   erased block, in which case the ECC will not come out right. +		   We'll suppress the error and tell the caller everything's +		   OK.  Because it is. */ +		if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc); +		if (ret > 0) +			printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); +	}	 +	if (DoC_is_MillenniumPlus(doc)) +		WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); +	else +		WriteDOC(DOC_ECC_DIS, docptr, ECCConf); +	if (no_ecc_failures && (ret == -1)) { +		printk(KERN_ERR "suppressing ECC failure\n"); +		ret = 0; +	} +	return ret; +} +		 +//u_char mydatabuf[528]; + +static struct nand_oobinfo doc200x_oobinfo = { +        .useecc = MTD_NANDECC_AUTOPLACE, +        .eccbytes = 6, +        .eccpos = {0, 1, 2, 3, 4, 5}, +        .oobfree = { {8, 8} } +}; +  +/* Find the (I)NFTL Media Header, and optionally also the mirror media header. +   On sucessful return, buf will contain a copy of the media header for +   further processing.  id is the string to scan for, and will presumably be +   either "ANAND" or "BNAND".  If findmirror=1, also look for the mirror media +   header.  The page #s of the found media headers are placed in mh0_page and +   mh1_page in the DOC private structure. */ +static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, +				     const char *id, int findmirror) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift); +	int ret; +	size_t retlen; + +	end = min(end, mtd->size); // paranoia +	for (offs = 0; offs < end; offs += mtd->erasesize) { +		ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf); +		if (retlen != mtd->oobblock) continue; +		if (ret) { +			printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", +				offs); +		} +		if (memcmp(buf, id, 6)) continue; +		printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); +		if (doc->mh0_page == -1) { +			doc->mh0_page = offs >> this->page_shift; +			if (!findmirror) return 1; +			continue; +		} +		doc->mh1_page = offs >> this->page_shift; +		return 2; +	} +	if (doc->mh0_page == -1) { +		printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); +		return 0; +	} +	/* Only one mediaheader was found.  We want buf to contain a +	   mediaheader on return, so we'll have to re-read the one we found. */ +	offs = doc->mh0_page << this->page_shift; +	ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf); +	if (retlen != mtd->oobblock) { +		/* Insanity.  Give up. */ +		printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); +		return 0; +	} +	return 1; +} + +static inline int __init nftl_partscan(struct mtd_info *mtd, +				struct mtd_partition *parts) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	int ret = 0; +	u_char *buf; +	struct NFTLMediaHeader *mh; +	const unsigned psize = 1 << this->page_shift; +	unsigned blocks, maxblocks; +	int offs, numheaders; + +	buf = kmalloc(mtd->oobblock, GFP_KERNEL); +	if (!buf) { +		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); +		return 0; +	} +	if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out; +	mh = (struct NFTLMediaHeader *) buf; + +//#ifdef CONFIG_MTD_DEBUG_VERBOSE +//	if (CONFIG_MTD_DEBUG_VERBOSE >= 2) +	printk(KERN_INFO "    DataOrgID        = %s\n" +			 "    NumEraseUnits    = %d\n" +			 "    FirstPhysicalEUN = %d\n" +			 "    FormattedSize    = %d\n" +			 "    UnitSizeFactor   = %d\n", +		mh->DataOrgID, mh->NumEraseUnits, +		mh->FirstPhysicalEUN, mh->FormattedSize, +		mh->UnitSizeFactor); +//#endif + +	blocks = mtd->size >> this->phys_erase_shift; +	maxblocks = min(32768U, mtd->erasesize - psize); + +	if (mh->UnitSizeFactor == 0x00) { +		/* Auto-determine UnitSizeFactor.  The constraints are: +		   - There can be at most 32768 virtual blocks. +		   - There can be at most (virtual block size - page size) +		     virtual blocks (because MediaHeader+BBT must fit in 1). +		*/ +		mh->UnitSizeFactor = 0xff; +		while (blocks > maxblocks) { +			blocks >>= 1; +			maxblocks = min(32768U, (maxblocks << 1) + psize); +			mh->UnitSizeFactor--; +		} +		printk(KERN_WARNING "UnitSizeFactor=0x00 detected.  Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); +	} + +	/* NOTE: The lines below modify internal variables of the NAND and MTD +	   layers; variables with have already been configured by nand_scan. +	   Unfortunately, we didn't know before this point what these values +	   should be.  Thus, this code is somewhat dependant on the exact +	   implementation of the NAND layer.  */ +	if (mh->UnitSizeFactor != 0xff) { +		this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); +		mtd->erasesize <<= (0xff - mh->UnitSizeFactor); +		printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); +		blocks = mtd->size >> this->bbt_erase_shift; +		maxblocks = min(32768U, mtd->erasesize - psize); +	} + +	if (blocks > maxblocks) { +		printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size.  Aborting.\n", mh->UnitSizeFactor); +		goto out; +	} + +	/* Skip past the media headers. */ +	offs = max(doc->mh0_page, doc->mh1_page); +	offs <<= this->page_shift; +	offs += mtd->erasesize; + +	//parts[0].name = " DiskOnChip Boot / Media Header partition"; +	//parts[0].offset = 0; +	//parts[0].size = offs; + +	parts[0].name = " DiskOnChip BDTL partition"; +	parts[0].offset = offs; +	parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; + +	offs += parts[0].size; +	if (offs < mtd->size) { +		parts[1].name = " DiskOnChip Remainder partition"; +		parts[1].offset = offs; +		parts[1].size = mtd->size - offs; +		ret = 2; +		goto out; +	} +	ret = 1; +out: +	kfree(buf); +	return ret; +} + +/* This is a stripped-down copy of the code in inftlmount.c */ +static inline int __init inftl_partscan(struct mtd_info *mtd, +				 struct mtd_partition *parts) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	int ret = 0; +	u_char *buf; +	struct INFTLMediaHeader *mh; +	struct INFTLPartition *ip; +	int numparts = 0; +	int blocks; +	int vshift, lastvunit = 0; +	int i; +	int end = mtd->size; + +	if (inftl_bbt_write) +		end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); + +	buf = kmalloc(mtd->oobblock, GFP_KERNEL); +	if (!buf) { +		printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); +		return 0; +	} + +	if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out; +	doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); +	mh = (struct INFTLMediaHeader *) buf; + +	mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks); +	mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions); +	mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions); +	mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits); +	mh->FormatFlags = le32_to_cpu(mh->FormatFlags); +	mh->PercentUsed = le32_to_cpu(mh->PercentUsed); +  +//#ifdef CONFIG_MTD_DEBUG_VERBOSE +//	if (CONFIG_MTD_DEBUG_VERBOSE >= 2) +	printk(KERN_INFO "    bootRecordID          = %s\n" +			 "    NoOfBootImageBlocks   = %d\n" +			 "    NoOfBinaryPartitions  = %d\n" +			 "    NoOfBDTLPartitions    = %d\n" +			 "    BlockMultiplerBits    = %d\n" +			 "    FormatFlgs            = %d\n" +			 "    OsakVersion           = %d.%d.%d.%d\n" +			 "    PercentUsed           = %d\n", +		mh->bootRecordID, mh->NoOfBootImageBlocks, +		mh->NoOfBinaryPartitions, +		mh->NoOfBDTLPartitions, +		mh->BlockMultiplierBits, mh->FormatFlags, +		((unsigned char *) &mh->OsakVersion)[0] & 0xf, +		((unsigned char *) &mh->OsakVersion)[1] & 0xf, +		((unsigned char *) &mh->OsakVersion)[2] & 0xf, +		((unsigned char *) &mh->OsakVersion)[3] & 0xf, +		mh->PercentUsed); +//#endif + +	vshift = this->phys_erase_shift + mh->BlockMultiplierBits; + +	blocks = mtd->size >> vshift; +	if (blocks > 32768) { +		printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size.  Aborting.\n", mh->BlockMultiplierBits); +		goto out; +	} + +	blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); +	if (inftl_bbt_write && (blocks > mtd->erasesize)) { +		printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported.  FIX ME!\n"); +		goto out; +	} + +	/* Scan the partitions */ +	for (i = 0; (i < 4); i++) { +		ip = &(mh->Partitions[i]); +		ip->virtualUnits = le32_to_cpu(ip->virtualUnits); +		ip->firstUnit = le32_to_cpu(ip->firstUnit); +		ip->lastUnit = le32_to_cpu(ip->lastUnit); +		ip->flags = le32_to_cpu(ip->flags); +		ip->spareUnits = le32_to_cpu(ip->spareUnits); +		ip->Reserved0 = le32_to_cpu(ip->Reserved0); + +//#ifdef CONFIG_MTD_DEBUG_VERBOSE +//		if (CONFIG_MTD_DEBUG_VERBOSE >= 2) +		printk(KERN_INFO	"    PARTITION[%d] ->\n" +			"        virtualUnits    = %d\n" +			"        firstUnit       = %d\n" +			"        lastUnit        = %d\n" +			"        flags           = 0x%x\n" +			"        spareUnits      = %d\n", +			i, ip->virtualUnits, ip->firstUnit, +			ip->lastUnit, ip->flags, +			ip->spareUnits); +//#endif + +/* +		if ((i == 0) && (ip->firstUnit > 0)) { +			parts[0].name = " DiskOnChip IPL / Media Header partition"; +			parts[0].offset = 0; +			parts[0].size = mtd->erasesize * ip->firstUnit; +			numparts = 1; +		} +*/ + +		if (ip->flags & INFTL_BINARY) +			parts[numparts].name = " DiskOnChip BDK partition"; +		else +			parts[numparts].name = " DiskOnChip BDTL partition"; +		parts[numparts].offset = ip->firstUnit << vshift; +		parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; +		numparts++; +		if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit; +		if (ip->flags & INFTL_LAST) break; +	} +	lastvunit++; +	if ((lastvunit << vshift) < end) { +		parts[numparts].name = " DiskOnChip Remainder partition"; +		parts[numparts].offset = lastvunit << vshift; +		parts[numparts].size = end - parts[numparts].offset; +		numparts++; +	} +	ret = numparts; +out: +	kfree(buf); +	return ret; +} + +static int __init nftl_scan_bbt(struct mtd_info *mtd) +{ +	int ret, numparts; +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	struct mtd_partition parts[2]; + +	memset((char *) parts, 0, sizeof(parts)); +	/* On NFTL, we have to find the media headers before we can read the +	   BBTs, since they're stored in the media header eraseblocks. */ +	numparts = nftl_partscan(mtd, parts); +	if (!numparts) return -EIO; +	this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | +				NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | +				NAND_BBT_VERSION; +	this->bbt_td->veroffs = 7; +	this->bbt_td->pages[0] = doc->mh0_page + 1; +	if (doc->mh1_page != -1) { +		this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | +					NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | +					NAND_BBT_VERSION; +		this->bbt_md->veroffs = 7; +		this->bbt_md->pages[0] = doc->mh1_page + 1; +	} else { +		this->bbt_md = NULL; +	} + +	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. +	   At least as nand_bbt.c is currently written. */ +	if ((ret = nand_scan_bbt(mtd, NULL))) +		return ret; +	add_mtd_device(mtd); +#ifdef CONFIG_MTD_PARTITIONS +	if (!no_autopart) +		add_mtd_partitions(mtd, parts, numparts); +#endif +	return 0; +} + +static int __init inftl_scan_bbt(struct mtd_info *mtd) +{ +	int ret, numparts; +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; +	struct mtd_partition parts[5]; + +	if (this->numchips > doc->chips_per_floor) { +		printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); +		return -EIO; +	} + +	if (DoC_is_MillenniumPlus(doc)) { +		this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; +		if (inftl_bbt_write) +			this->bbt_td->options |= NAND_BBT_WRITE; +		this->bbt_td->pages[0] = 2; +		this->bbt_md = NULL; +	} else { +		this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | +					NAND_BBT_VERSION; +		if (inftl_bbt_write) +			this->bbt_td->options |= NAND_BBT_WRITE; +		this->bbt_td->offs = 8; +		this->bbt_td->len = 8; +		this->bbt_td->veroffs = 7; +		this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; +		this->bbt_td->reserved_block_code = 0x01; +		this->bbt_td->pattern = "MSYS_BBT"; + +		this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | +					NAND_BBT_VERSION; +		if (inftl_bbt_write) +			this->bbt_md->options |= NAND_BBT_WRITE; +		this->bbt_md->offs = 8; +		this->bbt_md->len = 8; +		this->bbt_md->veroffs = 7; +		this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; +		this->bbt_md->reserved_block_code = 0x01; +		this->bbt_md->pattern = "TBB_SYSM"; +	} + +	/* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. +	   At least as nand_bbt.c is currently written. */ +	if ((ret = nand_scan_bbt(mtd, NULL))) +		return ret; +	memset((char *) parts, 0, sizeof(parts)); +	numparts = inftl_partscan(mtd, parts); +	/* At least for now, require the INFTL Media Header.  We could probably +	   do without it for non-INFTL use, since all it gives us is +	   autopartitioning, but I want to give it more thought. */ +	if (!numparts) return -EIO; +	add_mtd_device(mtd); +#ifdef CONFIG_MTD_PARTITIONS +	if (!no_autopart) +		add_mtd_partitions(mtd, parts, numparts); +#endif +	return 0; +} + +static inline int __init doc2000_init(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; + +	this->write_byte = doc2000_write_byte; +	this->read_byte = doc2000_read_byte; +	this->write_buf = doc2000_writebuf; +	this->read_buf = doc2000_readbuf; +	this->verify_buf = doc2000_verifybuf; +	this->scan_bbt = nftl_scan_bbt; + +	doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; +	doc2000_count_chips(mtd); +	mtd->name = "DiskOnChip 2000 (NFTL Model)"; +	return (4 * doc->chips_per_floor); +} + +static inline int __init doc2001_init(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; + +	this->write_byte = doc2001_write_byte; +	this->read_byte = doc2001_read_byte; +	this->write_buf = doc2001_writebuf; +	this->read_buf = doc2001_readbuf; +	this->verify_buf = doc2001_verifybuf; + +	ReadDOC(doc->virtadr, ChipID); +	ReadDOC(doc->virtadr, ChipID); +	ReadDOC(doc->virtadr, ChipID); +	if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { +		/* It's not a Millennium; it's one of the newer +		   DiskOnChip 2000 units with a similar ASIC.  +		   Treat it like a Millennium, except that it +		   can have multiple chips. */ +		doc2000_count_chips(mtd); +		mtd->name = "DiskOnChip 2000 (INFTL Model)"; +		this->scan_bbt = inftl_scan_bbt; +		return (4 * doc->chips_per_floor); +	} else { +		/* Bog-standard Millennium */ +		doc->chips_per_floor = 1; +		mtd->name = "DiskOnChip Millennium"; +		this->scan_bbt = nftl_scan_bbt; +		return 1; +	} +} + +static inline int __init doc2001plus_init(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	struct doc_priv *doc = this->priv; + +	this->write_byte = NULL; +	this->read_byte = doc2001plus_read_byte; +	this->write_buf = doc2001plus_writebuf; +	this->read_buf = doc2001plus_readbuf; +	this->verify_buf = doc2001plus_verifybuf; +	this->scan_bbt = inftl_scan_bbt; +	this->hwcontrol = NULL; +	this->select_chip = doc2001plus_select_chip; +	this->cmdfunc = doc2001plus_command; +	this->enable_hwecc = doc2001plus_enable_hwecc; + +	doc->chips_per_floor = 1; +	mtd->name = "DiskOnChip Millennium Plus"; + +	return 1; +} + +static inline int __init doc_probe(unsigned long physadr) +{ +	unsigned char ChipID; +	struct mtd_info *mtd; +	struct nand_chip *nand; +	struct doc_priv *doc; +	void __iomem *virtadr; +	unsigned char save_control; +	unsigned char tmp, tmpb, tmpc; +	int reg, len, numchips; +	int ret = 0; + +	virtadr = ioremap(physadr, DOC_IOREMAP_LEN); +	if (!virtadr) { +		printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); +		return -EIO; +	} + +	/* It's not possible to cleanly detect the DiskOnChip - the +	 * bootup procedure will put the device into reset mode, and +	 * it's not possible to talk to it without actually writing +	 * to the DOCControl register. So we store the current contents +	 * of the DOCControl register's location, in case we later decide +	 * that it's not a DiskOnChip, and want to put it back how we +	 * found it.  +	 */ +	save_control = ReadDOC(virtadr, DOCControl); + +	/* Reset the DiskOnChip ASIC */ +	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,  +		 virtadr, DOCControl); +	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,  +		 virtadr, DOCControl); + +	/* Enable the DiskOnChip ASIC */ +	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,  +		 virtadr, DOCControl); +	WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,  +		 virtadr, DOCControl); + +	ChipID = ReadDOC(virtadr, ChipID); + +	switch(ChipID) { +	case DOC_ChipID_Doc2k: +		reg = DoC_2k_ECCStatus; +		break; +	case DOC_ChipID_DocMil: +		reg = DoC_ECCConf; +		break; +	case DOC_ChipID_DocMilPlus16: +	case DOC_ChipID_DocMilPlus32: +	case 0: +		/* Possible Millennium Plus, need to do more checks */ +		/* Possibly release from power down mode */ +		for (tmp = 0; (tmp < 4); tmp++) +			ReadDOC(virtadr, Mplus_Power); + +		/* Reset the Millennium Plus ASIC */ +		tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | +			DOC_MODE_BDECT; +		WriteDOC(tmp, virtadr, Mplus_DOCControl); +		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); + +		mdelay(1); +		/* Enable the Millennium Plus ASIC */ +		tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | +			DOC_MODE_BDECT; +		WriteDOC(tmp, virtadr, Mplus_DOCControl); +		WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); +		mdelay(1); + +		ChipID = ReadDOC(virtadr, ChipID); + +		switch (ChipID) { +		case DOC_ChipID_DocMilPlus16: +			reg = DoC_Mplus_Toggle; +			break; +		case DOC_ChipID_DocMilPlus32: +			printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); +		default: +			ret = -ENODEV; +			goto notfound; +		} +		break; + +	default: +		ret = -ENODEV; +		goto notfound; +	} +	/* Check the TOGGLE bit in the ECC register */ +	tmp  = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; +	tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; +	tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; +	if ((tmp == tmpb) || (tmp != tmpc)) { +		printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); +		ret = -ENODEV; +		goto notfound; +	} + +	for (mtd = doclist; mtd; mtd = doc->nextdoc) { +		unsigned char oldval; +		unsigned char newval; +		nand = mtd->priv; +		doc = nand->priv; +		/* Use the alias resolution register to determine if this is +		   in fact the same DOC aliased to a new address.  If writes +		   to one chip's alias resolution register change the value on +		   the other chip, they're the same chip. */ +		if (ChipID == DOC_ChipID_DocMilPlus16) { +			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); +			newval = ReadDOC(virtadr, Mplus_AliasResolution); +		} else { +			oldval = ReadDOC(doc->virtadr, AliasResolution); +			newval = ReadDOC(virtadr, AliasResolution); +		} +		if (oldval != newval) +			continue; +		if (ChipID == DOC_ChipID_DocMilPlus16) { +			WriteDOC(~newval, virtadr, Mplus_AliasResolution); +			oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); +			WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it +		} else { +			WriteDOC(~newval, virtadr, AliasResolution); +			oldval = ReadDOC(doc->virtadr, AliasResolution); +			WriteDOC(newval, virtadr, AliasResolution); // restore it +		} +		newval = ~newval; +		if (oldval == newval) { +			printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); +			goto notfound; +		} +	} + +	printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); + +	len = sizeof(struct mtd_info) + +	      sizeof(struct nand_chip) + +	      sizeof(struct doc_priv) + +	      (2 * sizeof(struct nand_bbt_descr)); +	mtd =  kmalloc(len, GFP_KERNEL); +	if (!mtd) { +		printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len); +		ret = -ENOMEM; +		goto fail; +	} +	memset(mtd, 0, len); + +	nand			= (struct nand_chip *) (mtd + 1); +	doc			= (struct doc_priv *) (nand + 1); +	nand->bbt_td		= (struct nand_bbt_descr *) (doc + 1); +	nand->bbt_md		= nand->bbt_td + 1; + +	mtd->priv		= nand; +	mtd->owner		= THIS_MODULE; + +	nand->priv		= doc; +	nand->select_chip	= doc200x_select_chip; +	nand->hwcontrol		= doc200x_hwcontrol; +	nand->dev_ready		= doc200x_dev_ready; +	nand->waitfunc		= doc200x_wait; +	nand->block_bad		= doc200x_block_bad; +	nand->enable_hwecc	= doc200x_enable_hwecc; +	nand->calculate_ecc	= doc200x_calculate_ecc; +	nand->correct_data	= doc200x_correct_data; + +	nand->autooob		= &doc200x_oobinfo; +	nand->eccmode		= NAND_ECC_HW6_512; +	nand->options		= NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME; + +	doc->physadr		= physadr; +	doc->virtadr		= virtadr; +	doc->ChipID		= ChipID; +	doc->curfloor		= -1; +	doc->curchip		= -1; +	doc->mh0_page		= -1; +	doc->mh1_page		= -1; +	doc->nextdoc		= doclist; + +	if (ChipID == DOC_ChipID_Doc2k) +		numchips = doc2000_init(mtd); +	else if (ChipID == DOC_ChipID_DocMilPlus16) +		numchips = doc2001plus_init(mtd); +	else +		numchips = doc2001_init(mtd); + +	if ((ret = nand_scan(mtd, numchips))) { +		/* DBB note: i believe nand_release is necessary here, as +		   buffers may have been allocated in nand_base.  Check with +		   Thomas. FIX ME! */ +		/* nand_release will call del_mtd_device, but we haven't yet +		   added it.  This is handled without incident by +		   del_mtd_device, as far as I can tell. */ +		nand_release(mtd); +		kfree(mtd); +		goto fail; +	} + +	/* Success! */ +	doclist = mtd; +	return 0; + +notfound: +	/* Put back the contents of the DOCControl register, in case it's not +	   actually a DiskOnChip.  */ +	WriteDOC(save_control, virtadr, DOCControl); +fail: +	iounmap(virtadr); +	return ret; +} + +static void release_nanddoc(void) +{ + 	struct mtd_info *mtd, *nextmtd; +	struct nand_chip *nand; +	struct doc_priv *doc; + +	for (mtd = doclist; mtd; mtd = nextmtd) { +		nand = mtd->priv; +		doc = nand->priv; + +		nextmtd = doc->nextdoc; +		nand_release(mtd); +		iounmap(doc->virtadr); +		kfree(mtd); +	} +} + +static int __init init_nanddoc(void) +{ +	int i, ret = 0; + +	/* We could create the decoder on demand, if memory is a concern. +	 * This way we have it handy, if an error happens  +	 * +	 * Symbolsize is 10 (bits) +	 * Primitve polynomial is x^10+x^3+1 +	 * first consecutive root is 510 +	 * primitve element to generate roots = 1 +	 * generator polinomial degree = 4 +	 */ +	rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); + 	if (!rs_decoder) { +		printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); +		return -ENOMEM; +	} + +	if (doc_config_location) { +		printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); +		ret = doc_probe(doc_config_location); +		if (ret < 0) +			goto outerr; +	} else { +		for (i=0; (doc_locations[i] != 0xffffffff); i++) { +			doc_probe(doc_locations[i]); +		} +	} +	/* No banner message any more. Print a message if no DiskOnChip +	   found, so the user knows we at least tried. */ +	if (!doclist) { +		printk(KERN_INFO "No valid DiskOnChip devices found\n"); +		ret = -ENODEV; +		goto outerr; +	} +	return 0; +outerr: +	free_rs(rs_decoder); +	return ret; +} + +static void __exit cleanup_nanddoc(void) +{ +	/* Cleanup the nand/DoC resources */ +	release_nanddoc(); + +	/* Free the reed solomon resources */ +	if (rs_decoder) { +		free_rs(rs_decoder); +	} +} + +module_init(init_nanddoc); +module_exit(cleanup_nanddoc); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n"); diff --git a/drivers/nand/nand.c b/drivers/nand/nand.c new file mode 100644 index 000000000..d187c89ea --- /dev/null +++ b/drivers/nand/nand.c @@ -0,0 +1,71 @@ +/* + * (C) Copyright 2005 + * 2N Telekomunikace, a.s. <www.2n.cz> + * Ladislav Michl <michl@2n.cz> + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + */ + +#include <common.h> + +#if (CONFIG_COMMANDS & CFG_CMD_NAND) + +#include <nand.h> + +#ifndef CFG_NAND_BASE_LIST +#define CFG_NAND_BASE_LIST { CFG_NAND_BASE } +#endif + +int nand_curr_device = -1; +nand_info_t nand_info[CFG_MAX_NAND_DEVICE]; + +static struct nand_chip nand_chip[CFG_MAX_NAND_DEVICE]; +static ulong base_address[CFG_MAX_NAND_DEVICE] = CFG_NAND_BASE_LIST; + +static const char default_nand_name[] = "nand"; + +extern void board_nand_init(struct nand_chip *nand); + +static void nand_init_chip(struct mtd_info *mtd, struct nand_chip *nand, +			   ulong base_addr) +{ +	mtd->priv = nand; + +	nand->IO_ADDR_R = nand->IO_ADDR_W = base_addr; +	board_nand_init(nand); + +	if (nand_scan(mtd, 1) == 0) { +		if (!mtd->name) +			mtd->name = default_nand_name; +	} else +		mtd->name = NULL; + +} + +void nand_init(void) +{ +	int i; + +	for (i = 0; i < CFG_MAX_NAND_DEVICE; i++) { +		nand_init_chip(&nand_info[i], &nand_chip[i], base_address[i]); +		if (nand_curr_device == -1) +			nand_curr_device = i; +	} +} + +#endif diff --git a/drivers/nand/nand_base.c b/drivers/nand/nand_base.c new file mode 100644 index 000000000..c423512f1 --- /dev/null +++ b/drivers/nand/nand_base.c @@ -0,0 +1,2630 @@ +/* + *  drivers/mtd/nand.c + * + *  Overview: + *   This is the generic MTD driver for NAND flash devices. It should be + *   capable of working with almost all NAND chips currently available. + *   Basic support for AG-AND chips is provided. + *    + *	Additional technical information is available on + *	http://www.linux-mtd.infradead.org/tech/nand.html + *	 + *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * 		  2002 Thomas Gleixner (tglx@linutronix.de) + * + *  02-08-2004  tglx: support for strange chips, which cannot auto increment  + *		pages on read / read_oob + * + *  03-17-2004  tglx: Check ready before auto increment check. Simon Bayes + *		pointed this out, as he marked an auto increment capable chip + *		as NOAUTOINCR in the board driver. + *		Make reads over block boundaries work too + * + *  04-14-2004	tglx: first working version for 2k page size chips + *   + *  05-19-2004  tglx: Basic support for Renesas AG-AND chips + * + *  09-24-2004  tglx: add support for hardware controllers (e.g. ECC) shared + *		among multiple independend devices. Suggestions and initial patch + *		from Ben Dooks <ben-mtd@fluff.org> + * + * Credits: + *	David Woodhouse for adding multichip support   + *	 + *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the + *	rework for 2K page size chips + * + * TODO: + *	Enable cached programming for 2k page size chips + *	Check, if mtd->ecctype should be set to MTD_ECC_HW + *	if we have HW ecc support. + *	The AG-AND chips have nice features for speed improvement, + *	which are not supported yet. Read / program 4 pages in one go. + * + * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +/* XXX U-BOOT XXX */ +#if 0 +#include <linux/delay.h> +#include <linux/errno.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/types.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/compatmac.h> +#include <linux/interrupt.h> +#include <linux/bitops.h> +#include <asm/io.h> + +#ifdef CONFIG_MTD_PARTITIONS +#include <linux/mtd/partitions.h> +#endif + +#else + +#include <common.h> + +#if (CONFIG_COMMANDS & CFG_CMD_NAND) + +#include <malloc.h> +#include <watchdog.h> +#include <linux/mtd/compat.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> + +#include <asm/io.h> +#include <asm/errno.h> + +#ifdef CONFIG_JFFS2_NAND +#include <jffs2/jffs2.h> +#endif + +#endif + +/* Define default oob placement schemes for large and small page devices */ +static struct nand_oobinfo nand_oob_8 = { +	.useecc = MTD_NANDECC_AUTOPLACE, +	.eccbytes = 3, +	.eccpos = {0, 1, 2}, +	.oobfree = { {3, 2}, {6, 2} } +}; + +static struct nand_oobinfo nand_oob_16 = { +	.useecc = MTD_NANDECC_AUTOPLACE, +	.eccbytes = 6, +	.eccpos = {0, 1, 2, 3, 6, 7}, +	.oobfree = { {8, 8} } +}; + +static struct nand_oobinfo nand_oob_64 = { +	.useecc = MTD_NANDECC_AUTOPLACE, +	.eccbytes = 24, +	.eccpos = { +		40, 41, 42, 43, 44, 45, 46, 47,  +		48, 49, 50, 51, 52, 53, 54, 55,  +		56, 57, 58, 59, 60, 61, 62, 63}, +	.oobfree = { {2, 38} } +}; + +/* This is used for padding purposes in nand_write_oob */ +static u_char ffchars[] = { +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +	0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +}; + +/* + * NAND low-level MTD interface functions + */ +static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len); +static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len); +static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len); + +static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf); +static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, +			  size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel); +static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf); +static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf); +static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, +			   size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel); +static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf); +/* XXX U-BOOT XXX */ +#if 0 +static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, +			unsigned long count, loff_t to, size_t * retlen); +static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, +			unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel); +#endif +static int nand_erase (struct mtd_info *mtd, struct erase_info *instr); +static void nand_sync (struct mtd_info *mtd); + +/* Some internal functions */ +static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf, +		struct nand_oobinfo *oobsel, int mode); +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE +static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,  +	u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode); +#else +#define nand_verify_pages(...) (0) +#endif +		 +static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state); + +/** + * nand_release_device - [GENERIC] release chip + * @mtd:	MTD device structure + *  + * Deselect, release chip lock and wake up anyone waiting on the device  + */ +/* XXX U-BOOT XXX */ +#if 0 +static void nand_release_device (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; + +	/* De-select the NAND device */ +	this->select_chip(mtd, -1); +	/* Do we have a hardware controller ? */ +	if (this->controller) { +		spin_lock(&this->controller->lock); +		this->controller->active = NULL; +		spin_unlock(&this->controller->lock); +	} +	/* Release the chip */ +	spin_lock (&this->chip_lock); +	this->state = FL_READY; +	wake_up (&this->wq); +	spin_unlock (&this->chip_lock); +} +#else +#define nand_release_device(mtd)	do {} while(0) +#endif + +/** + * nand_read_byte - [DEFAULT] read one byte from the chip + * @mtd:	MTD device structure + * + * Default read function for 8bit buswith + */ +static u_char nand_read_byte(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	return readb(this->IO_ADDR_R); +} + +/** + * nand_write_byte - [DEFAULT] write one byte to the chip + * @mtd:	MTD device structure + * @byte:	pointer to data byte to write + * + * Default write function for 8it buswith + */ +static void nand_write_byte(struct mtd_info *mtd, u_char byte) +{ +	struct nand_chip *this = mtd->priv; +	writeb(byte, this->IO_ADDR_W); +} + +/** + * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip + * @mtd:	MTD device structure + * + * Default read function for 16bit buswith with  + * endianess conversion + */ +static u_char nand_read_byte16(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	return (u_char) cpu_to_le16(readw(this->IO_ADDR_R)); +} + +/** + * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip + * @mtd:	MTD device structure + * @byte:	pointer to data byte to write + * + * Default write function for 16bit buswith with + * endianess conversion + */ +static void nand_write_byte16(struct mtd_info *mtd, u_char byte) +{ +	struct nand_chip *this = mtd->priv; +	writew(le16_to_cpu((u16) byte), this->IO_ADDR_W); +} + +/** + * nand_read_word - [DEFAULT] read one word from the chip + * @mtd:	MTD device structure + * + * Default read function for 16bit buswith without  + * endianess conversion + */ +static u16 nand_read_word(struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	return readw(this->IO_ADDR_R); +} + +/** + * nand_write_word - [DEFAULT] write one word to the chip + * @mtd:	MTD device structure + * @word:	data word to write + * + * Default write function for 16bit buswith without  + * endianess conversion + */ +static void nand_write_word(struct mtd_info *mtd, u16 word) +{ +	struct nand_chip *this = mtd->priv; +	writew(word, this->IO_ADDR_W); +} + +/** + * nand_select_chip - [DEFAULT] control CE line + * @mtd:	MTD device structure + * @chip:	chipnumber to select, -1 for deselect + * + * Default select function for 1 chip devices. + */ +static void nand_select_chip(struct mtd_info *mtd, int chip) +{ +	struct nand_chip *this = mtd->priv; +	switch(chip) { +	case -1: +		this->hwcontrol(mtd, NAND_CTL_CLRNCE);	 +		break; +	case 0: +		this->hwcontrol(mtd, NAND_CTL_SETNCE); +		break; + +	default: +		BUG(); +	} +} + +/** + * nand_write_buf - [DEFAULT] write buffer to chip + * @mtd:	MTD device structure + * @buf:	data buffer + * @len:	number of bytes to write + * + * Default write function for 8bit buswith + */ +static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; + +	for (i=0; i<len; i++) +		writeb(buf[i], this->IO_ADDR_W); +} + +/** + * nand_read_buf - [DEFAULT] read chip data into buffer  + * @mtd:	MTD device structure + * @buf:	buffer to store date + * @len:	number of bytes to read + * + * Default read function for 8bit buswith + */ +static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; + +	for (i=0; i<len; i++) +		buf[i] = readb(this->IO_ADDR_R); +} + +/** + * nand_verify_buf - [DEFAULT] Verify chip data against buffer  + * @mtd:	MTD device structure + * @buf:	buffer containing the data to compare + * @len:	number of bytes to compare + * + * Default verify function for 8bit buswith + */ +static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; + +	for (i=0; i<len; i++) +		if (buf[i] != readb(this->IO_ADDR_R)) +			return -EFAULT; + +	return 0; +} + +/** + * nand_write_buf16 - [DEFAULT] write buffer to chip + * @mtd:	MTD device structure + * @buf:	data buffer + * @len:	number of bytes to write + * + * Default write function for 16bit buswith + */ +static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; +	u16 *p = (u16 *) buf; +	len >>= 1; +	 +	for (i=0; i<len; i++) +		writew(p[i], this->IO_ADDR_W); +		 +} + +/** + * nand_read_buf16 - [DEFAULT] read chip data into buffer  + * @mtd:	MTD device structure + * @buf:	buffer to store date + * @len:	number of bytes to read + * + * Default read function for 16bit buswith + */ +static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; +	u16 *p = (u16 *) buf; +	len >>= 1; + +	for (i=0; i<len; i++) +		p[i] = readw(this->IO_ADDR_R); +} + +/** + * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer  + * @mtd:	MTD device structure + * @buf:	buffer containing the data to compare + * @len:	number of bytes to compare + * + * Default verify function for 16bit buswith + */ +static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) +{ +	int i; +	struct nand_chip *this = mtd->priv; +	u16 *p = (u16 *) buf; +	len >>= 1; + +	for (i=0; i<len; i++) +		if (p[i] != readw(this->IO_ADDR_R)) +			return -EFAULT; + +	return 0; +} + +/** + * nand_block_bad - [DEFAULT] Read bad block marker from the chip + * @mtd:	MTD device structure + * @ofs:	offset from device start + * @getchip:	0, if the chip is already selected + * + * Check, if the block is bad.  + */ +static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ +	int page, chipnr, res = 0; +	struct nand_chip *this = mtd->priv; +	u16 bad; + +	if (getchip) { +		page = (int)(ofs >> this->page_shift); +		chipnr = (int)(ofs >> this->chip_shift); + +		/* Grab the lock and see if the device is available */ +		nand_get_device (this, mtd, FL_READING); + +		/* Select the NAND device */ +		this->select_chip(mtd, chipnr); +	} else  +		page = (int) ofs;	 + +	if (this->options & NAND_BUSWIDTH_16) { +		this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask); +		bad = cpu_to_le16(this->read_word(mtd)); +		if (this->badblockpos & 0x1) +			bad >>= 1; +		if ((bad & 0xFF) != 0xff) +			res = 1; +	} else { +		this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask); +		if (this->read_byte(mtd) != 0xff) +			res = 1; +	} +		 +	if (getchip) { +		/* Deselect and wake up anyone waiting on the device */ +		nand_release_device(mtd); +	}	 +	 +	return res; +} + +/** + * nand_default_block_markbad - [DEFAULT] mark a block bad + * @mtd:	MTD device structure + * @ofs:	offset from device start + * + * This is the default implementation, which can be overridden by + * a hardware specific driver. +*/ +static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ +	struct nand_chip *this = mtd->priv; +	u_char buf[2] = {0, 0}; +	size_t	retlen; +	int block; +	 +	/* Get block number */ +	block = ((int) ofs) >> this->bbt_erase_shift; +	this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + +	/* Do we have a flash based bad block table ? */ +	if (this->options & NAND_USE_FLASH_BBT) +		return nand_update_bbt (mtd, ofs); +		 +	/* We write two bytes, so we dont have to mess with 16 bit access */ +	ofs += mtd->oobsize + (this->badblockpos & ~0x01); +	return nand_write_oob (mtd, ofs , 2, &retlen, buf); +} + +/**  + * nand_check_wp - [GENERIC] check if the chip is write protected + * @mtd:	MTD device structure + * Check, if the device is write protected  + * + * The function expects, that the device is already selected  + */ +static int nand_check_wp (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	/* Check the WP bit */ +	this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1); +	return (this->read_byte(mtd) & 0x80) ? 0 : 1;  +} + +/** + * nand_block_checkbad - [GENERIC] Check if a block is marked bad + * @mtd:	MTD device structure + * @ofs:	offset from device start + * @getchip:	0, if the chip is already selected + * @allowbbt:	1, if its allowed to access the bbt area + * + * Check, if the block is bad. Either by reading the bad block table or + * calling of the scan function. + */ +static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt) +{ +	struct nand_chip *this = mtd->priv; +	 +	if (!this->bbt) +		return this->block_bad(mtd, ofs, getchip); +	 +	/* Return info from the table */ +	return nand_isbad_bbt (mtd, ofs, allowbbt); +} + +/** + * nand_command - [DEFAULT] Send command to NAND device + * @mtd:	MTD device structure + * @command:	the command to be sent + * @column:	the column address for this command, -1 if none + * @page_addr:	the page address for this command, -1 if none + * + * Send command to NAND device. This function is used for small page + * devices (256/512 Bytes per page) + */ +static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ +	register struct nand_chip *this = mtd->priv; + +	/* Begin command latch cycle */ +	this->hwcontrol(mtd, NAND_CTL_SETCLE); +	/* +	 * Write out the command to the device. +	 */ +	if (command == NAND_CMD_SEQIN) { +		int readcmd; + +		if (column >= mtd->oobblock) { +			/* OOB area */ +			column -= mtd->oobblock; +			readcmd = NAND_CMD_READOOB; +		} else if (column < 256) { +			/* First 256 bytes --> READ0 */ +			readcmd = NAND_CMD_READ0; +		} else { +			column -= 256; +			readcmd = NAND_CMD_READ1; +		} +		this->write_byte(mtd, readcmd); +	} +	this->write_byte(mtd, command); + +	/* Set ALE and clear CLE to start address cycle */ +	this->hwcontrol(mtd, NAND_CTL_CLRCLE); + +	if (column != -1 || page_addr != -1) { +		this->hwcontrol(mtd, NAND_CTL_SETALE); + +		/* Serially input address */ +		if (column != -1) { +			/* Adjust columns for 16 bit buswidth */ +			if (this->options & NAND_BUSWIDTH_16) +				column >>= 1; +			this->write_byte(mtd, column); +		} +		if (page_addr != -1) { +			this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); +			this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); +			/* One more address cycle for devices > 32MiB */ +			if (this->chipsize > (32 << 20)) +				this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f)); +		} +		/* Latch in address */ +		this->hwcontrol(mtd, NAND_CTL_CLRALE); +	} +	 +	/*  +	 * program and erase have their own busy handlers  +	 * status and sequential in needs no delay +	*/ +	switch (command) { +			 +	case NAND_CMD_PAGEPROG: +	case NAND_CMD_ERASE1: +	case NAND_CMD_ERASE2: +	case NAND_CMD_SEQIN: +	case NAND_CMD_STATUS: +		return; + +	case NAND_CMD_RESET: +		if (this->dev_ready)	 +			break; +		udelay(this->chip_delay); +		this->hwcontrol(mtd, NAND_CTL_SETCLE); +		this->write_byte(mtd, NAND_CMD_STATUS); +		this->hwcontrol(mtd, NAND_CTL_CLRCLE); +		while ( !(this->read_byte(mtd) & 0x40)); +		return; + +	/* This applies to read commands */	 +	default: +		/*  +		 * If we don't have access to the busy pin, we apply the given +		 * command delay +		*/ +		if (!this->dev_ready) { +			udelay (this->chip_delay); +			return; +		}	 +	} +	 +	/* Apply this short delay always to ensure that we do wait tWB in +	 * any case on any machine. */ +	ndelay (100); +	/* wait until command is processed */ +	while (!this->dev_ready(mtd)); +} + +/** + * nand_command_lp - [DEFAULT] Send command to NAND large page device + * @mtd:	MTD device structure + * @command:	the command to be sent + * @column:	the column address for this command, -1 if none + * @page_addr:	the page address for this command, -1 if none + * + * Send command to NAND device. This is the version for the new large page devices + * We dont have the seperate regions as we have in the small page devices. + * We must emulate NAND_CMD_READOOB to keep the code compatible. + * + */ +static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ +	register struct nand_chip *this = mtd->priv; + +	/* Emulate NAND_CMD_READOOB */ +	if (command == NAND_CMD_READOOB) { +		column += mtd->oobblock; +		command = NAND_CMD_READ0; +	} +	 +		 +	/* Begin command latch cycle */ +	this->hwcontrol(mtd, NAND_CTL_SETCLE); +	/* Write out the command to the device. */ +	this->write_byte(mtd, command); +	/* End command latch cycle */ +	this->hwcontrol(mtd, NAND_CTL_CLRCLE); + +	if (column != -1 || page_addr != -1) { +		this->hwcontrol(mtd, NAND_CTL_SETALE); + +		/* Serially input address */ +		if (column != -1) { +			/* Adjust columns for 16 bit buswidth */ +			if (this->options & NAND_BUSWIDTH_16) +				column >>= 1; +			this->write_byte(mtd, column & 0xff); +			this->write_byte(mtd, column >> 8); +		}	 +		if (page_addr != -1) { +			this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); +			this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); +			/* One more address cycle for devices > 128MiB */ +			if (this->chipsize > (128 << 20)) +				this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff)); +		} +		/* Latch in address */ +		this->hwcontrol(mtd, NAND_CTL_CLRALE); +	} +	 +	/*  +	 * program and erase have their own busy handlers  +	 * status and sequential in needs no delay +	*/ +	switch (command) { +			 +	case NAND_CMD_CACHEDPROG: +	case NAND_CMD_PAGEPROG: +	case NAND_CMD_ERASE1: +	case NAND_CMD_ERASE2: +	case NAND_CMD_SEQIN: +	case NAND_CMD_STATUS: +		return; + + +	case NAND_CMD_RESET: +		if (this->dev_ready)	 +			break; +		udelay(this->chip_delay); +		this->hwcontrol(mtd, NAND_CTL_SETCLE); +		this->write_byte(mtd, NAND_CMD_STATUS); +		this->hwcontrol(mtd, NAND_CTL_CLRCLE); +		while ( !(this->read_byte(mtd) & 0x40)); +		return; + +	case NAND_CMD_READ0: +		/* Begin command latch cycle */ +		this->hwcontrol(mtd, NAND_CTL_SETCLE); +		/* Write out the start read command */ +		this->write_byte(mtd, NAND_CMD_READSTART); +		/* End command latch cycle */ +		this->hwcontrol(mtd, NAND_CTL_CLRCLE); +		/* Fall through into ready check */ +		 +	/* This applies to read commands */	 +	default: +		/*  +		 * If we don't have access to the busy pin, we apply the given +		 * command delay +		*/ +		if (!this->dev_ready) { +			udelay (this->chip_delay); +			return; +		}	 +	} +	 +	/* Apply this short delay always to ensure that we do wait tWB in +	 * any case on any machine. */ +	ndelay (100); +	/* wait until command is processed */ +	while (!this->dev_ready(mtd)); +} + +/** + * nand_get_device - [GENERIC] Get chip for selected access + * @this:	the nand chip descriptor + * @mtd:	MTD device structure + * @new_state:	the state which is requested  + * + * Get the device and lock it for exclusive access + */ +/* XXX U-BOOT XXX */ +#if 0 +static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) +{ +	struct nand_chip *active = this; + +	DECLARE_WAITQUEUE (wait, current); + +	/*  +	 * Grab the lock and see if the device is available  +	*/ +retry: +	/* Hardware controller shared among independend devices */ +	if (this->controller) { +		spin_lock (&this->controller->lock); +		if (this->controller->active) +			active = this->controller->active; +		else +			this->controller->active = this; +		spin_unlock (&this->controller->lock); +	} +	 +	if (active == this) { +		spin_lock (&this->chip_lock); +		if (this->state == FL_READY) { +			this->state = new_state; +			spin_unlock (&this->chip_lock); +			return; +		} +	}	 +	set_current_state (TASK_UNINTERRUPTIBLE); +	add_wait_queue (&active->wq, &wait); +	spin_unlock (&active->chip_lock); +	schedule (); +	remove_wait_queue (&active->wq, &wait); +	goto retry; +} +#else +static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) {} +#endif + +/** + * nand_wait - [DEFAULT]  wait until the command is done + * @mtd:	MTD device structure + * @this:	NAND chip structure + * @state:	state to select the max. timeout value + * + * Wait for command done. This applies to erase and program only + * Erase can take up to 400ms and program up to 20ms according to  + * general NAND and SmartMedia specs + * +*/ +/* XXX U-BOOT XXX */ +#if 0 +static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state) +{ +	unsigned long	timeo = jiffies; +	int	status; +	 +	if (state == FL_ERASING) +		 timeo += (HZ * 400) / 1000; +	else +		 timeo += (HZ * 20) / 1000; + +	/* Apply this short delay always to ensure that we do wait tWB in +	 * any case on any machine. */ +	ndelay (100); + +	if ((state == FL_ERASING) && (this->options & NAND_IS_AND)) +		this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1); +	else	 +		this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1); + +	while (time_before(jiffies, timeo)) {		 +		/* Check, if we were interrupted */ +		if (this->state != state) +			return 0; + +		if (this->dev_ready) { +			if (this->dev_ready(mtd)) +				break;	 +		} else { +			if (this->read_byte(mtd) & NAND_STATUS_READY) +				break; +		} +		yield (); +	} +	status = (int) this->read_byte(mtd); +	return status; + +	return 0; +} +#else +static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state) +{ +	/* TODO */ +	return 0; +} +#endif + +/** + * nand_write_page - [GENERIC] write one page + * @mtd:	MTD device structure + * @this:	NAND chip structure + * @page: 	startpage inside the chip, must be called with (page & this->pagemask) + * @oob_buf:	out of band data buffer + * @oobsel:	out of band selecttion structre + * @cached:	1 = enable cached programming if supported by chip + * + * Nand_page_program function is used for write and writev ! + * This function will always program a full page of data + * If you call it with a non page aligned buffer, you're lost :) + * + * Cached programming is not supported yet. + */ +static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,  +	u_char *oob_buf,  struct nand_oobinfo *oobsel, int cached) +{ +	int 	i, status; +	u_char	ecc_code[32]; +	int	eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE; +	int  	*oob_config = oobsel->eccpos; +	int	datidx = 0, eccidx = 0, eccsteps = this->eccsteps; +	int	eccbytes = 0; +	 +	/* FIXME: Enable cached programming */ +	cached = 0; +	 +	/* Send command to begin auto page programming */ +	this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page); + +	/* Write out complete page of data, take care of eccmode */ +	switch (eccmode) { +	/* No ecc, write all */ +	case NAND_ECC_NONE: +		printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n"); +		this->write_buf(mtd, this->data_poi, mtd->oobblock); +		break; +		 +	/* Software ecc 3/256, write all */ +	case NAND_ECC_SOFT: +		for (; eccsteps; eccsteps--) { +			this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code); +			for (i = 0; i < 3; i++, eccidx++) +				oob_buf[oob_config[eccidx]] = ecc_code[i]; +			datidx += this->eccsize; +		} +		this->write_buf(mtd, this->data_poi, mtd->oobblock); +		break; +	default: +		eccbytes = this->eccbytes; +		for (; eccsteps; eccsteps--) { +			/* enable hardware ecc logic for write */ +			this->enable_hwecc(mtd, NAND_ECC_WRITE); +			this->write_buf(mtd, &this->data_poi[datidx], this->eccsize); +			this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code); +			for (i = 0; i < eccbytes; i++, eccidx++) +				oob_buf[oob_config[eccidx]] = ecc_code[i]; +			/* If the hardware ecc provides syndromes then +			 * the ecc code must be written immidiately after +			 * the data bytes (words) */ +			if (this->options & NAND_HWECC_SYNDROME) +				this->write_buf(mtd, ecc_code, eccbytes); +			datidx += this->eccsize; +		} +		break; +	} +										 +	/* Write out OOB data */ +	if (this->options & NAND_HWECC_SYNDROME) +		this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes); +	else  +		this->write_buf(mtd, oob_buf, mtd->oobsize); + +	/* Send command to actually program the data */ +	this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1); + +	if (!cached) { +		/* call wait ready function */ +		status = this->waitfunc (mtd, this, FL_WRITING); +		/* See if device thinks it succeeded */ +		if (status & 0x01) { +			DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page); +			return -EIO; +		} +	} else { +		/* FIXME: Implement cached programming ! */ +		/* wait until cache is ready*/ +		// status = this->waitfunc (mtd, this, FL_CACHEDRPG); +	} +	return 0;	 +} + +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE +/** + * nand_verify_pages - [GENERIC] verify the chip contents after a write + * @mtd:	MTD device structure + * @this:	NAND chip structure + * @page: 	startpage inside the chip, must be called with (page & this->pagemask) + * @numpages:	number of pages to verify + * @oob_buf:	out of band data buffer + * @oobsel:	out of band selecttion structre + * @chipnr:	number of the current chip + * @oobmode:	1 = full buffer verify, 0 = ecc only + * + * The NAND device assumes that it is always writing to a cleanly erased page. + * Hence, it performs its internal write verification only on bits that  + * transitioned from 1 to 0. The device does NOT verify the whole page on a + * byte by byte basis. It is possible that the page was not completely erased  + * or the page is becoming unusable due to wear. The read with ECC would catch  + * the error later when the ECC page check fails, but we would rather catch  + * it early in the page write stage. Better to write no data than invalid data. + */ +static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,  +	u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode) +{ +	int 	i, j, datidx = 0, oobofs = 0, res = -EIO; +	int	eccsteps = this->eccsteps; +	int	hweccbytes;  +	u_char 	oobdata[64]; + +	hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0; + +	/* Send command to read back the first page */ +	this->cmdfunc (mtd, NAND_CMD_READ0, 0, page); + +	for(;;) { +		for (j = 0; j < eccsteps; j++) { +			/* Loop through and verify the data */ +			if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) { +				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); +				goto out; +			} +			datidx += mtd->eccsize; +			/* Have we a hw generator layout ? */ +			if (!hweccbytes) +				continue; +			if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) { +				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); +				goto out; +			} +			oobofs += hweccbytes; +		} + +		/* check, if we must compare all data or if we just have to +		 * compare the ecc bytes +		 */ +		if (oobmode) { +			if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) { +				DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); +				goto out; +			} +		} else { +			/* Read always, else autoincrement fails */ +			this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps); + +			if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) { +				int ecccnt = oobsel->eccbytes; +		 +				for (i = 0; i < ecccnt; i++) { +					int idx = oobsel->eccpos[i]; +					if (oobdata[idx] != oob_buf[oobofs + idx] ) { +						DEBUG (MTD_DEBUG_LEVEL0, +					       	"%s: Failed ECC write " +						"verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i); +						goto out; +					} +				} +			}	 +		} +		oobofs += mtd->oobsize - hweccbytes * eccsteps; +		page++; +		numpages--; + +		/* Apply delay or wait for ready/busy pin  +		 * Do this before the AUTOINCR check, so no problems +		 * arise if a chip which does auto increment +		 * is marked as NOAUTOINCR by the board driver. +		 * Do this also before returning, so the chip is +		 * ready for the next command. +		*/ +		if (!this->dev_ready)  +			udelay (this->chip_delay); +		else +			while (!this->dev_ready(mtd));	 + +		/* All done, return happy */ +		if (!numpages) +			return 0; +		 +			 +		/* Check, if the chip supports auto page increment */  +		if (!NAND_CANAUTOINCR(this)) +			this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page); +	} +	/*  +	 * Terminate the read command. We come here in case of an error +	 * So we must issue a reset command. +	 */ +out:	  +	this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1); +	return res; +} +#endif + +/** + * nand_read - [MTD Interface] MTD compability function for nand_read_ecc + * @mtd:	MTD device structure + * @from:	offset to read from + * @len:	number of bytes to read + * @retlen:	pointer to variable to store the number of read bytes + * @buf:	the databuffer to put data + * + * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL +*/ +static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) +{ +	return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL); +}			    + + +/** + * nand_read_ecc - [MTD Interface] Read data with ECC + * @mtd:	MTD device structure + * @from:	offset to read from + * @len:	number of bytes to read + * @retlen:	pointer to variable to store the number of read bytes + * @buf:	the databuffer to put data + * @oob_buf:	filesystem supplied oob data buffer + * @oobsel:	oob selection structure + * + * NAND read with ECC + */ +static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, +			  size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel) +{ +	int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1; +	int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0; +	struct nand_chip *this = mtd->priv; +	u_char *data_poi, *oob_data = oob_buf; +	u_char ecc_calc[32]; +	u_char ecc_code[32]; +        int eccmode, eccsteps; +	int	*oob_config, datidx; +	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; +	int	eccbytes; +	int	compareecc = 1; +	int	oobreadlen; + + +	DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); + +	/* Do not allow reads past end of device */ +	if ((from + len) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n"); +		*retlen = 0; +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd ,FL_READING); + +	/* use userspace supplied oobinfo, if zero */ +	if (oobsel == NULL) +		oobsel = &mtd->oobinfo; +	 +	/* Autoplace of oob data ? Use the default placement scheme */ +	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) +		oobsel = this->autooob; +		 +	eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE; +	oob_config = oobsel->eccpos; + +	/* Select the NAND device */ +	chipnr = (int)(from >> this->chip_shift); +	this->select_chip(mtd, chipnr); + +	/* First we calculate the starting page */ +	realpage = (int) (from >> this->page_shift); +	page = realpage & this->pagemask; + +	/* Get raw starting column */ +	col = from & (mtd->oobblock - 1); + +	end = mtd->oobblock; +	ecc = this->eccsize; +	eccbytes = this->eccbytes; +	 +	if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME)) +		compareecc = 0; + +	oobreadlen = mtd->oobsize; +	if (this->options & NAND_HWECC_SYNDROME)  +		oobreadlen -= oobsel->eccbytes; + +	/* Loop until all data read */ +	while (read < len) { +		 +		int aligned = (!col && (len - read) >= end); +		/*  +		 * If the read is not page aligned, we have to read into data buffer +		 * due to ecc, else we read into return buffer direct +		 */ +		if (aligned) +			data_poi = &buf[read]; +		else  +			data_poi = this->data_buf; +		 +		/* Check, if we have this page in the buffer  +		 * +		 * FIXME: Make it work when we must provide oob data too, +		 * check the usage of data_buf oob field +		 */ +		if (realpage == this->pagebuf && !oob_buf) { +			/* aligned read ? */ +			if (aligned) +				memcpy (data_poi, this->data_buf, end); +			goto readdata; +		} + +		/* Check, if we must send the read command */ +		if (sndcmd) { +			this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page); +			sndcmd = 0; +		}	 + +		/* get oob area, if we have no oob buffer from fs-driver */ +		if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE || +			oobsel->useecc == MTD_NANDECC_AUTOPL_USR) +			oob_data = &this->data_buf[end]; + +		eccsteps = this->eccsteps; +		 +		switch (eccmode) { +		case NAND_ECC_NONE: {	/* No ECC, Read in a page */ +/* XXX U-BOOT XXX */ +#if 0 +			static unsigned long lastwhinge = 0; +			if ((lastwhinge / HZ) != (jiffies / HZ)) { +				printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n"); +				lastwhinge = jiffies; +			} +#else +			puts("Reading data from NAND FLASH without ECC is not recommended\n"); +#endif +			this->read_buf(mtd, data_poi, end); +			break; +		} +			 +		case NAND_ECC_SOFT:	/* Software ECC 3/256: Read in a page + oob data */ +			this->read_buf(mtd, data_poi, end); +			for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)  +				this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]); +			break;	 + +		default: +			for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) { +				this->enable_hwecc(mtd, NAND_ECC_READ); +				this->read_buf(mtd, &data_poi[datidx], ecc); + +				/* HW ecc with syndrome calculation must read the +				 * syndrome from flash immidiately after the data */ +				if (!compareecc) { +					/* Some hw ecc generators need to know when the +					 * syndrome is read from flash */ +					this->enable_hwecc(mtd, NAND_ECC_READSYN); +					this->read_buf(mtd, &oob_data[i], eccbytes); +					/* We calc error correction directly, it checks the hw +					 * generator for an error, reads back the syndrome and +					 * does the error correction on the fly */ +					if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) { +						DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "  +							"Failed ECC read, page 0x%08x on chip %d\n", page, chipnr); +						ecc_failed++; +					} +				} else { +					this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]); +				}	 +			} +			break;						 +		} + +		/* read oobdata */ +		this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen); + +		/* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */ +		if (!compareecc) +			goto readoob;	 +		 +		/* Pick the ECC bytes out of the oob data */ +		for (j = 0; j < oobsel->eccbytes; j++) +			ecc_code[j] = oob_data[oob_config[j]]; + +		/* correct data, if neccecary */ +		for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) { +			ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]); +			 +			/* Get next chunk of ecc bytes */ +			j += eccbytes; +			 +			/* Check, if we have a fs supplied oob-buffer,  +			 * This is the legacy mode. Used by YAFFS1 +			 * Should go away some day +			 */ +			if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {  +				int *p = (int *)(&oob_data[mtd->oobsize]); +				p[i] = ecc_status; +			} +			 +			if (ecc_status == -1) {	 +				DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page); +				ecc_failed++; +			} +		}		 + +	readoob: +		/* check, if we have a fs supplied oob-buffer */ +		if (oob_buf) { +			/* without autoplace. Legacy mode used by YAFFS1 */ +			switch(oobsel->useecc) { +			case MTD_NANDECC_AUTOPLACE: +			case MTD_NANDECC_AUTOPL_USR: +				/* Walk through the autoplace chunks */ +				for (i = 0, j = 0; j < mtd->oobavail; i++) { +					int from = oobsel->oobfree[i][0]; +					int num = oobsel->oobfree[i][1]; +					memcpy(&oob_buf[oob], &oob_data[from], num); +					j+= num; +				} +				oob += mtd->oobavail; +				break; +			case MTD_NANDECC_PLACE: +				/* YAFFS1 legacy mode */ +				oob_data += this->eccsteps * sizeof (int); +			default: +				oob_data += mtd->oobsize; +			} +		} +	readdata: +		/* Partial page read, transfer data into fs buffer */ +		if (!aligned) {  +			for (j = col; j < end && read < len; j++) +				buf[read++] = data_poi[j]; +			this->pagebuf = realpage;	 +		} else		 +			read += mtd->oobblock; + +		/* Apply delay or wait for ready/busy pin  +		 * Do this before the AUTOINCR check, so no problems +		 * arise if a chip which does auto increment +		 * is marked as NOAUTOINCR by the board driver. +		*/ +		if (!this->dev_ready)  +			udelay (this->chip_delay); +		else +			while (!this->dev_ready(mtd));	 +			 +		if (read == len) +			break;	 + +		/* For subsequent reads align to page boundary. */ +		col = 0; +		/* Increment page address */ +		realpage++; + +		page = realpage & this->pagemask; +		/* Check, if we cross a chip boundary */ +		if (!page) { +			chipnr++; +			this->select_chip(mtd, -1); +			this->select_chip(mtd, chipnr); +		} +		/* Check, if the chip supports auto page increment  +		 * or if we have hit a block boundary.  +		*/  +		if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) +			sndcmd = 1;				 +	} + +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	/* +	 * Return success, if no ECC failures, else -EBADMSG +	 * fs driver will take care of that, because +	 * retlen == desired len and result == -EBADMSG +	 */ +	*retlen = read; +	return ecc_failed ? -EBADMSG : 0; +} + +/** + * nand_read_oob - [MTD Interface] NAND read out-of-band + * @mtd:	MTD device structure + * @from:	offset to read from + * @len:	number of bytes to read + * @retlen:	pointer to variable to store the number of read bytes + * @buf:	the databuffer to put data + * + * NAND read out-of-band data from the spare area + */ +static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) +{ +	int i, col, page, chipnr; +	struct nand_chip *this = mtd->priv; +	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; + +	DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); + +	/* Shift to get page */ +	page = (int)(from >> this->page_shift); +	chipnr = (int)(from >> this->chip_shift); +	 +	/* Mask to get column */ +	col = from & (mtd->oobsize - 1); + +	/* Initialize return length value */ +	*retlen = 0; + +	/* Do not allow reads past end of device */ +	if ((from + len) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n"); +		*retlen = 0; +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd , FL_READING); + +	/* Select the NAND device */ +	this->select_chip(mtd, chipnr); + +	/* Send the read command */ +	this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask); +	/*  +	 * Read the data, if we read more than one page +	 * oob data, let the device transfer the data ! +	 */ +	i = 0; +	while (i < len) { +		int thislen = mtd->oobsize - col; +		thislen = min_t(int, thislen, len); +		this->read_buf(mtd, &buf[i], thislen); +		i += thislen; +		 +		/* Apply delay or wait for ready/busy pin  +		 * Do this before the AUTOINCR check, so no problems +		 * arise if a chip which does auto increment +		 * is marked as NOAUTOINCR by the board driver. +		*/ +		if (!this->dev_ready)  +			udelay (this->chip_delay); +		else +			while (!this->dev_ready(mtd));	 + +		/* Read more ? */ +		if (i < len) { +			page++; +			col = 0; + +			/* Check, if we cross a chip boundary */ +			if (!(page & this->pagemask)) { +				chipnr++; +				this->select_chip(mtd, -1); +				this->select_chip(mtd, chipnr); +			} +				 +			/* Check, if the chip supports auto page increment  +			 * or if we have hit a block boundary.  +			*/  +			if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) { +				/* For subsequent page reads set offset to 0 */ +			        this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask); +			} +		} +	} + +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	/* Return happy */ +	*retlen = len; +	return 0; +} + +/** + * nand_read_raw - [GENERIC] Read raw data including oob into buffer + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @from:	offset to read from + * @len:	number of bytes to read + * @ooblen:	number of oob data bytes to read + * + * Read raw data including oob into buffer + */ +int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen) +{ +	struct nand_chip *this = mtd->priv; +	int page = (int) (from >> this->page_shift); +	int chip = (int) (from >> this->chip_shift); +	int sndcmd = 1; +	int cnt = 0; +	int pagesize = mtd->oobblock + mtd->oobsize; +	int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; + +	/* Do not allow reads past end of device */ +	if ((from + len) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n"); +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd , FL_READING); + +	this->select_chip (mtd, chip); +	 +	/* Add requested oob length */ +	len += ooblen; +	 +	while (len) { +		if (sndcmd) +			this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask); +		sndcmd = 0;	 + +		this->read_buf (mtd, &buf[cnt], pagesize); + +		len -= pagesize; +		cnt += pagesize; +		page++; +		 +		if (!this->dev_ready)  +			udelay (this->chip_delay); +		else +			while (!this->dev_ready(mtd));	 +			 +		/* Check, if the chip supports auto page increment */  +		if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) +			sndcmd = 1; +	} + +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); +	return 0; +} + + +/**  + * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer  + * @mtd:	MTD device structure + * @fsbuf:	buffer given by fs driver + * @oobsel:	out of band selection structre + * @autoplace:	1 = place given buffer into the oob bytes + * @numpages:	number of pages to prepare + * + * Return: + * 1. Filesystem buffer available and autoplacement is off, + *    return filesystem buffer + * 2. No filesystem buffer or autoplace is off, return internal + *    buffer + * 3. Filesystem buffer is given and autoplace selected + *    put data from fs buffer into internal buffer and + *    retrun internal buffer + * + * Note: The internal buffer is filled with 0xff. This must + * be done only once, when no autoplacement happens + * Autoplacement sets the buffer dirty flag, which + * forces the 0xff fill before using the buffer again. + * +*/ +static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel, +		int autoplace, int numpages) +{ +	struct nand_chip *this = mtd->priv; +	int i, len, ofs; + +	/* Zero copy fs supplied buffer */ +	if (fsbuf && !autoplace)  +		return fsbuf; + +	/* Check, if the buffer must be filled with ff again */ +	if (this->oobdirty) {	 +		memset (this->oob_buf, 0xff,  +			mtd->oobsize << (this->phys_erase_shift - this->page_shift)); +		this->oobdirty = 0; +	}	 +	 +	/* If we have no autoplacement or no fs buffer use the internal one */ +	if (!autoplace || !fsbuf) +		return this->oob_buf; +	 +	/* Walk through the pages and place the data */ +	this->oobdirty = 1; +	ofs = 0; +	while (numpages--) { +		for (i = 0, len = 0; len < mtd->oobavail; i++) { +			int to = ofs + oobsel->oobfree[i][0]; +			int num = oobsel->oobfree[i][1]; +			memcpy (&this->oob_buf[to], fsbuf, num); +			len += num; +			fsbuf += num; +		} +		ofs += mtd->oobavail; +	} +	return this->oob_buf; +} + +#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0 + +/** + * nand_write - [MTD Interface] compability function for nand_write_ecc + * @mtd:	MTD device structure + * @to:		offset to write to + * @len:	number of bytes to write + * @retlen:	pointer to variable to store the number of written bytes + * @buf:	the data to write + * + * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL + * +*/ +static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) +{ +	return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL)); +} +			    +/** + * nand_write_ecc - [MTD Interface] NAND write with ECC + * @mtd:	MTD device structure + * @to:		offset to write to + * @len:	number of bytes to write + * @retlen:	pointer to variable to store the number of written bytes + * @buf:	the data to write + * @eccbuf:	filesystem supplied oob data buffer + * @oobsel:	oob selection structure + * + * NAND write with ECC + */ +static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, +			   size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel) +{ +	int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr; +	int autoplace = 0, numpages, totalpages; +	struct nand_chip *this = mtd->priv; +	u_char *oobbuf, *bufstart; +	int	ppblock = (1 << (this->phys_erase_shift - this->page_shift)); + +	DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); + +	/* Initialize retlen, in case of early exit */ +	*retlen = 0; + +	/* Do not allow write past end of device */ +	if ((to + len) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n"); +		return -EINVAL; +	} + +	/* reject writes, which are not page aligned */	 +	if (NOTALIGNED (to) || NOTALIGNED(len)) { +		printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n"); +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd, FL_WRITING); + +	/* Calculate chipnr */ +	chipnr = (int)(to >> this->chip_shift); +	/* Select the NAND device */ +	this->select_chip(mtd, chipnr); + +	/* Check, if it is write protected */ +	if (nand_check_wp(mtd)) +		goto out; + +	/* if oobsel is NULL, use chip defaults */ +	if (oobsel == NULL)  +		oobsel = &mtd->oobinfo;		 +		 +	/* Autoplace of oob data ? Use the default placement scheme */ +	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { +		oobsel = this->autooob; +		autoplace = 1; +	}	 +	if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR) +		autoplace = 1; + +	/* Setup variables and oob buffer */ +	totalpages = len >> this->page_shift; +	page = (int) (to >> this->page_shift); +	/* Invalidate the page cache, if we write to the cached page */ +	if (page <= this->pagebuf && this->pagebuf < (page + totalpages))   +		this->pagebuf = -1; +	 +	/* Set it relative to chip */ +	page &= this->pagemask; +	startpage = page; +	/* Calc number of pages we can write in one go */ +	numpages = min (ppblock - (startpage  & (ppblock - 1)), totalpages); +	oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages); +	bufstart = (u_char *)buf; + +	/* Loop until all data is written */ +	while (written < len) { + +		this->data_poi = (u_char*) &buf[written]; +		/* Write one page. If this is the last page to write +		 * or the last page in this block, then use the +		 * real pageprogram command, else select cached programming +		 * if supported by the chip. +		 */ +		ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0)); +		if (ret) { +			DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret); +			goto out; +		}	 +		/* Next oob page */ +		oob += mtd->oobsize; +		/* Update written bytes count */ +		written += mtd->oobblock; +		if (written == len)  +			goto cmp; +		 +		/* Increment page address */ +		page++; + +		/* Have we hit a block boundary ? Then we have to verify and +		 * if verify is ok, we have to setup the oob buffer for +		 * the next pages. +		*/ +		if (!(page & (ppblock - 1))){ +			int ofs; +			this->data_poi = bufstart; +			ret = nand_verify_pages (mtd, this, startpage,  +				page - startpage, +				oobbuf, oobsel, chipnr, (eccbuf != NULL)); +			if (ret) { +				DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret); +				goto out; +			}	 +			*retlen = written; + +			ofs = autoplace ? mtd->oobavail : mtd->oobsize; +			if (eccbuf) +				eccbuf += (page - startpage) * ofs; +			totalpages -= page - startpage; +			numpages = min (totalpages, ppblock); +			page &= this->pagemask; +			startpage = page; +			oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,  +					autoplace, numpages); +			/* Check, if we cross a chip boundary */ +			if (!page) { +				chipnr++; +				this->select_chip(mtd, -1); +				this->select_chip(mtd, chipnr); +			} +		} +	} +	/* Verify the remaining pages */ +cmp: +	this->data_poi = bufstart; + 	ret = nand_verify_pages (mtd, this, startpage, totalpages, +		oobbuf, oobsel, chipnr, (eccbuf != NULL)); +	if (!ret) +		*retlen = written; +	else	 +		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret); + +out: +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	return ret; +} + + +/** + * nand_write_oob - [MTD Interface] NAND write out-of-band + * @mtd:	MTD device structure + * @to:		offset to write to + * @len:	number of bytes to write + * @retlen:	pointer to variable to store the number of written bytes + * @buf:	the data to write + * + * NAND write out-of-band + */ +static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) +{ +	int column, page, status, ret = -EIO, chipnr; +	struct nand_chip *this = mtd->priv; + +	DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); + +	/* Shift to get page */ +	page = (int) (to >> this->page_shift); +	chipnr = (int) (to >> this->chip_shift); + +	/* Mask to get column */ +	column = to & (mtd->oobsize - 1); + +	/* Initialize return length value */ +	*retlen = 0; + +	/* Do not allow write past end of page */ +	if ((column + len) > mtd->oobsize) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n"); +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd, FL_WRITING); + +	/* Select the NAND device */ +	this->select_chip(mtd, chipnr); + +	/* Reset the chip. Some chips (like the Toshiba TC5832DC found +	   in one of my DiskOnChip 2000 test units) will clear the whole +	   data page too if we don't do this. I have no clue why, but +	   I seem to have 'fixed' it in the doc2000 driver in +	   August 1999.  dwmw2. */ +	this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + +	/* Check, if it is write protected */ +	if (nand_check_wp(mtd)) +		goto out; +	 +	/* Invalidate the page cache, if we write to the cached page */ +	if (page == this->pagebuf) +		this->pagebuf = -1; + +	if (NAND_MUST_PAD(this)) { +		/* Write out desired data */ +		this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask); +		/* prepad 0xff for partial programming */ +		this->write_buf(mtd, ffchars, column); +		/* write data */ +		this->write_buf(mtd, buf, len); +		/* postpad 0xff for partial programming */ +		this->write_buf(mtd, ffchars, mtd->oobsize - (len+column)); +	} else { +		/* Write out desired data */ +		this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask); +		/* write data */ +		this->write_buf(mtd, buf, len); +	} +	/* Send command to program the OOB data */ +	this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1); + +	status = this->waitfunc (mtd, this, FL_WRITING); + +	/* See if device thinks it succeeded */ +	if (status & 0x01) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page); +		ret = -EIO; +		goto out; +	} +	/* Return happy */ +	*retlen = len; + +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE +	/* Send command to read back the data */ +	this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask); + +	if (this->verify_buf(mtd, buf, len)) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page); +		ret = -EIO; +		goto out; +	} +#endif +	ret = 0; +out: +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	return ret; +} + +/* XXX U-BOOT XXX */ +#if 0 +/** + * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc + * @mtd:	MTD device structure + * @vecs:	the iovectors to write + * @count:	number of vectors + * @to:		offset to write to + * @retlen:	pointer to variable to store the number of written bytes + * + * NAND write with kvec. This just calls the ecc function + */ +static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,  +		loff_t to, size_t * retlen) +{ +	return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));	 +} + +/** + * nand_writev_ecc - [MTD Interface] write with iovec with ecc + * @mtd:	MTD device structure + * @vecs:	the iovectors to write + * @count:	number of vectors + * @to:		offset to write to + * @retlen:	pointer to variable to store the number of written bytes + * @eccbuf:	filesystem supplied oob data buffer + * @oobsel:	oob selection structure + * + * NAND write with iovec with ecc + */ +static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,  +		loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel) +{ +	int i, page, len, total_len, ret = -EIO, written = 0, chipnr; +	int oob, numpages, autoplace = 0, startpage; +	struct nand_chip *this = mtd->priv; +	int	ppblock = (1 << (this->phys_erase_shift - this->page_shift)); +	u_char *oobbuf, *bufstart; + +	/* Preset written len for early exit */ +	*retlen = 0; + +	/* Calculate total length of data */ +	total_len = 0; +	for (i = 0; i < count; i++) +		total_len += (int) vecs[i].iov_len; + +	DEBUG (MTD_DEBUG_LEVEL3, +	       "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count); + +	/* Do not allow write past end of page */ +	if ((to + total_len) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n"); +		return -EINVAL; +	} + +	/* reject writes, which are not page aligned */	 +	if (NOTALIGNED (to) || NOTALIGNED(total_len)) { +		printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n"); +		return -EINVAL; +	} + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd, FL_WRITING); + +	/* Get the current chip-nr */ +	chipnr = (int) (to >> this->chip_shift); +	/* Select the NAND device */ +	this->select_chip(mtd, chipnr); + +	/* Check, if it is write protected */ +	if (nand_check_wp(mtd)) +		goto out; + +	/* if oobsel is NULL, use chip defaults */ +	if (oobsel == NULL)  +		oobsel = &mtd->oobinfo;		 + +	/* Autoplace of oob data ? Use the default placement scheme */ +	if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { +		oobsel = this->autooob; +		autoplace = 1; +	}	 +	if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR) +		autoplace = 1; + +	/* Setup start page */ +	page = (int) (to >> this->page_shift); +	/* Invalidate the page cache, if we write to the cached page */ +	if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))   +		this->pagebuf = -1; + +	startpage = page & this->pagemask; + +	/* Loop until all kvec' data has been written */ +	len = 0; +	while (count) { +		/* If the given tuple is >= pagesize then +		 * write it out from the iov +		 */ +		if ((vecs->iov_len - len) >= mtd->oobblock) { +			/* Calc number of pages we can write +			 * out of this iov in one go */ +			numpages = (vecs->iov_len - len) >> this->page_shift; +			/* Do not cross block boundaries */ +			numpages = min (ppblock - (startpage & (ppblock - 1)), numpages); +			oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages); +			bufstart = (u_char *)vecs->iov_base; +			bufstart += len; +			this->data_poi = bufstart; +			oob = 0; +			for (i = 1; i <= numpages; i++) { +				/* Write one page. If this is the last page to write +				 * then use the real pageprogram command, else select  +				 * cached programming if supported by the chip. +				 */ +				ret = nand_write_page (mtd, this, page & this->pagemask,  +					&oobbuf[oob], oobsel, i != numpages); +				if (ret) +					goto out; +				this->data_poi += mtd->oobblock; +				len += mtd->oobblock; +				oob += mtd->oobsize; +				page++; +			} +			/* Check, if we have to switch to the next tuple */ +			if (len >= (int) vecs->iov_len) { +				vecs++; +				len = 0; +				count--; +			} +		} else { +			/* We must use the internal buffer, read data out of each  +			 * tuple until we have a full page to write +			 */ +			int cnt = 0; +			while (cnt < mtd->oobblock) { +				if (vecs->iov_base != NULL && vecs->iov_len)  +					this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++]; +				/* Check, if we have to switch to the next tuple */ +				if (len >= (int) vecs->iov_len) { +					vecs++; +					len = 0; +					count--; +				} +			} +			this->pagebuf = page;	 +			this->data_poi = this->data_buf;	 +			bufstart = this->data_poi; +			numpages = 1;		 +			oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages); +			ret = nand_write_page (mtd, this, page & this->pagemask, +				oobbuf, oobsel, 0); +			if (ret) +				goto out; +			page++; +		} + +		this->data_poi = bufstart; +		ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0); +		if (ret) +			goto out; +			 +		written += mtd->oobblock * numpages; +		/* All done ? */ +		if (!count) +			break; + +		startpage = page & this->pagemask; +		/* Check, if we cross a chip boundary */ +		if (!startpage) { +			chipnr++; +			this->select_chip(mtd, -1); +			this->select_chip(mtd, chipnr); +		} +	} +	ret = 0; +out: +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	*retlen = written; +	return ret; +} +#endif + +/** + * single_erease_cmd - [GENERIC] NAND standard block erase command function + * @mtd:	MTD device structure + * @page:	the page address of the block which will be erased + * + * Standard erase command for NAND chips + */ +static void single_erase_cmd (struct mtd_info *mtd, int page) +{ +	struct nand_chip *this = mtd->priv; +	/* Send commands to erase a block */ +	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page); +	this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1); +} + +/** + * multi_erease_cmd - [GENERIC] AND specific block erase command function + * @mtd:	MTD device structure + * @page:	the page address of the block which will be erased + * + * AND multi block erase command function + * Erase 4 consecutive blocks + */ +static void multi_erase_cmd (struct mtd_info *mtd, int page) +{ +	struct nand_chip *this = mtd->priv; +	/* Send commands to erase a block */ +	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); +	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); +	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); +	this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page); +	this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1); +} + +/** + * nand_erase - [MTD Interface] erase block(s) + * @mtd:	MTD device structure + * @instr:	erase instruction + * + * Erase one ore more blocks + */ +static int nand_erase (struct mtd_info *mtd, struct erase_info *instr) +{ +	return nand_erase_nand (mtd, instr, 0); +} +  +/** + * nand_erase_intern - [NAND Interface] erase block(s) + * @mtd:	MTD device structure + * @instr:	erase instruction + * @allowbbt:	allow erasing the bbt area + * + * Erase one ore more blocks + */ +int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt) +{ +	int page, len, status, pages_per_block, ret, chipnr; +	struct nand_chip *this = mtd->priv; + +	DEBUG (MTD_DEBUG_LEVEL3, +	       "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len); + +	/* Start address must align on block boundary */ +	if (instr->addr & ((1 << this->phys_erase_shift) - 1)) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n"); +		return -EINVAL; +	} + +	/* Length must align on block boundary */ +	if (instr->len & ((1 << this->phys_erase_shift) - 1)) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n"); +		return -EINVAL; +	} + +	/* Do not allow erase past end of device */ +	if ((instr->len + instr->addr) > mtd->size) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n"); +		return -EINVAL; +	} + +	instr->fail_addr = 0xffffffff; + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd, FL_ERASING); + +	/* Shift to get first page */ +	page = (int) (instr->addr >> this->page_shift); +	chipnr = (int) (instr->addr >> this->chip_shift); + +	/* Calculate pages in each block */ +	pages_per_block = 1 << (this->phys_erase_shift - this->page_shift); + +	/* Select the NAND device */ +	this->select_chip(mtd, chipnr); + +	/* Check the WP bit */ +	/* Check, if it is write protected */ +	if (nand_check_wp(mtd)) { +		DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n"); +		instr->state = MTD_ERASE_FAILED; +		goto erase_exit; +	} + +	/* Loop through the pages */ +	len = instr->len; + +	instr->state = MTD_ERASING; + +	while (len) { +		/* Check if we have a bad block, we do not erase bad blocks ! */ +		if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) { +			printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page); +			instr->state = MTD_ERASE_FAILED; +			goto erase_exit; +		} +		 +		/* Invalidate the page cache, if we erase the block which contains  +		   the current cached page */ +		if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block)) +			this->pagebuf = -1; + +		this->erase_cmd (mtd, page & this->pagemask); +		 +		status = this->waitfunc (mtd, this, FL_ERASING); + +		/* See if block erase succeeded */ +		if (status & 0x01) { +			DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page); +			instr->state = MTD_ERASE_FAILED; +			instr->fail_addr = (page << this->page_shift); +			goto erase_exit; +		} +		 +		/* Increment page address and decrement length */ +		len -= (1 << this->phys_erase_shift); +		page += pages_per_block; + +		/* Check, if we cross a chip boundary */ +		if (len && !(page & this->pagemask)) { +			chipnr++; +			this->select_chip(mtd, -1); +			this->select_chip(mtd, chipnr); +		} +	} +	instr->state = MTD_ERASE_DONE; + +erase_exit: + +	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; +	/* Do call back function */ +	if (!ret) +		mtd_erase_callback(instr); + +	/* Deselect and wake up anyone waiting on the device */ +	nand_release_device(mtd); + +	/* Return more or less happy */ +	return ret; +} + +/** + * nand_sync - [MTD Interface] sync + * @mtd:	MTD device structure + * + * Sync is actually a wait for chip ready function + */ +static void nand_sync (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; + +	DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n"); + +	/* Grab the lock and see if the device is available */ +	nand_get_device (this, mtd, FL_SYNCING); +	/* Release it and go back */ +	nand_release_device (mtd); +} + + +/** + * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad + * @mtd:	MTD device structure + * @ofs:	offset relative to mtd start + */ +static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs) +{ +	/* Check for invalid offset */ +	if (ofs > mtd->size)  +		return -EINVAL; +	 +	return nand_block_checkbad (mtd, ofs, 1, 0); +} + +/** + * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad + * @mtd:	MTD device structure + * @ofs:	offset relative to mtd start + */ +static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs) +{ +	struct nand_chip *this = mtd->priv; +	int ret; + +        if ((ret = nand_block_isbad(mtd, ofs))) { +        	/* If it was bad already, return success and do nothing. */ +		if (ret > 0) +			return 0; +        	return ret; +        } + +	return this->block_markbad(mtd, ofs); +} + +/** + * nand_scan - [NAND Interface] Scan for the NAND device + * @mtd:	MTD device structure + * @maxchips:	Number of chips to scan for + * + * This fills out all the not initialized function pointers + * with the defaults. + * The flash ID is read and the mtd/chip structures are + * filled with the appropriate values. Buffers are allocated if + * they are not provided by the board driver + * + */ +int nand_scan (struct mtd_info *mtd, int maxchips) +{ +	int i, j, nand_maf_id, nand_dev_id, busw; +	struct nand_chip *this = mtd->priv; + +	/* Get buswidth to select the correct functions*/ +	busw = this->options & NAND_BUSWIDTH_16; + +	/* check for proper chip_delay setup, set 20us if not */ +	if (!this->chip_delay) +		this->chip_delay = 20; + +	/* check, if a user supplied command function given */ +	if (this->cmdfunc == NULL) +		this->cmdfunc = nand_command; + +	/* check, if a user supplied wait function given */ +	if (this->waitfunc == NULL) +		this->waitfunc = nand_wait; + +	if (!this->select_chip) +		this->select_chip = nand_select_chip; +	if (!this->write_byte) +		this->write_byte = busw ? nand_write_byte16 : nand_write_byte; +	if (!this->read_byte) +		this->read_byte = busw ? nand_read_byte16 : nand_read_byte; +	if (!this->write_word) +		this->write_word = nand_write_word; +	if (!this->read_word) +		this->read_word = nand_read_word; +	if (!this->block_bad) +		this->block_bad = nand_block_bad; +	if (!this->block_markbad) +		this->block_markbad = nand_default_block_markbad; +	if (!this->write_buf) +		this->write_buf = busw ? nand_write_buf16 : nand_write_buf; +	if (!this->read_buf) +		this->read_buf = busw ? nand_read_buf16 : nand_read_buf; +	if (!this->verify_buf) +		this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; +	if (!this->scan_bbt) +		this->scan_bbt = nand_default_bbt; + +	/* Select the device */ +	this->select_chip(mtd, 0); + +	/* Send the command for reading device ID */ +	this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1); + +	/* Read manufacturer and device IDs */ +	nand_maf_id = this->read_byte(mtd); +	nand_dev_id = this->read_byte(mtd); + +	/* Print and store flash device information */ +	for (i = 0; nand_flash_ids[i].name != NULL; i++) { +				 +		if (nand_dev_id != nand_flash_ids[i].id)  +			continue; + +		if (!mtd->name) mtd->name = nand_flash_ids[i].name; +		this->chipsize = nand_flash_ids[i].chipsize << 20; +		 +		/* New devices have all the information in additional id bytes */ +		if (!nand_flash_ids[i].pagesize) { +			int extid; +			/* The 3rd id byte contains non relevant data ATM */ +			extid = this->read_byte(mtd); +			/* The 4th id byte is the important one */ +			extid = this->read_byte(mtd); +			/* Calc pagesize */ +			mtd->oobblock = 1024 << (extid & 0x3); +			extid >>= 2; +			/* Calc oobsize */ +			mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512); +			extid >>= 2; +			/* Calc blocksize. Blocksize is multiples of 64KiB */ +			mtd->erasesize = (64 * 1024)  << (extid & 0x03); +			extid >>= 2; +			/* Get buswidth information */ +			busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; +		 +		} else { +			/* Old devices have this data hardcoded in the +			 * device id table */ +			mtd->erasesize = nand_flash_ids[i].erasesize; +			mtd->oobblock = nand_flash_ids[i].pagesize; +			mtd->oobsize = mtd->oobblock / 32; +			busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16; +		} + +		/* Check, if buswidth is correct. Hardware drivers should set +		 * this correct ! */ +		if (busw != (this->options & NAND_BUSWIDTH_16)) { +			printk (KERN_INFO "NAND device: Manufacturer ID:" +				" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,  +				nand_manuf_ids[i].name , mtd->name); +			printk (KERN_WARNING  +				"NAND bus width %d instead %d bit\n",  +					(this->options & NAND_BUSWIDTH_16) ? 16 : 8, +					busw ? 16 : 8); +			this->select_chip(mtd, -1); +			return 1;	 +		} +		 +		/* Calculate the address shift from the page size */	 +		this->page_shift = ffs(mtd->oobblock) - 1; +		this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1; +		this->chip_shift = ffs(this->chipsize) - 1; + +		/* Set the bad block position */ +		this->badblockpos = mtd->oobblock > 512 ?  +			NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS; + +		/* Get chip options, preserve non chip based options */ +		this->options &= ~NAND_CHIPOPTIONS_MSK; +		this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK; +		/* Set this as a default. Board drivers can override it, if neccecary */ +		this->options |= NAND_NO_AUTOINCR; +		/* Check if this is a not a samsung device. Do not clear the options +		 * for chips which are not having an extended id. +		 */	 +		if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize) +			this->options &= ~NAND_SAMSUNG_LP_OPTIONS; +		 +		/* Check for AND chips with 4 page planes */ +		if (this->options & NAND_4PAGE_ARRAY) +			this->erase_cmd = multi_erase_cmd; +		else +			this->erase_cmd = single_erase_cmd; + +		/* Do not replace user supplied command function ! */ +		if (mtd->oobblock > 512 && this->cmdfunc == nand_command) +			this->cmdfunc = nand_command_lp; +				 +		/* Try to identify manufacturer */ +		for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { +			if (nand_manuf_ids[j].id == nand_maf_id) +				break; +		} +		printk (KERN_INFO "NAND device: Manufacturer ID:" +			" 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,  +			nand_manuf_ids[j].name , nand_flash_ids[i].name); +		break; +	} + +	if (!nand_flash_ids[i].name) { +		printk (KERN_WARNING "No NAND device found!!!\n"); +		this->select_chip(mtd, -1); +		return 1; +	} + +	for (i=1; i < maxchips; i++) { +		this->select_chip(mtd, i); + +		/* Send the command for reading device ID */ +		this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1); + +		/* Read manufacturer and device IDs */ +		if (nand_maf_id != this->read_byte(mtd) || +		    nand_dev_id != this->read_byte(mtd)) +			break; +	} +	if (i > 1) +		printk(KERN_INFO "%d NAND chips detected\n", i); +	 +	/* Allocate buffers, if neccecary */ +	if (!this->oob_buf) { +		size_t len; +		len = mtd->oobsize << (this->phys_erase_shift - this->page_shift); +		this->oob_buf = kmalloc (len, GFP_KERNEL); +		if (!this->oob_buf) { +			printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n"); +			return -ENOMEM; +		} +		this->options |= NAND_OOBBUF_ALLOC; +	} +	 +	if (!this->data_buf) { +		size_t len; +		len = mtd->oobblock + mtd->oobsize; +		this->data_buf = kmalloc (len, GFP_KERNEL); +		if (!this->data_buf) { +			if (this->options & NAND_OOBBUF_ALLOC) +				kfree (this->oob_buf); +			printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n"); +			return -ENOMEM; +		} +		this->options |= NAND_DATABUF_ALLOC; +	} + +	/* Store the number of chips and calc total size for mtd */ +	this->numchips = i; +	mtd->size = i * this->chipsize; +	/* Convert chipsize to number of pages per chip -1. */ +	this->pagemask = (this->chipsize >> this->page_shift) - 1; +	/* Preset the internal oob buffer */ +	memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift)); + +	/* If no default placement scheme is given, select an +	 * appropriate one */ +	if (!this->autooob) { +		/* Select the appropriate default oob placement scheme for +		 * placement agnostic filesystems */ +		switch (mtd->oobsize) {  +		case 8: +			this->autooob = &nand_oob_8; +			break; +		case 16: +			this->autooob = &nand_oob_16; +			break; +		case 64: +			this->autooob = &nand_oob_64; +			break; +		default: +			printk (KERN_WARNING "No oob scheme defined for oobsize %d\n", +				mtd->oobsize); +/*			BUG(); */ +		} +	} +	 +	/* The number of bytes available for the filesystem to place fs dependend +	 * oob data */ +	if (this->options & NAND_BUSWIDTH_16) { +		mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2); +		if (this->autooob->eccbytes & 0x01) +			mtd->oobavail--; +	} else +		mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1); + +	/*  +	 * check ECC mode, default to software +	 * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize +	 * fallback to software ECC  +	*/ +	this->eccsize = 256;	/* set default eccsize */	 +	this->eccbytes = 3; + +	switch (this->eccmode) { +	case NAND_ECC_HW12_2048: +		if (mtd->oobblock < 2048) { +			printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", +			       mtd->oobblock); +			this->eccmode = NAND_ECC_SOFT; +			this->calculate_ecc = nand_calculate_ecc; +			this->correct_data = nand_correct_data; +		} else +			this->eccsize = 2048; +		break; + +	case NAND_ECC_HW3_512:  +	case NAND_ECC_HW6_512:  +	case NAND_ECC_HW8_512:  +		if (mtd->oobblock == 256) { +			printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n"); +			this->eccmode = NAND_ECC_SOFT; +			this->calculate_ecc = nand_calculate_ecc; +			this->correct_data = nand_correct_data; +		} else  +			this->eccsize = 512; /* set eccsize to 512 */ +		break; +			 +	case NAND_ECC_HW3_256: +		break; +		 +	case NAND_ECC_NONE:  +		printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n"); +		this->eccmode = NAND_ECC_NONE; +		break; + +	case NAND_ECC_SOFT:	 +		this->calculate_ecc = nand_calculate_ecc; +		this->correct_data = nand_correct_data; +		break; + +	default: +		printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode); +/*		BUG(); */ +	}	 + +	/* Check hardware ecc function availability and adjust number of ecc bytes per  +	 * calculation step +	*/ +	switch (this->eccmode) { +	case NAND_ECC_HW12_2048: +		this->eccbytes += 4; +	case NAND_ECC_HW8_512:  +		this->eccbytes += 2; +	case NAND_ECC_HW6_512:  +		this->eccbytes += 3; +	case NAND_ECC_HW3_512:  +	case NAND_ECC_HW3_256: +		if (this->calculate_ecc && this->correct_data && this->enable_hwecc) +			break; +		printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n"); +/*		BUG();	*/ +	} +		 +	mtd->eccsize = this->eccsize; +	 +	/* Set the number of read / write steps for one page to ensure ECC generation */ +	switch (this->eccmode) { +	case NAND_ECC_HW12_2048: +		this->eccsteps = mtd->oobblock / 2048; +		break; +	case NAND_ECC_HW3_512: +	case NAND_ECC_HW6_512: +	case NAND_ECC_HW8_512: +		this->eccsteps = mtd->oobblock / 512; +		break; +	case NAND_ECC_HW3_256: +	case NAND_ECC_SOFT:	 +		this->eccsteps = mtd->oobblock / 256; +		break; +		 +	case NAND_ECC_NONE:  +		this->eccsteps = 1; +		break; +	} + +/* XXX U-BOOT XXX */ +#if 0	 +	/* Initialize state, waitqueue and spinlock */ +	this->state = FL_READY; +	init_waitqueue_head (&this->wq); +	spin_lock_init (&this->chip_lock); +#endif + +	/* De-select the device */ +	this->select_chip(mtd, -1); + +	/* Invalidate the pagebuffer reference */ +	this->pagebuf = -1; + +	/* Fill in remaining MTD driver data */ +	mtd->type = MTD_NANDFLASH; +	mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC; +	mtd->ecctype = MTD_ECC_SW; +	mtd->erase = nand_erase; +	mtd->point = NULL; +	mtd->unpoint = NULL; +	mtd->read = nand_read; +	mtd->write = nand_write; +	mtd->read_ecc = nand_read_ecc; +	mtd->write_ecc = nand_write_ecc; +	mtd->read_oob = nand_read_oob; +	mtd->write_oob = nand_write_oob; +/* XXX U-BOOT XXX */ +#if 0 +	mtd->readv = NULL; +	mtd->writev = nand_writev; +	mtd->writev_ecc = nand_writev_ecc; +#endif +	mtd->sync = nand_sync; +/* XXX U-BOOT XXX */ +#if 0 +	mtd->lock = NULL; +	mtd->unlock = NULL; +	mtd->suspend = NULL; +	mtd->resume = NULL; +#endif +	mtd->block_isbad = nand_block_isbad; +	mtd->block_markbad = nand_block_markbad; + +	/* and make the autooob the default one */ +	memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo)); +/* XXX U-BOOT XXX */ +#if 0 +	mtd->owner = THIS_MODULE; +#endif +	/* Build bad block table */ +	return this->scan_bbt (mtd); +} + +/** + * nand_release - [NAND Interface] Free resources held by the NAND device  + * @mtd:	MTD device structure +*/ +void nand_release (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; + +#ifdef CONFIG_MTD_PARTITIONS +	/* Deregister partitions */ +	del_mtd_partitions (mtd); +#endif +	/* Deregister the device */ +/* XXX U-BOOT XXX */ +#if 0 +	del_mtd_device (mtd); +#endif +	/* Free bad block table memory, if allocated */ +	if (this->bbt) +		kfree (this->bbt); +	/* Buffer allocated by nand_scan ? */ +	if (this->options & NAND_OOBBUF_ALLOC) +		kfree (this->oob_buf); +	/* Buffer allocated by nand_scan ? */ +	if (this->options & NAND_DATABUF_ALLOC) +		kfree (this->data_buf); +} + +#endif diff --git a/drivers/nand/nand_bbt.c b/drivers/nand/nand_bbt.c new file mode 100644 index 000000000..6f7e05b7e --- /dev/null +++ b/drivers/nand/nand_bbt.c @@ -0,0 +1,1056 @@ +/* + *  drivers/mtd/nand_bbt.c + * + *  Overview: + *   Bad block table support for the NAND driver + *    + *  Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) + * + * $Id: nand_bbt.c,v 1.28 2004/11/13 10:19:09 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Description: + * + * When nand_scan_bbt is called, then it tries to find the bad block table  + * depending on the options in the bbt descriptor(s). If a bbt is found  + * then the contents are read and the memory based bbt is created. If a  + * mirrored bbt is selected then the mirror is searched too and the + * versions are compared. If the mirror has a greater version number  + * than the mirror bbt is used to build the memory based bbt. + * If the tables are not versioned, then we "or" the bad block information. + * If one of the bbt's is out of date or does not exist it is (re)created.  + * If no bbt exists at all then the device is scanned for factory marked  + * good / bad blocks and the bad block tables are created.  + * + * For manufacturer created bbts like the one found on M-SYS DOC devices  + * the bbt is searched and read but never created + * + * The autogenerated bad block table is located in the last good blocks  + * of the device. The table is mirrored, so it can be updated eventually.  + * The table is marked in the oob area with an ident pattern and a version  + * number which indicates which of both tables is more up to date. + * + * The table uses 2 bits per block + * 11b: 	block is good + * 00b: 	block is factory marked bad + * 01b, 10b: 	block is marked bad due to wear + * + * The memory bad block table uses the following scheme: + * 00b:		block is good + * 01b:		block is marked bad due to wear + * 10b:		block is reserved (to protect the bbt area) + * 11b:		block is factory marked bad + *  + * Multichip devices like DOC store the bad block info per floor. + * + * Following assumptions are made: + * - bbts start at a page boundary, if autolocated on a block boundary + * - the space neccecary for a bbt in FLASH does not exceed a block boundary + *  + */ + +#include <common.h> + +#if (CONFIG_COMMANDS & CFG_CMD_NAND) + +#include <malloc.h> +#include <linux/mtd/compat.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> + +#include <asm/errno.h> + +/**  + * check_pattern - [GENERIC] check if a pattern is in the buffer + * @buf:	the buffer to search + * @len:	the length of buffer to search + * @paglen:	the pagelength + * @td:		search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block + * tables and good / bad block identifiers. + * If the SCAN_EMPTY option is set then check, if all bytes except the + * pattern area contain 0xff + * +*/ +static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) +{ +	int i, end; +	uint8_t *p = buf; + +	end = paglen + td->offs; +	if (td->options & NAND_BBT_SCANEMPTY) { +		for (i = 0; i < end; i++) { +			if (p[i] != 0xff) +				return -1; +		} +	}	 +	p += end; +	 +	/* Compare the pattern */ +	for (i = 0; i < td->len; i++) { +		if (p[i] != td->pattern[i]) +			return -1; +	} + +	p += td->len; +	end += td->len; +	if (td->options & NAND_BBT_SCANEMPTY) { +		for (i = end; i < len; i++) { +			if (*p++ != 0xff) +				return -1; +		} +	} +	return 0; +} + +/** + * read_bbt - [GENERIC] Read the bad block table starting from page + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @page:	the starting page + * @num:	the number of bbt descriptors to read + * @bits:	number of bits per block + * @offs:	offset in the memory table + * @reserved_block_code:	Pattern to identify reserved blocks + * + * Read the bad block table starting from page. + * + */ +static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num,  +	int bits, int offs, int reserved_block_code) +{ +	int res, i, j, act = 0; +	struct nand_chip *this = mtd->priv; +	size_t retlen, len, totlen; +	loff_t from; +	uint8_t msk = (uint8_t) ((1 << bits) - 1); + +	totlen = (num * bits) >> 3; +	from = ((loff_t)page) << this->page_shift; +	 +	while (totlen) { +		len = min (totlen, (size_t) (1 << this->bbt_erase_shift)); +		res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob); +		if (res < 0) { +			if (retlen != len) { +				printk (KERN_INFO "nand_bbt: Error reading bad block table\n"); +				return res; +			} +			printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n"); +		}	 + +		/* Analyse data */ +		for (i = 0; i < len; i++) { +			uint8_t dat = buf[i]; +			for (j = 0; j < 8; j += bits, act += 2) { +				uint8_t tmp = (dat >> j) & msk; +				if (tmp == msk) +					continue; +				if (reserved_block_code && +				    (tmp == reserved_block_code)) { +					printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n", +						((offs << 2) + (act >> 1)) << this->bbt_erase_shift); +					this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06); +					continue; +				} +				/* Leave it for now, if its matured we can move this +				 * message to MTD_DEBUG_LEVEL0 */ +				printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n", +					((offs << 2) + (act >> 1)) << this->bbt_erase_shift); +				/* Factory marked bad or worn out ? */	 +				if (tmp == 0) +					this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06); +				else +					this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06); +			}	 +		} +		totlen -= len; +		from += len; +	} +	return 0; +} + +/** + * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @td:		descriptor for the bad block table  + * @chip:	read the table for a specific chip, -1 read all chips. + *		Applies only if NAND_BBT_PERCHIP option is set + * + * Read the bad block table for all chips starting at a given page + * We assume that the bbt bits are in consecutive order. +*/ +static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) +{ +	struct nand_chip *this = mtd->priv; +	int res = 0, i; +	int bits; + +	bits = td->options & NAND_BBT_NRBITS_MSK; +	if (td->options & NAND_BBT_PERCHIP) { +		int offs = 0; +		for (i = 0; i < this->numchips; i++) { +			if (chip == -1 || chip == i) +				res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code); +			if (res) +				return res; +			offs += this->chipsize >> (this->bbt_erase_shift + 2); +		} +	} else { +		res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code); +		if (res) +			return res; +	} +	return 0; +} + +/** + * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @td:		descriptor for the bad block table  + * @md:		descriptor for the bad block table mirror + * + * Read the bad block table(s) for all chips starting at a given page + * We assume that the bbt bits are in consecutive order. + * +*/ +static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, +	struct nand_bbt_descr *md) +{ +	struct nand_chip *this = mtd->priv; + +	/* Read the primary version, if available */	 +	if (td->options & NAND_BBT_VERSION) { +		nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);  +		td->version[0] = buf[mtd->oobblock + td->veroffs]; +		printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]); +	} + +	/* Read the mirror version, if available */	 +	if (md && (md->options & NAND_BBT_VERSION)) { +		nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);  +		md->version[0] = buf[mtd->oobblock + md->veroffs]; +		printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]); +	} + +	return 1; +} + +/** + * create_bbt - [GENERIC] Create a bad block table by scanning the device + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @bd:		descriptor for the good/bad block search pattern + * @chip:	create the table for a specific chip, -1 read all chips. + *		Applies only if NAND_BBT_PERCHIP option is set + * + * Create a bad block table by scanning the device + * for the given good/bad block identify pattern + */ +static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) +{ +	struct nand_chip *this = mtd->priv; +	int i, j, numblocks, len, scanlen; +	int startblock; +	loff_t from; +	size_t readlen, ooblen; + +	printk (KERN_INFO "Scanning device for bad blocks\n"); + +	if (bd->options & NAND_BBT_SCANALLPAGES) +		len = 1 << (this->bbt_erase_shift - this->page_shift); +	else { +		if (bd->options & NAND_BBT_SCAN2NDPAGE) +			len = 2; +		else	 +			len = 1; +	} +	scanlen	= mtd->oobblock + mtd->oobsize; +	readlen = len * mtd->oobblock; +	ooblen = len * mtd->oobsize; + +	if (chip == -1) { +		/* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it +		 * makes shifting and masking less painful */ +		numblocks = mtd->size >> (this->bbt_erase_shift - 1); +		startblock = 0; +		from = 0; +	} else { +		if (chip >= this->numchips) { +			printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n", +				chip + 1, this->numchips); +			return;	 +		} +		numblocks = this->chipsize >> (this->bbt_erase_shift - 1); +		startblock = chip * numblocks; +		numblocks += startblock; +		from = startblock << (this->bbt_erase_shift - 1); +	} +	 +	for (i = startblock; i < numblocks;) { +		nand_read_raw (mtd, buf, from, readlen, ooblen); +		for (j = 0; j < len; j++) { +			if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) { +				this->bbt[i >> 3] |= 0x03 << (i & 0x6); +				printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",  +					i >> 1, (unsigned int) from); +				break; +			} +		} +		i += 2; +		from += (1 << this->bbt_erase_shift); +	} +} + +/** + * search_bbt - [GENERIC] scan the device for a specific bad block table + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @td:		descriptor for the bad block table + * + * Read the bad block table by searching for a given ident pattern. + * Search is preformed either from the beginning up or from the end of  + * the device downwards. The search starts always at the start of a + * block. + * If the option NAND_BBT_PERCHIP is given, each chip is searched  + * for a bbt, which contains the bad block information of this chip. + * This is neccecary to provide support for certain DOC devices. + * + * The bbt ident pattern resides in the oob area of the first page  + * in a block.  + */ +static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) +{ +	struct nand_chip *this = mtd->priv; +	int i, chips; +	int bits, startblock, block, dir; +	int scanlen = mtd->oobblock + mtd->oobsize; +	int bbtblocks; + +	/* Search direction top -> down ? */ +	if (td->options & NAND_BBT_LASTBLOCK) { +		startblock = (mtd->size >> this->bbt_erase_shift) -1; +		dir = -1; +	} else { +		startblock = 0;	 +		dir = 1; +	}	 +	 +	/* Do we have a bbt per chip ? */ +	if (td->options & NAND_BBT_PERCHIP) { +		chips = this->numchips; +		bbtblocks = this->chipsize >> this->bbt_erase_shift; +		startblock &= bbtblocks - 1; +	} else { +		chips = 1; +		bbtblocks = mtd->size >> this->bbt_erase_shift; +	} +	 +	/* Number of bits for each erase block in the bbt */ +	bits = td->options & NAND_BBT_NRBITS_MSK; +	 +	for (i = 0; i < chips; i++) { +		/* Reset version information */ +		td->version[i] = 0;	 +		td->pages[i] = -1; +		/* Scan the maximum number of blocks */ +		for (block = 0; block < td->maxblocks; block++) { +			int actblock = startblock + dir * block; +			/* Read first page */ +			nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize);  +			if (!check_pattern(buf, scanlen, mtd->oobblock, td)) { +				td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift); +				if (td->options & NAND_BBT_VERSION) { +					td->version[i] = buf[mtd->oobblock + td->veroffs]; +				} +				break; +			} +		} +		startblock += this->chipsize >> this->bbt_erase_shift; +	} +	/* Check, if we found a bbt for each requested chip */ +	for (i = 0; i < chips; i++) { +		if (td->pages[i] == -1) +			printk (KERN_WARNING "Bad block table not found for chip %d\n", i); +		else +			printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]); +	} +	return 0;	 +} + +/** + * search_read_bbts - [GENERIC] scan the device for bad block table(s) + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @td:		descriptor for the bad block table  + * @md:		descriptor for the bad block table mirror + * + * Search and read the bad block table(s) +*/ +static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf,  +	struct nand_bbt_descr *td, struct nand_bbt_descr *md) +{ +	/* Search the primary table */ +	search_bbt (mtd, buf, td); +		 +	/* Search the mirror table */ +	if (md) +		search_bbt (mtd, buf, md); +	 +	/* Force result check */ +	return 1;	 +} +	 + +/**  + * write_bbt - [GENERIC] (Re)write the bad block table + * + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @td:		descriptor for the bad block table  + * @md:		descriptor for the bad block table mirror + * @chipsel:	selector for a specific chip, -1 for all + * + * (Re)write the bad block table + * +*/ +static int write_bbt (struct mtd_info *mtd, uint8_t *buf,  +	struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel) +{ +	struct nand_chip *this = mtd->priv; +	struct nand_oobinfo oobinfo; +	struct erase_info einfo; +	int i, j, res, chip = 0; +	int bits, startblock, dir, page, offs, numblocks, sft, sftmsk; +	int nrchips, bbtoffs, pageoffs; +	uint8_t msk[4]; +	uint8_t rcode = td->reserved_block_code; +	size_t retlen, len = 0; +	loff_t to; + +	if (!rcode) +		rcode = 0xff; +	/* Write bad block table per chip rather than per device ? */ +	if (td->options & NAND_BBT_PERCHIP) { +		numblocks = (int) (this->chipsize >> this->bbt_erase_shift); +		/* Full device write or specific chip ? */	 +		if (chipsel == -1) { +			nrchips = this->numchips; +		} else { +			nrchips = chipsel + 1; +			chip = chipsel; +		} +	} else { +		numblocks = (int) (mtd->size >> this->bbt_erase_shift); +		nrchips = 1; +	}	 +	 +	/* Loop through the chips */ +	for (; chip < nrchips; chip++) { +		 +		/* There was already a version of the table, reuse the page  +		 * This applies for absolute placement too, as we have the  +		 * page nr. in td->pages. +		 */ +		if (td->pages[chip] != -1) { +			page = td->pages[chip]; +			goto write; +		}	 + +		/* Automatic placement of the bad block table */ +		/* Search direction top -> down ? */ +		if (td->options & NAND_BBT_LASTBLOCK) { +			startblock = numblocks * (chip + 1) - 1; +			dir = -1; +		} else { +			startblock = chip * numblocks; +			dir = 1; +		}	 + +		for (i = 0; i < td->maxblocks; i++) { +			int block = startblock + dir * i; +			/* Check, if the block is bad */ +			switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) { +			case 0x01: +			case 0x03: +				continue; +			} +			page = block << (this->bbt_erase_shift - this->page_shift); +			/* Check, if the block is used by the mirror table */ +			if (!md || md->pages[chip] != page) +				goto write; +		} +		printk (KERN_ERR "No space left to write bad block table\n"); +		return -ENOSPC; +write:	 + +		/* Set up shift count and masks for the flash table */ +		bits = td->options & NAND_BBT_NRBITS_MSK; +		switch (bits) { +		case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x01; break; +		case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x03; break; +		case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[2] = ~rcode; msk[3] = 0x0f; break; +		case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[2] = ~rcode; msk[3] = 0xff; break; +		default: return -EINVAL; +		} +		 +		bbtoffs = chip * (numblocks >> 2); +		 +		to = ((loff_t) page) << this->page_shift; + +		memcpy (&oobinfo, this->autooob, sizeof(oobinfo)); +		oobinfo.useecc = MTD_NANDECC_PLACEONLY; +		 +		/* Must we save the block contents ? */ +		if (td->options & NAND_BBT_SAVECONTENT) { +			/* Make it block aligned */ +			to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1)); +			len = 1 << this->bbt_erase_shift; +			res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo); +			if (res < 0) { +				if (retlen != len) { +					printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n"); +					return res; +				} +				printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n"); +			} +			/* Calc the byte offset in the buffer */ +			pageoffs = page - (int)(to >> this->page_shift); +			offs = pageoffs << this->page_shift; +			/* Preset the bbt area with 0xff */ +			memset (&buf[offs], 0xff, (size_t)(numblocks >> sft)); +			/* Preset the bbt's oob area with 0xff */ +			memset (&buf[len + pageoffs * mtd->oobsize], 0xff, +				((len >> this->page_shift) - pageoffs) * mtd->oobsize); +			if (td->options & NAND_BBT_VERSION) { +				buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip]; +			} +		} else { +			/* Calc length */ +			len = (size_t) (numblocks >> sft); +			/* Make it page aligned ! */ +			len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1); +			/* Preset the buffer with 0xff */ +			memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize); +			offs = 0; +			/* Pattern is located in oob area of first page */ +			memcpy (&buf[len + td->offs], td->pattern, td->len); +			if (td->options & NAND_BBT_VERSION) { +				buf[len + td->veroffs] = td->version[chip]; +			} +		} +	 +		/* walk through the memory table */ +		for (i = 0; i < numblocks; ) { +			uint8_t dat; +			dat = this->bbt[bbtoffs + (i >> 2)]; +			for (j = 0; j < 4; j++ , i++) { +				int sftcnt = (i << (3 - sft)) & sftmsk; +				/* Do not store the reserved bbt blocks ! */ +				buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt); +				dat >>= 2; +			} +		} +		 +		memset (&einfo, 0, sizeof (einfo)); +		einfo.mtd = mtd; +		einfo.addr = (unsigned long) to; +		einfo.len = 1 << this->bbt_erase_shift; +		res = nand_erase_nand (mtd, &einfo, 1); +		if (res < 0) { +			printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res); +			return res; +		} +	 +		res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo); +		if (res < 0) { +			printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res); +			return res; +		} +		printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n",  +			(unsigned int) to, td->version[chip]); +	 +		/* Mark it as used */ +		td->pages[chip] = page; +	}	 +	return 0; +} + +/** + * nand_memory_bbt - [GENERIC] create a memory based bad block table + * @mtd:	MTD device structure + * @bd:		descriptor for the good/bad block search pattern + * + * The function creates a memory based bbt by scanning the device  + * for manufacturer / software marked good / bad blocks +*/ +static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ +	struct nand_chip *this = mtd->priv; + +	/* Ensure that we only scan for the pattern and nothing else */ +	bd->options = 0; +	create_bbt (mtd, this->data_buf, bd, -1); +	return 0; +} + +/** + * check_create - [GENERIC] create and write bbt(s) if neccecary + * @mtd:	MTD device structure + * @buf:	temporary buffer + * @bd:		descriptor for the good/bad block search pattern + * + * The function checks the results of the previous call to read_bbt + * and creates / updates the bbt(s) if neccecary + * Creation is neccecary if no bbt was found for the chip/device + * Update is neccecary if one of the tables is missing or the + * version nr. of one table is less than the other +*/ +static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd) +{ +	int i, chips, writeops, chipsel, res; +	struct nand_chip *this = mtd->priv; +	struct nand_bbt_descr *td = this->bbt_td; +	struct nand_bbt_descr *md = this->bbt_md; +	struct nand_bbt_descr *rd, *rd2; + +	/* Do we have a bbt per chip ? */ +	if (td->options & NAND_BBT_PERCHIP)  +		chips = this->numchips; +	else  +		chips = 1; +	 +	for (i = 0; i < chips; i++) { +		writeops = 0; +		rd = NULL; +		rd2 = NULL; +		/* Per chip or per device ? */ +		chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; +		/* Mirrored table avilable ? */ +		if (md) { +			if (td->pages[i] == -1 && md->pages[i] == -1) { +				writeops = 0x03; +				goto create; +			} + +			if (td->pages[i] == -1) { +				rd = md;				 +				td->version[i] = md->version[i]; +				writeops = 1; +				goto writecheck; +			} + +			if (md->pages[i] == -1) { +				rd = td; +				md->version[i] = td->version[i]; +				writeops = 2; +				goto writecheck; +			} + +			if (td->version[i] == md->version[i]) { +				rd = td; +				if (!(td->options & NAND_BBT_VERSION)) +					rd2 = md; +				goto writecheck; +			}	 + +			if (((int8_t) (td->version[i] - md->version[i])) > 0) { +				rd = td; +				md->version[i] = td->version[i]; +				writeops = 2; +			} else { +				rd = md; +				td->version[i] = md->version[i]; +				writeops = 1; +			} + +			goto writecheck; + +		} else { +			if (td->pages[i] == -1) { +				writeops = 0x01; +				goto create; +			} +			rd = td; +			goto writecheck; +		} +create: +		/* Create the bad block table by scanning the device ? */ +		if (!(td->options & NAND_BBT_CREATE)) +			continue;	 +		 +		/* Create the table in memory by scanning the chip(s) */ +		create_bbt (mtd, buf, bd, chipsel); +		 +		td->version[i] = 1; +		if (md) +			md->version[i] = 1;	 +writecheck:	 +		/* read back first ? */ +		if (rd) +			read_abs_bbt (mtd, buf, rd, chipsel); +		/* If they weren't versioned, read both. */ +		if (rd2) +			read_abs_bbt (mtd, buf, rd2, chipsel); + +		/* Write the bad block table to the device ? */ +		if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { +			res = write_bbt (mtd, buf, td, md, chipsel); +			if (res < 0) +				return res; +		} +		 +		/* Write the mirror bad block table to the device ? */ +		if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { +			res = write_bbt (mtd, buf, md, td, chipsel); +			if (res < 0) +				return res; +		} +	} +	return 0;	 +} + +/** + * mark_bbt_regions - [GENERIC] mark the bad block table regions  + * @mtd:	MTD device structure + * @td:		bad block table descriptor + * + * The bad block table regions are marked as "bad" to prevent + * accidental erasures / writes. The regions are identified by + * the mark 0x02. +*/ +static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td) +{ +	struct nand_chip *this = mtd->priv; +	int i, j, chips, block, nrblocks, update; +	uint8_t oldval, newval; + +	/* Do we have a bbt per chip ? */ +	if (td->options & NAND_BBT_PERCHIP) { +		chips = this->numchips; +		nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); +	} else { +		chips = 1; +		nrblocks = (int)(mtd->size >> this->bbt_erase_shift); +	}	 +	 +	for (i = 0; i < chips; i++) { +		if ((td->options & NAND_BBT_ABSPAGE) || +		    !(td->options & NAND_BBT_WRITE)) { +		    	if (td->pages[i] == -1) continue; +			block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); +			block <<= 1;		 +			oldval = this->bbt[(block >> 3)]; +			newval = oldval | (0x2 << (block & 0x06)); +			this->bbt[(block >> 3)] = newval; +			if ((oldval != newval) && td->reserved_block_code) +				nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1)); +			continue; +		} +		update = 0; +		if (td->options & NAND_BBT_LASTBLOCK) +			block = ((i + 1) * nrblocks) - td->maxblocks; +		else	 +			block = i * nrblocks; +		block <<= 1;	 +		for (j = 0; j < td->maxblocks; j++) { +			oldval = this->bbt[(block >> 3)]; +			newval = oldval | (0x2 << (block & 0x06)); +			this->bbt[(block >> 3)] = newval; +			if (oldval != newval) update = 1; +			block += 2; +		}	 +		/* If we want reserved blocks to be recorded to flash, and some +		   new ones have been marked, then we need to update the stored +		   bbts.  This should only happen once. */ +		if (update && td->reserved_block_code) +			nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1)); +	} +} + +/** + * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) + * @mtd:	MTD device structure + * @bd:		descriptor for the good/bad block search pattern + * + * The function checks, if a bad block table(s) is/are already  + * available. If not it scans the device for manufacturer + * marked good / bad blocks and writes the bad block table(s) to + * the selected place. + * + * The bad block table memory is allocated here. It must be freed + * by calling the nand_free_bbt function. + * +*/ +int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ +	struct nand_chip *this = mtd->priv; +	int len, res = 0; +	uint8_t *buf; +	struct nand_bbt_descr *td = this->bbt_td; +	struct nand_bbt_descr *md = this->bbt_md; + +	len = mtd->size >> (this->bbt_erase_shift + 2); +	/* Allocate memory (2bit per block) */ +	this->bbt = kmalloc (len, GFP_KERNEL); +	if (!this->bbt) { +		printk (KERN_ERR "nand_scan_bbt: Out of memory\n"); +		return -ENOMEM; +	} +	/* Clear the memory bad block table */ +	memset (this->bbt, 0x00, len); + +	/* If no primary table decriptor is given, scan the device +	 * to build a memory based bad block table +	 */ +	if (!td) +		return nand_memory_bbt(mtd, bd); + +	/* Allocate a temporary buffer for one eraseblock incl. oob */ +	len = (1 << this->bbt_erase_shift); +	len += (len >> this->page_shift) * mtd->oobsize; +	buf = kmalloc (len, GFP_KERNEL); +	if (!buf) { +		printk (KERN_ERR "nand_bbt: Out of memory\n"); +		kfree (this->bbt); +		this->bbt = NULL; +		return -ENOMEM; +	} +	 +	/* Is the bbt at a given page ? */ +	if (td->options & NAND_BBT_ABSPAGE) { +		res = read_abs_bbts (mtd, buf, td, md); +	} else {	 +		/* Search the bad block table using a pattern in oob */ +		res = search_read_bbts (mtd, buf, td, md); +	}	 + +	if (res)  +		res = check_create (mtd, buf, bd); +	 +	/* Prevent the bbt regions from erasing / writing */ +	mark_bbt_region (mtd, td); +	if (md) +		mark_bbt_region (mtd, md); +	 +	kfree (buf); +	return res; +} + + +/** + * nand_update_bbt - [NAND Interface] update bad block table(s)  + * @mtd:	MTD device structure + * @offs:	the offset of the newly marked block + * + * The function updates the bad block table(s) +*/ +int nand_update_bbt (struct mtd_info *mtd, loff_t offs) +{ +	struct nand_chip *this = mtd->priv; +	int len, res = 0, writeops = 0; +	int chip, chipsel; +	uint8_t *buf; +	struct nand_bbt_descr *td = this->bbt_td; +	struct nand_bbt_descr *md = this->bbt_md; + +	if (!this->bbt || !td) +		return -EINVAL; + +	len = mtd->size >> (this->bbt_erase_shift + 2); +	/* Allocate a temporary buffer for one eraseblock incl. oob */ +	len = (1 << this->bbt_erase_shift); +	len += (len >> this->page_shift) * mtd->oobsize; +	buf = kmalloc (len, GFP_KERNEL); +	if (!buf) { +		printk (KERN_ERR "nand_update_bbt: Out of memory\n"); +		return -ENOMEM; +	} +	 +	writeops = md != NULL ? 0x03 : 0x01; + +	/* Do we have a bbt per chip ? */ +	if (td->options & NAND_BBT_PERCHIP) { +		chip = (int) (offs >> this->chip_shift); +		chipsel = chip; +	} else { +		chip = 0; +		chipsel = -1; +	} + +	td->version[chip]++; +	if (md) +		md->version[chip]++;	 + +	/* Write the bad block table to the device ? */ +	if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { +		res = write_bbt (mtd, buf, td, md, chipsel); +		if (res < 0) +			goto out; +	} +	/* Write the mirror bad block table to the device ? */ +	if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { +		res = write_bbt (mtd, buf, md, td, chipsel); +	} + +out:	 +	kfree (buf); +	return res; +} + +/* Define some generic bad / good block scan pattern which are used  + * while scanning a device for factory marked good / bad blocks + *  + * The memory based patterns just  + */ +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static struct nand_bbt_descr smallpage_memorybased = { +	.options = 0, +	.offs = 5, +	.len = 1, +	.pattern = scan_ff_pattern +}; + +static struct nand_bbt_descr largepage_memorybased = { +	.options = 0, +	.offs = 0, +	.len = 2, +	.pattern = scan_ff_pattern +}; + +static struct nand_bbt_descr smallpage_flashbased = { +	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, +	.offs = 5, +	.len = 1, +	.pattern = scan_ff_pattern +}; + +static struct nand_bbt_descr largepage_flashbased = { +	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, +	.offs = 0, +	.len = 2, +	.pattern = scan_ff_pattern +}; + +static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 }; + +static struct nand_bbt_descr agand_flashbased = { +	.options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, +	.offs = 0x20, +	.len = 6, +	.pattern = scan_agand_pattern +}; + +/* Generic flash bbt decriptors +*/ +static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE  +		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, +	.offs =	8, +	.len = 4, +	.veroffs = 12, +	.maxblocks = 4, +	.pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { +	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE  +		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, +	.offs =	8, +	.len = 4, +	.veroffs = 12, +	.maxblocks = 4, +	.pattern = mirror_pattern +}; + +/** + * nand_default_bbt - [NAND Interface] Select a default bad block table for the device  + * @mtd:	MTD device structure + * + * This function selects the default bad block table + * support for the device and calls the nand_scan_bbt function + * +*/ +int nand_default_bbt (struct mtd_info *mtd) +{ +	struct nand_chip *this = mtd->priv; +	 +	/* Default for AG-AND. We must use a flash based  +	 * bad block table as the devices have factory marked +	 * _good_ blocks. Erasing those blocks leads to loss +	 * of the good / bad information, so we _must_ store +	 * this information in a good / bad table during  +	 * startup +	*/ +	if (this->options & NAND_IS_AND) { +		/* Use the default pattern descriptors */ +		if (!this->bbt_td) {	 +			this->bbt_td = &bbt_main_descr; +			this->bbt_md = &bbt_mirror_descr; +		}	 +		this->options |= NAND_USE_FLASH_BBT; +		return nand_scan_bbt (mtd, &agand_flashbased); +	} +	 +	 +	/* Is a flash based bad block table requested ? */ +	if (this->options & NAND_USE_FLASH_BBT) { +		/* Use the default pattern descriptors */	 +		if (!this->bbt_td) {	 +			this->bbt_td = &bbt_main_descr; +			this->bbt_md = &bbt_mirror_descr; +		} +		if (!this->badblock_pattern) { +			this->badblock_pattern = (mtd->oobblock > 512) ? +				&largepage_flashbased : &smallpage_flashbased; +		} +	} else { +		this->bbt_td = NULL; +		this->bbt_md = NULL; +		if (!this->badblock_pattern) { +			this->badblock_pattern = (mtd->oobblock > 512) ? +				&largepage_memorybased : &smallpage_memorybased; +		} +	} +	return nand_scan_bbt (mtd, this->badblock_pattern); +} + +/** + * nand_isbad_bbt - [NAND Interface] Check if a block is bad  + * @mtd:	MTD device structure + * @offs:	offset in the device + * @allowbbt:	allow access to bad block table region + * +*/ +int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt) +{ +	struct nand_chip *this = mtd->priv; +	int block; +	uint8_t	res; +	 +	/* Get block number * 2 */ +	block = (int) (offs >> (this->bbt_erase_shift - 1)); +	res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03; + +	DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",  +		(unsigned int)offs, res, block >> 1); + +	switch ((int)res) { +	case 0x00:	return 0; +	case 0x01:	return 1; +	case 0x02:	return allowbbt ? 0 : 1; +	} +	return 1; +} + +#endif diff --git a/drivers/nand/nand_ecc.c b/drivers/nand/nand_ecc.c new file mode 100644 index 000000000..dc9db4b48 --- /dev/null +++ b/drivers/nand/nand_ecc.c @@ -0,0 +1,244 @@ +/* + * This file contains an ECC algorithm from Toshiba that detects and + * corrects 1 bit errors in a 256 byte block of data. + * + * drivers/mtd/nand/nand_ecc.c + * + * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com) + *                         Toshiba America Electronics Components, Inc. + * + * $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $ + * + * This file is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 or (at your option) any + * later version. + *  + * This file is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License + * for more details. + *  + * You should have received a copy of the GNU General Public License along + * with this file; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. + *  + * As a special exception, if other files instantiate templates or use + * macros or inline functions from these files, or you compile these + * files and link them with other works to produce a work based on these + * files, these files do not by themselves cause the resulting work to be + * covered by the GNU General Public License. However the source code for + * these files must still be made available in accordance with section (3) + * of the GNU General Public License. + *  + * This exception does not invalidate any other reasons why a work based on + * this file might be covered by the GNU General Public License. + */ + +#include <common.h> + +#if (CONFIG_COMMANDS & CFG_CMD_NAND) + +/* + * Pre-calculated 256-way 1 byte column parity + */ +static const u_char nand_ecc_precalc_table[] = { +	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, +	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, +	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, +	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, +	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, +	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, +	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, +	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, +	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, +	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, +	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, +	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, +	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, +	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, +	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, +	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 +}; + + +/** + * nand_trans_result - [GENERIC] create non-inverted ECC + * @reg2:	line parity reg 2 + * @reg3:	line parity reg 3 + * @ecc_code:	ecc  + * + * Creates non-inverted ECC code from line parity + */ +static void nand_trans_result(u_char reg2, u_char reg3, +	u_char *ecc_code) +{ +	u_char a, b, i, tmp1, tmp2; +	 +	/* Initialize variables */ +	a = b = 0x80; +	tmp1 = tmp2 = 0; +	 +	/* Calculate first ECC byte */ +	for (i = 0; i < 4; i++) { +		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */ +			tmp1 |= b; +		b >>= 1; +		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */ +			tmp1 |= b; +		b >>= 1; +		a >>= 1; +	} +	 +	/* Calculate second ECC byte */ +	b = 0x80; +	for (i = 0; i < 4; i++) { +		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */ +			tmp2 |= b; +		b >>= 1; +		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */ +			tmp2 |= b; +		b >>= 1; +		a >>= 1; +	} +	 +	/* Store two of the ECC bytes */ +	ecc_code[0] = tmp1; +	ecc_code[1] = tmp2; +} + +/** + * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block + * @mtd:	MTD block structure + * @dat:	raw data + * @ecc_code:	buffer for ECC + */ +int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +{ +	u_char idx, reg1, reg2, reg3; +	int j; +	 +	/* Initialize variables */ +	reg1 = reg2 = reg3 = 0; +	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; +	 +	/* Build up column parity */  +	for(j = 0; j < 256; j++) { +		 +		/* Get CP0 - CP5 from table */ +		idx = nand_ecc_precalc_table[dat[j]]; +		reg1 ^= (idx & 0x3f); +		 +		/* All bit XOR = 1 ? */ +		if (idx & 0x40) { +			reg3 ^= (u_char) j; +			reg2 ^= ~((u_char) j); +		} +	} +	 +	/* Create non-inverted ECC code from line parity */ +	nand_trans_result(reg2, reg3, ecc_code); +	 +	/* Calculate final ECC code */ +	ecc_code[0] = ~ecc_code[0]; +	ecc_code[1] = ~ecc_code[1]; +	ecc_code[2] = ((~reg1) << 2) | 0x03; +	return 0; +} + +/** + * nand_correct_data - [NAND Interface] Detect and correct bit error(s) + * @mtd:	MTD block structure + * @dat:	raw data read from the chip + * @read_ecc:	ECC from the chip + * @calc_ecc:	the ECC calculated from raw data + * + * Detect and correct a 1 bit error for 256 byte block + */ +int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) +{ +	u_char a, b, c, d1, d2, d3, add, bit, i; +	 +	/* Do error detection */  +	d1 = calc_ecc[0] ^ read_ecc[0]; +	d2 = calc_ecc[1] ^ read_ecc[1]; +	d3 = calc_ecc[2] ^ read_ecc[2]; +	 +	if ((d1 | d2 | d3) == 0) { +		/* No errors */ +		return 0; +	} +	else { +		a = (d1 ^ (d1 >> 1)) & 0x55; +		b = (d2 ^ (d2 >> 1)) & 0x55; +		c = (d3 ^ (d3 >> 1)) & 0x54; +		 +		/* Found and will correct single bit error in the data */ +		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { +			c = 0x80; +			add = 0; +			a = 0x80; +			for (i=0; i<4; i++) { +				if (d1 & c) +					add |= a; +				c >>= 2; +				a >>= 1; +			} +			c = 0x80; +			for (i=0; i<4; i++) { +				if (d2 & c) +					add |= a; +				c >>= 2; +				a >>= 1; +			} +			bit = 0; +			b = 0x04; +			c = 0x80; +			for (i=0; i<3; i++) { +				if (d3 & c) +					bit |= b; +				c >>= 2; +				b >>= 1; +			} +			b = 0x01; +			a = dat[add]; +			a ^= (b << bit); +			dat[add] = a; +			return 1; +		} +		else { +			i = 0; +			while (d1) { +				if (d1 & 0x01) +					++i; +				d1 >>= 1; +			} +			while (d2) { +				if (d2 & 0x01) +					++i; +				d2 >>= 1; +			} +			while (d3) { +				if (d3 & 0x01) +					++i; +				d3 >>= 1; +			} +			if (i == 1) { +				/* ECC Code Error Correction */ +				read_ecc[0] = calc_ecc[0]; +				read_ecc[1] = calc_ecc[1]; +				read_ecc[2] = calc_ecc[2]; +				return 2; +			} +			else { +				/* Uncorrectable Error */ +				return -1; +			} +		} +	} +	 +	/* Should never happen */ +	return -1; +} + +#endif	/* CONFIG_COMMANDS & CFG_CMD_NAND */ diff --git a/drivers/nand/nand_ids.c b/drivers/nand/nand_ids.c new file mode 100644 index 000000000..5df1e8971 --- /dev/null +++ b/drivers/nand/nand_ids.c @@ -0,0 +1,127 @@ +/* + *  drivers/mtd/nandids.c + * + *  Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de) +  * + * $Id: nand_ids.c,v 1.10 2004/05/26 13:40:12 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ +#include <common.h> + +#if (CONFIG_COMMANDS & CFG_CMD_NAND) + +#include <linux/mtd/nand.h> + +/* +*	Chip ID list +*	 +*	Name. ID code, pagesize, chipsize in MegaByte, eraseblock size, +*	options +*  +* 	Pagesize; 0, 256, 512 +*	0 	get this information from the extended chip ID ++	256	256 Byte page size +*	512	512 Byte page size	 +*/ +struct nand_flash_dev nand_flash_ids[] = { +	{"NAND 1MiB 5V 8-bit", 		0x6e, 256, 1, 0x1000, 0}, +	{"NAND 2MiB 5V 8-bit", 		0x64, 256, 2, 0x1000, 0}, +	{"NAND 4MiB 5V 8-bit", 		0x6b, 512, 4, 0x2000, 0}, +	{"NAND 1MiB 3,3V 8-bit", 	0xe8, 256, 1, 0x1000, 0}, +	{"NAND 1MiB 3,3V 8-bit", 	0xec, 256, 1, 0x1000, 0}, +	{"NAND 2MiB 3,3V 8-bit", 	0xea, 256, 2, 0x1000, 0}, +	{"NAND 4MiB 3,3V 8-bit", 	0xd5, 512, 4, 0x2000, 0}, +	{"NAND 4MiB 3,3V 8-bit", 	0xe3, 512, 4, 0x2000, 0}, +	{"NAND 4MiB 3,3V 8-bit", 	0xe5, 512, 4, 0x2000, 0}, +	{"NAND 8MiB 3,3V 8-bit", 	0xd6, 512, 8, 0x2000, 0}, +	 +	{"NAND 8MiB 1,8V 8-bit", 	0x39, 512, 8, 0x2000, 0}, +	{"NAND 8MiB 3,3V 8-bit", 	0xe6, 512, 8, 0x2000, 0}, +	{"NAND 8MiB 1,8V 16-bit", 	0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16}, +	{"NAND 8MiB 3,3V 16-bit", 	0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16}, +	 +	{"NAND 16MiB 1,8V 8-bit", 	0x33, 512, 16, 0x4000, 0}, +	{"NAND 16MiB 3,3V 8-bit", 	0x73, 512, 16, 0x4000, 0}, +	{"NAND 16MiB 1,8V 16-bit", 	0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16}, +	{"NAND 16MiB 3,3V 16-bit", 	0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16}, +	 +	{"NAND 32MiB 1,8V 8-bit", 	0x35, 512, 32, 0x4000, 0}, +	{"NAND 32MiB 3,3V 8-bit", 	0x75, 512, 32, 0x4000, 0}, +	{"NAND 32MiB 1,8V 16-bit", 	0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16}, +	{"NAND 32MiB 3,3V 16-bit", 	0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16}, +	 +	{"NAND 64MiB 1,8V 8-bit", 	0x36, 512, 64, 0x4000, 0}, +	{"NAND 64MiB 3,3V 8-bit", 	0x76, 512, 64, 0x4000, 0}, +	{"NAND 64MiB 1,8V 16-bit", 	0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16}, +	{"NAND 64MiB 3,3V 16-bit", 	0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16}, +	 +	{"NAND 128MiB 1,8V 8-bit", 	0x78, 512, 128, 0x4000, 0}, +	{"NAND 128MiB 3,3V 8-bit", 	0x79, 512, 128, 0x4000, 0}, +	{"NAND 128MiB 1,8V 16-bit", 	0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16}, +	{"NAND 128MiB 3,3V 16-bit", 	0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16}, +	 +	{"NAND 256MiB 3,3V 8-bit", 	0x71, 512, 256, 0x4000, 0}, + +	{"NAND 512MiB 3,3V 8-bit", 	0xDC, 512, 512, 0x4000, 0}, +	 +	/* These are the new chips with large page size. The pagesize +	* and the erasesize is determined from the extended id bytes +	*/ +	/* 1 Gigabit */ +	{"NAND 128MiB 1,8V 8-bit", 	0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 128MiB 3,3V 8-bit", 	0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 128MiB 1,8V 16-bit", 	0xB1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	{"NAND 128MiB 3,3V 16-bit", 	0xC1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + +	/* 2 Gigabit */ +	{"NAND 256MiB 1,8V 8-bit", 	0xAA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 256MiB 3,3V 8-bit", 	0xDA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 256MiB 1,8V 16-bit", 	0xBA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	{"NAND 256MiB 3,3V 16-bit", 	0xCA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	 +	/* 4 Gigabit */ +	{"NAND 512MiB 1,8V 8-bit", 	0xAC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 512MiB 3,3V 8-bit", 	0xDC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 512MiB 1,8V 16-bit", 	0xBC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	{"NAND 512MiB 3,3V 16-bit", 	0xCC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	 +	/* 8 Gigabit */ +	{"NAND 1GiB 1,8V 8-bit", 	0xA3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 1GiB 3,3V 8-bit", 	0xD3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 1GiB 1,8V 16-bit", 	0xB3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	{"NAND 1GiB 3,3V 16-bit", 	0xC3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + +	/* 16 Gigabit */ +	{"NAND 2GiB 1,8V 8-bit", 	0xA5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 2GiB 3,3V 8-bit", 	0xD5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, +	{"NAND 2GiB 1,8V 16-bit", 	0xB5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, +	{"NAND 2GiB 3,3V 16-bit", 	0xC5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + +	/* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout !  +	 * The chosen minimum erasesize is 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page planes +	 * 1 block = 2 pages, but due to plane arrangement the blocks 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7 +	 * Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go +	 * There are more speed improvements for reads and writes possible, but not implemented now  +	 */ +	{"AND 128MiB 3,3V 8-bit",	0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY}, + +	{NULL,} +}; + +/* +*	Manufacturer ID list +*/ +struct nand_manufacturers nand_manuf_ids[] = { +	{NAND_MFR_TOSHIBA, "Toshiba"}, +	{NAND_MFR_SAMSUNG, "Samsung"}, +	{NAND_MFR_FUJITSU, "Fujitsu"}, +	{NAND_MFR_NATIONAL, "National"}, +	{NAND_MFR_RENESAS, "Renesas"}, +	{NAND_MFR_STMICRO, "ST Micro"}, +	{0x0, "Unknown"} +}; +#endif diff --git a/fs/jffs2/jffs2_nand_1pass.c b/fs/jffs2/jffs2_nand_1pass.c new file mode 100644 index 000000000..ce80a43fa --- /dev/null +++ b/fs/jffs2/jffs2_nand_1pass.c @@ -0,0 +1,1045 @@ +#include <common.h> + +#if (CONFIG_COMMANDS & CFG_CMD_JFFS2) + +#include <malloc.h> +#include <linux/stat.h> +#include <linux/time.h> + +#include <jffs2/jffs2.h> +#include <jffs2/jffs2_1pass.h> +#include <nand.h> + +#include "jffs2_nand_private.h" + +#define	NODE_CHUNK  	1024	/* size of memory allocation chunk in b_nodes */ + +/* Debugging switches */ +#undef	DEBUG_DIRENTS		/* print directory entry list after scan */ +#undef	DEBUG_FRAGMENTS		/* print fragment list after scan */ +#undef	DEBUG  			/* enable debugging messages */ + +#ifdef  DEBUG +# define DEBUGF(fmt,args...)	printf(fmt ,##args) +#else +# define DEBUGF(fmt,args...) +#endif + +static int nanddev = -1; /* nand device of current partition */ +static nand_info_t *nand; + +/* Compression names */ +static char *compr_names[] = { +	"NONE", +	"ZERO", +	"RTIME", +	"RUBINMIPS", +	"COPY", +	"DYNRUBIN", +	"ZLIB", +#if defined(CONFIG_JFFS2_LZO_LZARI) +	"LZO", +	"LZARI", +#endif +}; + +/* Spinning wheel */ +static char spinner[] = { '|', '/', '-', '\\' }; + +/* Memory management */ +struct mem_block { +	unsigned index; +	struct mem_block *next; +	char nodes[0]; +}; + +static void +free_nodes(struct b_list *list) +{ +	while (list->listMemBase != NULL) { +		struct mem_block *next = list->listMemBase->next; +		free(list->listMemBase); +		list->listMemBase = next; +	} +} + +static struct b_node * +add_node(struct b_list *list, int size) +{ +	u32 index = 0; +	struct mem_block *memBase; +	struct b_node *b; + +	memBase = list->listMemBase; +	if (memBase != NULL) +		index = memBase->index; + +	if (memBase == NULL || index >= NODE_CHUNK) { +		/* we need more space before we continue */ +		memBase = mmalloc(sizeof(struct mem_block) + NODE_CHUNK * size); +		if (memBase == NULL) { +			putstr("add_node: malloc failed\n"); +			return NULL; +		} +		memBase->next = list->listMemBase; +		index = 0; +	} +	/* now we have room to add it. */ +	b = (struct b_node *)&memBase->nodes[size * index]; +	index ++; + +	memBase->index = index; +	list->listMemBase = memBase; +	list->listCount++; +	return b; +} + +static struct b_node * +insert_node(struct b_list *list, struct b_node *new) +{ +#ifdef CFG_JFFS2_SORT_FRAGMENTS +	struct b_node *b, *prev; + +	if (list->listTail != NULL && list->listCompare(new, list->listTail)) +		prev = list->listTail; +	else if (list->listLast != NULL && list->listCompare(new, list->listLast)) +		prev = list->listLast; +	else +		prev = NULL; + +	for (b = (prev ? prev->next : list->listHead); +	     b != NULL && list->listCompare(new, b); +	     prev = b, b = b->next) { +		list->listLoops++; +	} +	if (b != NULL) +		list->listLast = prev; + +	if (b != NULL) { +		new->next = b; +		if (prev != NULL) +			prev->next = new; +		else +			list->listHead = new; +	} else +#endif +	{ +		new->next = (struct b_node *) NULL; +		if (list->listTail != NULL) { +			list->listTail->next = new; +			list->listTail = new; +		} else { +			list->listTail = list->listHead = new; +		} +	} + +	return new; +} + +static struct b_node * +insert_inode(struct b_list *list, struct jffs2_raw_inode *node, u32 offset) +{ +	struct b_inode *new; + +	if (!(new = (struct b_inode *)add_node(list, sizeof(struct b_inode)))) { +		putstr("add_node failed!\r\n"); +		return NULL; +	} +	new->offset = offset; +	new->version = node->version; +	new->ino = node->ino; +	new->isize = node->isize; +	new->csize = node->csize; + +	return insert_node(list, (struct b_node *)new); +} + +static struct b_node * +insert_dirent(struct b_list *list, struct jffs2_raw_dirent *node, u32 offset) +{ +	struct b_dirent *new; + +	if (!(new = (struct b_dirent *)add_node(list, sizeof(struct b_dirent)))) { +		putstr("add_node failed!\r\n"); +		return NULL; +	} +	new->offset = offset; +	new->version = node->version; +	new->pino = node->pino; +	new->ino = node->ino; +	new->nhash = full_name_hash(node->name, node->nsize); +	new->nsize = node->nsize; +	new->type = node->type; + +	return insert_node(list, (struct b_node *)new); +} + +#ifdef CFG_JFFS2_SORT_FRAGMENTS +/* Sort data entries with the latest version last, so that if there + * is overlapping data the latest version will be used. + */ +static int compare_inodes(struct b_node *new, struct b_node *old) +{ +	struct jffs2_raw_inode ojNew; +	struct jffs2_raw_inode ojOld; +	struct jffs2_raw_inode *jNew = +		(struct jffs2_raw_inode *)get_fl_mem(new->offset, sizeof(ojNew), &ojNew); +	struct jffs2_raw_inode *jOld = +		(struct jffs2_raw_inode *)get_fl_mem(old->offset, sizeof(ojOld), &ojOld); + +	return jNew->version > jOld->version; +} + +/* Sort directory entries so all entries in the same directory + * with the same name are grouped together, with the latest version + * last. This makes it easy to eliminate all but the latest version + * by marking the previous version dead by setting the inode to 0. + */ +static int compare_dirents(struct b_node *new, struct b_node *old) +{ +	struct jffs2_raw_dirent ojNew; +	struct jffs2_raw_dirent ojOld; +	struct jffs2_raw_dirent *jNew = +		(struct jffs2_raw_dirent *)get_fl_mem(new->offset, sizeof(ojNew), &ojNew); +	struct jffs2_raw_dirent *jOld = +		(struct jffs2_raw_dirent *)get_fl_mem(old->offset, sizeof(ojOld), &ojOld); +	int cmp; + +	/* ascending sort by pino */ +	if (jNew->pino != jOld->pino) +		return jNew->pino > jOld->pino; + +	/* pino is the same, so use ascending sort by nsize, so +	 * we don't do strncmp unless we really must. +	 */ +	if (jNew->nsize != jOld->nsize) +		return jNew->nsize > jOld->nsize; + +	/* length is also the same, so use ascending sort by name +	 */ +	cmp = strncmp(jNew->name, jOld->name, jNew->nsize); +	if (cmp != 0) +		return cmp > 0; + +	/* we have duplicate names in this directory, so use ascending +	 * sort by version +	 */ +	if (jNew->version > jOld->version) { +		/* since jNew is newer, we know jOld is not valid, so +		 * mark it with inode 0 and it will not be used +		 */ +		jOld->ino = 0; +		return 1; +	} + +	return 0; +} +#endif + +static u32 +jffs_init_1pass_list(struct part_info *part) +{ +	struct b_lists *pL; + +	if (part->jffs2_priv != NULL) { +		pL = (struct b_lists *)part->jffs2_priv; +		free_nodes(&pL->frag); +		free_nodes(&pL->dir); +		free(pL); +	} +	if (NULL != (part->jffs2_priv = malloc(sizeof(struct b_lists)))) { +		pL = (struct b_lists *)part->jffs2_priv; + +		memset(pL, 0, sizeof(*pL)); +#ifdef CFG_JFFS2_SORT_FRAGMENTS +		pL->dir.listCompare = compare_dirents; +		pL->frag.listCompare = compare_inodes; +#endif +	} +	return 0; +} + +/* find the inode from the slashless name given a parent */ +static long +jffs2_1pass_read_inode(struct b_lists *pL, u32 ino, char *dest, +		       struct stat *stat) +{ +	struct b_inode *jNode; +	u32 totalSize = 0; +	u32 latestVersion = 0; +	long ret; + +#ifdef CFG_JFFS2_SORT_FRAGMENTS +	/* Find file size before loading any data, so fragments that +	 * start past the end of file can be ignored. A fragment +	 * that is partially in the file is loaded, so extra data may +	 * be loaded up to the next 4K boundary above the file size. +	 * This shouldn't cause trouble when loading kernel images, so +	 * we will live with it. +	 */ +	for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) { +		if ((ino == jNode->ino)) { +			/* get actual file length from the newest node */ +			if (jNode->version >= latestVersion) { +				totalSize = jNode->isize; +				latestVersion = jNode->version; +			} +		} +	} +#endif + +	for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) { +		if ((ino != jNode->ino)) +			continue; +#ifndef CFG_JFFS2_SORT_FRAGMENTS +		/* get actual file length from the newest node */ +		if (jNode->version >= latestVersion) { +			totalSize = jNode->isize; +			latestVersion = jNode->version; +		} +#endif +		if (dest || stat) { +			char *src, *dst; +			char data[4096 + sizeof(struct jffs2_raw_inode)]; +			struct jffs2_raw_inode *inode; +			size_t len; + +			inode = (struct jffs2_raw_inode *)&data; +			len = sizeof(struct jffs2_raw_inode); +			if (dest) +				len += jNode->csize; +			nand_read(nand, jNode->offset, &len, inode); +			/* ignore data behind latest known EOF */ +			if (inode->offset > totalSize) +				continue; + +			if (stat) { +				stat->st_mtime = inode->mtime; +				stat->st_mode = inode->mode; +				stat->st_ino = inode->ino; +				stat->st_size = totalSize; +			} + +			if (!dest) +				continue; + +			src = ((char *) inode) + sizeof(struct jffs2_raw_inode); +			dst = (char *) (dest + inode->offset); + +			switch (inode->compr) { +			case JFFS2_COMPR_NONE: +				ret = 0; +				memcpy(dst, src, inode->dsize); +				break; +			case JFFS2_COMPR_ZERO: +				ret = 0; +				memset(dst, 0, inode->dsize); +				break; +			case JFFS2_COMPR_RTIME: +				ret = 0; +				rtime_decompress(src, dst, inode->csize, inode->dsize); +				break; +			case JFFS2_COMPR_DYNRUBIN: +				/* this is slow but it works */ +				ret = 0; +				dynrubin_decompress(src, dst, inode->csize, inode->dsize); +				break; +			case JFFS2_COMPR_ZLIB: +				ret = zlib_decompress(src, dst, inode->csize, inode->dsize); +				break; +#if defined(CONFIG_JFFS2_LZO_LZARI) +			case JFFS2_COMPR_LZO: +				ret = lzo_decompress(src, dst, inode->csize, inode->dsize); +				break; +			case JFFS2_COMPR_LZARI: +				ret = lzari_decompress(src, dst, inode->csize, inode->dsize); +				break; +#endif +			default: +				/* unknown */ +				putLabeledWord("UNKOWN COMPRESSION METHOD = ", inode->compr); +				return -1; +			} +		} +	} + +	return totalSize; +} + +/* find the inode from the slashless name given a parent */ +static u32 +jffs2_1pass_find_inode(struct b_lists * pL, const char *name, u32 pino) +{ +	struct b_dirent *jDir; +	int len = strlen(name);	/* name is assumed slash free */ +	unsigned int nhash = full_name_hash(name, len); +	u32 version = 0; +	u32 inode = 0; + +	/* we need to search all and return the inode with the highest version */ +	for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) { +		if ((pino == jDir->pino) && (jDir->ino) &&	/* 0 for unlink */ +		    (len == jDir->nsize) && (nhash == jDir->nhash)) { +			/* TODO: compare name */ +			if (jDir->version < version) +				continue; + +			if (jDir->version == version && inode != 0) { +			    	/* I'm pretty sure this isn't legal */ +				putstr(" ** ERROR ** "); +//				putnstr(jDir->name, jDir->nsize); +//				putLabeledWord(" has dup version =", version); +			} +			inode = jDir->ino; +			version = jDir->version; +		} +	} +	return inode; +} + +char *mkmodestr(unsigned long mode, char *str) +{ +	static const char *l = "xwr"; +	int mask = 1, i; +	char c; + +	switch (mode & S_IFMT) { +		case S_IFDIR:    str[0] = 'd'; break; +		case S_IFBLK:    str[0] = 'b'; break; +		case S_IFCHR:    str[0] = 'c'; break; +		case S_IFIFO:    str[0] = 'f'; break; +		case S_IFLNK:    str[0] = 'l'; break; +		case S_IFSOCK:   str[0] = 's'; break; +		case S_IFREG:    str[0] = '-'; break; +		default:         str[0] = '?'; +	} + +	for(i = 0; i < 9; i++) { +		c = l[i%3]; +		str[9-i] = (mode & mask)?c:'-'; +		mask = mask<<1; +	} + +	if(mode & S_ISUID) str[3] = (mode & S_IXUSR)?'s':'S'; +	if(mode & S_ISGID) str[6] = (mode & S_IXGRP)?'s':'S'; +	if(mode & S_ISVTX) str[9] = (mode & S_IXOTH)?'t':'T'; +	str[10] = '\0'; +	return str; +} + +static inline void dump_stat(struct stat *st, const char *name) +{ +	char str[20]; +	char s[64], *p; + +	if (st->st_mtime == (time_t)(-1)) /* some ctimes really hate -1 */ +		st->st_mtime = 1; + +	ctime_r(&st->st_mtime, s/*,64*/); /* newlib ctime doesn't have buflen */ + +	if ((p = strchr(s,'\n')) != NULL) *p = '\0'; +	if ((p = strchr(s,'\r')) != NULL) *p = '\0'; + +/* +	printf("%6lo %s %8ld %s %s\n", st->st_mode, mkmodestr(st->st_mode, str), +		st->st_size, s, name); +*/ + +	printf(" %s %8ld %s %s", mkmodestr(st->st_mode,str), st->st_size, s, name); +} + +static inline int +dump_inode(struct b_lists *pL, struct b_dirent *d, struct b_inode *i) +{ +	char fname[JFFS2_MAX_NAME_LEN + 1]; +	struct stat st; +	size_t len; + +	if(!d || !i) return -1; +	len = d->nsize; +	nand_read(nand, d->offset + sizeof(struct jffs2_raw_dirent), +		  &len, &fname); +	fname[d->nsize] = '\0'; + +	memset(&st, 0, sizeof(st)); + +	jffs2_1pass_read_inode(pL, i->ino, NULL, &st); + +	dump_stat(&st, fname); +/* FIXME +	if (d->type == DT_LNK) { +		unsigned char *src = (unsigned char *) (&i[1]); +	        putstr(" -> "); +		putnstr(src, (int)i->dsize); +	} +*/ +	putstr("\r\n"); + +	return 0; +} + +/* list inodes with the given pino */ +static u32 +jffs2_1pass_list_inodes(struct b_lists * pL, u32 pino) +{ +	struct b_dirent *jDir; +	u32 i_version = 0; + +	for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) { +		if ((pino == jDir->pino) && (jDir->ino)) { /* ino=0 -> unlink */ +			struct b_inode *jNode = (struct b_inode *)pL->frag.listHead; +			struct b_inode *i = NULL; + +			while (jNode) { +				if (jNode->ino == jDir->ino && jNode->version >= i_version) { +					i_version = jNode->version; +					i = jNode; +				} +				jNode = jNode->next; +			} +			dump_inode(pL, jDir, i); +		} +	} +	return pino; +} + +static u32 +jffs2_1pass_search_inode(struct b_lists * pL, const char *fname, u32 pino) +{ +	int i; +	char tmp[256]; +	char working_tmp[256]; +	char *c; + +	/* discard any leading slash */ +	i = 0; +	while (fname[i] == '/') +		i++; +	strcpy(tmp, &fname[i]); + +	while ((c = (char *) strchr(tmp, '/')))	/* we are still dired searching */ +	{ +		strncpy(working_tmp, tmp, c - tmp); +		working_tmp[c - tmp] = '\0'; +#if 0 +		putstr("search_inode: tmp = "); +		putstr(tmp); +		putstr("\r\n"); +		putstr("search_inode: wtmp = "); +		putstr(working_tmp); +		putstr("\r\n"); +		putstr("search_inode: c = "); +		putstr(c); +		putstr("\r\n"); +#endif +		for (i = 0; i < strlen(c) - 1; i++) +			tmp[i] = c[i + 1]; +		tmp[i] = '\0'; +#if 0 +		putstr("search_inode: post tmp = "); +		putstr(tmp); +		putstr("\r\n"); +#endif + +		if (!(pino = jffs2_1pass_find_inode(pL, working_tmp, pino))) { +			putstr("find_inode failed for name="); +			putstr(working_tmp); +			putstr("\r\n"); +			return 0; +		} +	} +	/* this is for the bare filename, directories have already been mapped */ +	if (!(pino = jffs2_1pass_find_inode(pL, tmp, pino))) { +		putstr("find_inode failed for name="); +		putstr(tmp); +		putstr("\r\n"); +		return 0; +	} +	return pino; + +} + +static u32 +jffs2_1pass_resolve_inode(struct b_lists * pL, u32 ino) +{ +	struct b_dirent *jDir; +	struct b_inode *jNode; +	u8 jDirFoundType = 0; +	u32 jDirFoundIno = 0; +	u32 jDirFoundPino = 0; +	char tmp[JFFS2_MAX_NAME_LEN + 1]; +	u32 version = 0; +	u32 pino; + +	/* we need to search all and return the inode with the highest version */ +	for (jDir = (struct b_dirent *)pL->dir.listHead; jDir; jDir = jDir->next) { +		if (ino == jDir->ino) { +		    	if (jDir->version < version) +				continue; + +			if (jDir->version == version && jDirFoundType) { +			    	/* I'm pretty sure this isn't legal */ +				putstr(" ** ERROR ** "); +//				putnstr(jDir->name, jDir->nsize); +//				putLabeledWord(" has dup version (resolve) = ", +//					version); +			} + +			jDirFoundType = jDir->type; +			jDirFoundIno = jDir->ino; +			jDirFoundPino = jDir->pino; +			version = jDir->version; +		} +	} +	/* now we found the right entry again. (shoulda returned inode*) */ +	if (jDirFoundType != DT_LNK) +		return jDirFoundIno; + +	/* it's a soft link so we follow it again. */ +	for (jNode = (struct b_inode *)pL->frag.listHead; jNode; jNode = jNode->next) { +		if (jNode->ino == jDirFoundIno) { +			size_t len = jNode->csize; +			nand_read(nand, jNode->offset + sizeof(struct jffs2_raw_inode), &len, &tmp); +			tmp[jNode->csize] = '\0'; +			break; +		} +	} +	/* ok so the name of the new file to find is in tmp */ +	/* if it starts with a slash it is root based else shared dirs */ +	if (tmp[0] == '/') +		pino = 1; +	else +		pino = jDirFoundPino; + +	return jffs2_1pass_search_inode(pL, tmp, pino); +} + +static u32 +jffs2_1pass_search_list_inodes(struct b_lists * pL, const char *fname, u32 pino) +{ +	int i; +	char tmp[256]; +	char working_tmp[256]; +	char *c; + +	/* discard any leading slash */ +	i = 0; +	while (fname[i] == '/') +		i++; +	strcpy(tmp, &fname[i]); +	working_tmp[0] = '\0'; +	while ((c = (char *) strchr(tmp, '/')))	/* we are still dired searching */ +	{ +		strncpy(working_tmp, tmp, c - tmp); +		working_tmp[c - tmp] = '\0'; +		for (i = 0; i < strlen(c) - 1; i++) +			tmp[i] = c[i + 1]; +		tmp[i] = '\0'; +		/* only a failure if we arent looking at top level */ +		if (!(pino = jffs2_1pass_find_inode(pL, working_tmp, pino)) && +		    (working_tmp[0])) { +			putstr("find_inode failed for name="); +			putstr(working_tmp); +			putstr("\r\n"); +			return 0; +		} +	} + +	if (tmp[0] && !(pino = jffs2_1pass_find_inode(pL, tmp, pino))) { +		putstr("find_inode failed for name="); +		putstr(tmp); +		putstr("\r\n"); +		return 0; +	} +	/* this is for the bare filename, directories have already been mapped */ +	if (!(pino = jffs2_1pass_list_inodes(pL, pino))) { +		putstr("find_inode failed for name="); +		putstr(tmp); +		putstr("\r\n"); +		return 0; +	} +	return pino; + +} + +unsigned char +jffs2_1pass_rescan_needed(struct part_info *part) +{ +	struct b_node *b; +	struct jffs2_unknown_node onode; +	struct jffs2_unknown_node *node; +	struct b_lists *pL = (struct b_lists *)part->jffs2_priv; + +	if (part->jffs2_priv == 0){ +		DEBUGF ("rescan: First time in use\n"); +		return 1; +	} +	/* if we have no list, we need to rescan */ +	if (pL->frag.listCount == 0) { +		DEBUGF ("rescan: fraglist zero\n"); +		return 1; +	} + +	/* or if we are scanning a new partition */ +	if (pL->partOffset != part->offset) { +		DEBUGF ("rescan: different partition\n"); +		return 1; +	} + +#if defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND) +	if (nanddev != (int)part->usr_priv - 1) { +		DEBUGF ("rescan: nand device changed\n"); +		return -1; +	} +#endif /* defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND) */ +	/* FIXME */ +#if 0 +	/* but suppose someone reflashed a partition at the same offset... */ +	b = pL->dir.listHead; +	while (b) { +		node = (struct jffs2_unknown_node *) get_fl_mem(b->offset, +			sizeof(onode), &onode); +		if (node->nodetype != JFFS2_NODETYPE_DIRENT) { +			DEBUGF ("rescan: fs changed beneath me? (%lx)\n", +					(unsigned long) b->offset); +			return 1; +		} +		b = b->next; +	} +#endif +	return 0; +} + +#ifdef DEBUG_FRAGMENTS +static void +dump_fragments(struct b_lists *pL) +{ +	struct b_node *b; +	struct jffs2_raw_inode ojNode; +	struct jffs2_raw_inode *jNode; + +	putstr("\r\n\r\n******The fragment Entries******\r\n"); +	b = pL->frag.listHead; +	while (b) { +		jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset, +			sizeof(ojNode), &ojNode); +		putLabeledWord("\r\n\tbuild_list: FLASH_OFFSET = ", b->offset); +		putLabeledWord("\tbuild_list: totlen = ", jNode->totlen); +		putLabeledWord("\tbuild_list: inode = ", jNode->ino); +		putLabeledWord("\tbuild_list: version = ", jNode->version); +		putLabeledWord("\tbuild_list: isize = ", jNode->isize); +		putLabeledWord("\tbuild_list: atime = ", jNode->atime); +		putLabeledWord("\tbuild_list: offset = ", jNode->offset); +		putLabeledWord("\tbuild_list: csize = ", jNode->csize); +		putLabeledWord("\tbuild_list: dsize = ", jNode->dsize); +		putLabeledWord("\tbuild_list: compr = ", jNode->compr); +		putLabeledWord("\tbuild_list: usercompr = ", jNode->usercompr); +		putLabeledWord("\tbuild_list: flags = ", jNode->flags); +		putLabeledWord("\tbuild_list: offset = ", b->offset);	/* FIXME: ? [RS] */ +		b = b->next; +	} +} +#endif + +#ifdef DEBUG_DIRENTS +static void +dump_dirents(struct b_lists *pL) +{ +	struct b_node *b; +	struct jffs2_raw_dirent *jDir; + +	putstr("\r\n\r\n******The directory Entries******\r\n"); +	b = pL->dir.listHead; +	while (b) { +		jDir = (struct jffs2_raw_dirent *) get_node_mem(b->offset); +		putstr("\r\n"); +		putnstr(jDir->name, jDir->nsize); +		putLabeledWord("\r\n\tbuild_list: magic = ", jDir->magic); +		putLabeledWord("\tbuild_list: nodetype = ", jDir->nodetype); +		putLabeledWord("\tbuild_list: hdr_crc = ", jDir->hdr_crc); +		putLabeledWord("\tbuild_list: pino = ", jDir->pino); +		putLabeledWord("\tbuild_list: version = ", jDir->version); +		putLabeledWord("\tbuild_list: ino = ", jDir->ino); +		putLabeledWord("\tbuild_list: mctime = ", jDir->mctime); +		putLabeledWord("\tbuild_list: nsize = ", jDir->nsize); +		putLabeledWord("\tbuild_list: type = ", jDir->type); +		putLabeledWord("\tbuild_list: node_crc = ", jDir->node_crc); +		putLabeledWord("\tbuild_list: name_crc = ", jDir->name_crc); +		putLabeledWord("\tbuild_list: offset = ", b->offset); 	/* FIXME: ? [RS] */ +		b = b->next; +		put_fl_mem(jDir); +	} +} +#endif + +static int +jffs2_fill_scan_buf(nand_info_t *nand, unsigned char *buf, +		    unsigned ofs, unsigned len) +{ +	int ret; +	unsigned olen; + +	olen = len; +	ret = nand_read(nand, ofs, &olen, buf); +	if (ret) { +		printf("nand_read(0x%x bytes from 0x%x) returned %d\n", len, ofs, ret); +		return ret; +	} +	if (olen < len) { +		printf("Read at 0x%x gave only 0x%x bytes\n", ofs, olen); +		return -1; +	} +	return 0; +} + +#define	EMPTY_SCAN_SIZE	1024 +static u32 +jffs2_1pass_build_lists(struct part_info * part) +{ +	struct b_lists *pL; +	struct jffs2_unknown_node *node; +	unsigned nr_blocks, sectorsize, ofs, offset; +	char *buf; +	int i; +	u32 counter = 0; +	u32 counter4 = 0; +	u32 counterF = 0; +	u32 counterN = 0; + +#if defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND) +	nanddev = (int)part->usr_priv - 1; +	nand = &nand_info[nanddev]; +#endif /* defined(CONFIG_JFFS2_NAND) && (CONFIG_COMMANDS & CFG_CMD_NAND) */ + +	/* if we are building a list we need to refresh the cache. */ +	jffs_init_1pass_list(part); +	pL = (struct b_lists *)part->jffs2_priv; +	pL->partOffset = part->offset; +	puts ("Scanning JFFS2 FS:   "); + +	sectorsize = nand->erasesize; +	nr_blocks = part->size / sectorsize; +	buf = malloc(sectorsize); +	if (!buf) +		return 0; + +	for (i = 0; i < nr_blocks; i++) { +		printf("\b\b%c ", spinner[counter++ % sizeof(spinner)]); + +		offset = part->offset + i * sectorsize; + +		if (nand_block_isbad(nand, offset)) +			continue; + +		if (jffs2_fill_scan_buf(nand, buf, offset, EMPTY_SCAN_SIZE)) +			return 0; + +		ofs = 0; +		/* Scan only 4KiB of 0xFF before declaring it's empty */ +		while (ofs < EMPTY_SCAN_SIZE && *(uint32_t *)(&buf[ofs]) == 0xFFFFFFFF) +			ofs += 4; +		if (ofs == EMPTY_SCAN_SIZE) +			continue; + +		if (jffs2_fill_scan_buf(nand, buf + EMPTY_SCAN_SIZE, offset + EMPTY_SCAN_SIZE, sectorsize - EMPTY_SCAN_SIZE)) +			return 0; +		offset += ofs; + +		while (ofs < sectorsize - sizeof(struct jffs2_unknown_node)) { +			node = (struct jffs2_unknown_node *)&buf[ofs]; +			if (node->magic != JFFS2_MAGIC_BITMASK || !hdr_crc(node)) { +				offset += 4; +				ofs += 4; +				counter4++; +				continue; +			} +			/* if its a fragment add it */ +			if (node->nodetype == JFFS2_NODETYPE_INODE && +				    inode_crc((struct jffs2_raw_inode *) node)) { +				if (insert_inode(&pL->frag, (struct jffs2_raw_inode *) node, +						 offset) == NULL) { +					return 0; +				} +			} else if (node->nodetype == JFFS2_NODETYPE_DIRENT && +				   dirent_crc((struct jffs2_raw_dirent *) node)  && +				   dirent_name_crc((struct jffs2_raw_dirent *) node)) { +				if (! (counterN%100)) +					puts ("\b\b.  "); +				if (insert_dirent(&pL->dir, (struct jffs2_raw_dirent *) node, +						  offset) == NULL) { +					return 0; +				} +				counterN++; +			} else if (node->nodetype == JFFS2_NODETYPE_CLEANMARKER) { +				if (node->totlen != sizeof(struct jffs2_unknown_node)) +					printf("OOPS Cleanmarker has bad size " +						"%d != %d\n", node->totlen, +						sizeof(struct jffs2_unknown_node)); +			} else if (node->nodetype == JFFS2_NODETYPE_PADDING) { +				if (node->totlen < sizeof(struct jffs2_unknown_node)) +					printf("OOPS Padding has bad size " +						"%d < %d\n", node->totlen, +						sizeof(struct jffs2_unknown_node)); +			} else { +				printf("Unknown node type: %x len %d " +					"offset 0x%x\n", node->nodetype, +					node->totlen, offset); +			} +			offset += ((node->totlen + 3) & ~3); +			ofs += ((node->totlen + 3) & ~3); +			counterF++; +		} +	} + +	putstr("\b\b done.\r\n");		/* close off the dots */ + +#if 0 +	putLabeledWord("dir entries = ", pL->dir.listCount); +	putLabeledWord("frag entries = ", pL->frag.listCount); +	putLabeledWord("+4 increments = ", counter4); +	putLabeledWord("+file_offset increments = ", counterF); +#endif + +#ifdef DEBUG_DIRENTS +	dump_dirents(pL); +#endif + +#ifdef DEBUG_FRAGMENTS +	dump_fragments(pL); +#endif + +	/* give visual feedback that we are done scanning the flash */ +	led_blink(0x0, 0x0, 0x1, 0x1);	/* off, forever, on 100ms, off 100ms */ +	free(buf); + +	return 1; +} + + +static u32 +jffs2_1pass_fill_info(struct b_lists * pL, struct b_jffs2_info * piL) +{ +	struct b_node *b; +	struct jffs2_raw_inode ojNode; +	struct jffs2_raw_inode *jNode; +	int i; + +	for (i = 0; i < JFFS2_NUM_COMPR; i++) { +		piL->compr_info[i].num_frags = 0; +		piL->compr_info[i].compr_sum = 0; +		piL->compr_info[i].decompr_sum = 0; +	} +/*	FIXME +	b = pL->frag.listHead; +	while (b) { +		jNode = (struct jffs2_raw_inode *) get_fl_mem(b->offset, +			sizeof(ojNode), &ojNode); +		if (jNode->compr < JFFS2_NUM_COMPR) { +			piL->compr_info[jNode->compr].num_frags++; +			piL->compr_info[jNode->compr].compr_sum += jNode->csize; +			piL->compr_info[jNode->compr].decompr_sum += jNode->dsize; +		} +		b = b->next; +	} +*/ +	return 0; +} + + +static struct b_lists * +jffs2_get_list(struct part_info * part, const char *who) +{ +	if (jffs2_1pass_rescan_needed(part)) { +		if (!jffs2_1pass_build_lists(part)) { +			printf("%s: Failed to scan JFFSv2 file structure\n", who); +			return NULL; +		} +	} +	return (struct b_lists *)part->jffs2_priv; +} + + +/* Print directory / file contents */ +u32 +jffs2_1pass_ls(struct part_info * part, const char *fname) +{ +	struct b_lists *pl; +	long ret = 0; +	u32 inode; + +	if (! (pl = jffs2_get_list(part, "ls"))) +		return 0; + +	if (! (inode = jffs2_1pass_search_list_inodes(pl, fname, 1))) { +		putstr("ls: Failed to scan jffs2 file structure\r\n"); +		return 0; +	} + +#if 0 +	putLabeledWord("found file at inode = ", inode); +	putLabeledWord("read_inode returns = ", ret); +#endif + +	return ret; +} + + +/* Load a file from flash into memory. fname can be a full path */ +u32 +jffs2_1pass_load(char *dest, struct part_info * part, const char *fname) +{ + +	struct b_lists *pl; +	long ret = 0; +	u32 inode; + +	if (! (pl  = jffs2_get_list(part, "load"))) +		return 0; + +	if (! (inode = jffs2_1pass_search_inode(pl, fname, 1))) { +		putstr("load: Failed to find inode\r\n"); +		return 0; +	} + +	/* Resolve symlinks */ +	if (! (inode = jffs2_1pass_resolve_inode(pl, inode))) { +		putstr("load: Failed to resolve inode structure\r\n"); +		return 0; +	} + +	if ((ret = jffs2_1pass_read_inode(pl, inode, dest, NULL)) < 0) { +		putstr("load: Failed to read inode\r\n"); +		return 0; +	} + +	DEBUGF ("load: loaded '%s' to 0x%lx (%ld bytes)\n", fname, +				(unsigned long) dest, ret); +	return ret; +} + +/* Return information about the fs on this partition */ +u32 +jffs2_1pass_info(struct part_info * part) +{ +	struct b_jffs2_info info; +	struct b_lists *pl; +	int i; + +	if (! (pl  = jffs2_get_list(part, "info"))) +		return 0; + +	jffs2_1pass_fill_info(pl, &info); +	for (i = 0; i < JFFS2_NUM_COMPR; i++) { +		printf ("Compression: %s\n" +			"\tfrag count: %d\n" +			"\tcompressed sum: %d\n" +			"\tuncompressed sum: %d\n", +			compr_names[i], +			info.compr_info[i].num_frags, +			info.compr_info[i].compr_sum, +			info.compr_info[i].decompr_sum); +	} +	return 1; +} + +#endif /* CFG_CMD_JFFS2 */ diff --git a/fs/jffs2/jffs2_nand_private.h b/fs/jffs2/jffs2_nand_private.h new file mode 100644 index 000000000..18cca8d07 --- /dev/null +++ b/fs/jffs2/jffs2_nand_private.h @@ -0,0 +1,133 @@ +#ifndef jffs2_private_h +#define jffs2_private_h + +#include <jffs2/jffs2.h> + +struct b_node { +	struct b_node *next; +}; + +struct b_inode { +	struct b_inode *next; +	u32 offset;	/* physical offset to beginning of real inode */ +	u32 version; +	u32 ino; +	u32 isize; +	u32 csize; +}; + +struct b_dirent { +	struct b_dirent *next; +	u32 offset;	/* physical offset to beginning of real dirent */ +	u32 version; +	u32 pino; +	u32 ino; +	unsigned int nhash; +	unsigned char nsize; +	unsigned char type; +}; + +struct b_list { +	struct b_node *listTail; +	struct b_node *listHead; +	unsigned int listCount; +	struct mem_block *listMemBase; +}; + +struct b_lists { +	char *partOffset; +	struct b_list dir; +	struct b_list frag; +}; + +struct b_compr_info { +	u32 num_frags; +	u32 compr_sum; +	u32 decompr_sum; +}; + +struct b_jffs2_info { +	struct b_compr_info compr_info[JFFS2_NUM_COMPR]; +}; + +static inline int +hdr_crc(struct jffs2_unknown_node *node) +{ +#if 1 +	u32 crc = crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_unknown_node) - 4); +#else +	/* what's the semantics of this? why is this here? */ +	u32 crc = crc32_no_comp(~0, (unsigned char *)node, sizeof(struct jffs2_unknown_node) - 4); + +	crc ^= ~0; +#endif +	if (node->hdr_crc != crc) { +		return 0; +	} else { +		return 1; +	} +} + +static inline int +dirent_crc(struct jffs2_raw_dirent *node) +{ +	if (node->node_crc != crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_raw_dirent) - 8)) { +		return 0; +	} else { +		return 1; +	} +} + +static inline int +dirent_name_crc(struct jffs2_raw_dirent *node) +{ +	if (node->name_crc != crc32_no_comp(0, (unsigned char *)&(node->name), node->nsize)) { +		return 0; +	} else { +		return 1; +	} +} + +static inline int +inode_crc(struct jffs2_raw_inode *node) +{ +	if (node->node_crc != crc32_no_comp(0, (unsigned char *)node, sizeof(struct jffs2_raw_inode) - 8)) { +		return 0; +	} else { +		return 1; +	} +} + +/* Borrowed from include/linux/dcache.h */ + +/* Name hashing routines. Initial hash value */ +/* Hash courtesy of the R5 hash in reiserfs modulo sign bits */ +#define init_name_hash()		0 + +/* partial hash update function. Assume roughly 4 bits per character */ +static inline unsigned long +partial_name_hash(unsigned long c, unsigned long prevhash) +{ +	return (prevhash + (c << 4) + (c >> 4)) * 11; +} + +/* + * Finally: cut down the number of bits to a int value (and try to avoid + * losing bits) + */ +static inline unsigned long end_name_hash(unsigned long hash) +{ +	return (unsigned int) hash; +} + +/* Compute the hash for a name string. */ +static inline unsigned int +full_name_hash(const unsigned char *name, unsigned int len) +{ +	unsigned long hash = init_name_hash(); +	while (len--) +		hash = partial_name_hash(*name++, hash); +	return end_name_hash(hash); +} + +#endif /* jffs2_private.h */ diff --git a/include/linux/mtd/compat.h b/include/linux/mtd/compat.h new file mode 100644 index 000000000..460cd45c8 --- /dev/null +++ b/include/linux/mtd/compat.h @@ -0,0 +1,44 @@ +#ifndef _LINUX_COMPAT_H_ +#define _LINUX_COMPAT_H_ + +#define __user +#define __iomem + +#define ndelay(x)	udelay(1) + +#define printk	printf + +#define KERN_EMERG +#define KERN_ALERT +#define KERN_CRIT +#define KERN_ERR +#define KERN_WARNING +#define KERN_NOTICE +#define KERN_INFO +#define KERN_DEBUG + +#define kmalloc(size, flags)	malloc(size) +#define kfree(ptr)		free(ptr) + +/* + * ..and if you can't take the strict + * types, you can specify one yourself. + * + * Or not use min/max at all, of course. + */ +#define min_t(type,x,y) \ +	({ type __x = (x); type __y = (y); __x < __y ? __x: __y; }) +#define max_t(type,x,y) \ +	({ type __x = (x); type __y = (y); __x > __y ? __x: __y; }) + +#define BUG() do { \ +	printf("U-Boot BUG at %s:%d!\n", __FILE__, __LINE__); \ +} while (0) + +#define BUG_ON(condition) do { if (condition) BUG(); } while(0) + +#define likely(x)	__builtin_expect(!!(x), 1) +#define unlikely(x)	__builtin_expect(!!(x), 0) + +#define PAGE_SIZE	4096 +#endif diff --git a/include/linux/mtd/mtd-abi.h b/include/linux/mtd/mtd-abi.h new file mode 100644 index 000000000..afe96b59c --- /dev/null +++ b/include/linux/mtd/mtd-abi.h @@ -0,0 +1,99 @@ +/* + * $Id: mtd-abi.h,v 1.7 2004/11/23 15:37:32 gleixner Exp $ + * + * Portions of MTD ABI definition which are shared by kernel and user space  + */ + +#ifndef __MTD_ABI_H__ +#define __MTD_ABI_H__ + +struct erase_info_user { +	uint32_t start; +	uint32_t length; +}; + +struct mtd_oob_buf { +	uint32_t start; +	uint32_t length; +	unsigned char *ptr; +}; + +#define MTD_ABSENT		0 +#define MTD_RAM			1 +#define MTD_ROM			2 +#define MTD_NORFLASH		3 +#define MTD_NANDFLASH		4 +#define MTD_PEROM		5 +#define MTD_OTHER		14 +#define MTD_UNKNOWN		15 + +#define MTD_CLEAR_BITS		1       // Bits can be cleared (flash) +#define MTD_SET_BITS		2       // Bits can be set +#define MTD_ERASEABLE		4       // Has an erase function +#define MTD_WRITEB_WRITEABLE	8       // Direct IO is possible +#define MTD_VOLATILE		16      // Set for RAMs +#define MTD_XIP			32	// eXecute-In-Place possible +#define MTD_OOB			64	// Out-of-band data (NAND flash) +#define MTD_ECC			128	// Device capable of automatic ECC +#define MTD_NO_VIRTBLOCKS	256	// Virtual blocks not allowed + +// Some common devices / combinations of capabilities +#define MTD_CAP_ROM		0 +#define MTD_CAP_RAM		(MTD_CLEAR_BITS|MTD_SET_BITS|MTD_WRITEB_WRITEABLE) +#define MTD_CAP_NORFLASH        (MTD_CLEAR_BITS|MTD_ERASEABLE) +#define MTD_CAP_NANDFLASH       (MTD_CLEAR_BITS|MTD_ERASEABLE|MTD_OOB) +#define MTD_WRITEABLE		(MTD_CLEAR_BITS|MTD_SET_BITS) + + +// Types of automatic ECC/Checksum available +#define MTD_ECC_NONE		0 	// No automatic ECC available +#define MTD_ECC_RS_DiskOnChip	1	// Automatic ECC on DiskOnChip +#define MTD_ECC_SW		2	// SW ECC for Toshiba & Samsung devices + +/* ECC byte placement */ +#define MTD_NANDECC_OFF		0	// Switch off ECC (Not recommended) +#define MTD_NANDECC_PLACE	1	// Use the given placement in the structure (YAFFS1 legacy mode) +#define MTD_NANDECC_AUTOPLACE	2	// Use the default placement scheme +#define MTD_NANDECC_PLACEONLY	3	// Use the given placement in the structure (Do not store ecc result on read) +#define MTD_NANDECC_AUTOPL_USR 	4	// Use the given autoplacement scheme rather than using the default + +struct mtd_info_user { +	uint8_t type; +	uint32_t flags; +	uint32_t size;	 // Total size of the MTD +	uint32_t erasesize; +	uint32_t oobblock;  // Size of OOB blocks (e.g. 512) +	uint32_t oobsize;   // Amount of OOB data per block (e.g. 16) +	uint32_t ecctype; +	uint32_t eccsize; +}; + +struct region_info_user { +	uint32_t offset;		/* At which this region starts,  +					 * from the beginning of the MTD */ +	uint32_t erasesize;		/* For this region */ +	uint32_t numblocks;		/* Number of blocks in this region */ +	uint32_t regionindex; +}; + +#define MEMGETINFO              _IOR('M', 1, struct mtd_info_user) +#define MEMERASE                _IOW('M', 2, struct erase_info_user) +#define MEMWRITEOOB             _IOWR('M', 3, struct mtd_oob_buf) +#define MEMREADOOB              _IOWR('M', 4, struct mtd_oob_buf) +#define MEMLOCK                 _IOW('M', 5, struct erase_info_user) +#define MEMUNLOCK               _IOW('M', 6, struct erase_info_user) +#define MEMGETREGIONCOUNT	_IOR('M', 7, int) +#define MEMGETREGIONINFO	_IOWR('M', 8, struct region_info_user) +#define MEMSETOOBSEL		_IOW('M', 9, struct nand_oobinfo) +#define MEMGETOOBSEL		_IOR('M', 10, struct nand_oobinfo) +#define MEMGETBADBLOCK		_IOW('M', 11, loff_t) +#define MEMSETBADBLOCK		_IOW('M', 12, loff_t) + +struct nand_oobinfo { +	uint32_t useecc; +	uint32_t eccbytes; +	uint32_t oobfree[8][2]; +	uint32_t eccpos[32]; +}; + +#endif /* __MTD_ABI_H__ */ diff --git a/include/linux/mtd/mtd.h b/include/linux/mtd/mtd.h new file mode 100644 index 000000000..9ef4cced5 --- /dev/null +++ b/include/linux/mtd/mtd.h @@ -0,0 +1,214 @@ +/*  + * $Id: mtd.h,v 1.56 2004/08/09 18:46:04 dmarlin Exp $ + * + * Copyright (C) 1999-2003 David Woodhouse <dwmw2@infradead.org> et al. + * + * Released under GPL + */ + +#ifndef __MTD_MTD_H__ +#define __MTD_MTD_H__ +#include <linux/types.h> +#include <linux/mtd/mtd-abi.h> + +#define MAX_MTD_DEVICES 16 + +#define MTD_ERASE_PENDING      	0x01 +#define MTD_ERASING		0x02 +#define MTD_ERASE_SUSPEND	0x04 +#define MTD_ERASE_DONE          0x08 +#define MTD_ERASE_FAILED        0x10 + +/* If the erase fails, fail_addr might indicate exactly which block failed.  If +   fail_addr = 0xffffffff, the failure was not at the device level or was not +   specific to any particular block. */ +struct erase_info { +	struct mtd_info *mtd; +	u_int32_t addr; +	u_int32_t len; +	u_int32_t fail_addr; +	u_long time; +	u_long retries; +	u_int dev; +	u_int cell; +	void (*callback) (struct erase_info *self); +	u_long priv; +	u_char state; +	struct erase_info *next; +}; + +struct mtd_erase_region_info { +	u_int32_t offset;			/* At which this region starts, from the beginning of the MTD */ +	u_int32_t erasesize;		/* For this region */ +	u_int32_t numblocks;		/* Number of blocks of erasesize in this region */ +}; + +struct mtd_info { +	u_char type; +	u_int32_t flags; +	u_int32_t size;	 // Total size of the MTD + +	/* "Major" erase size for the device. Naïve users may take this +	 * to be the only erase size available, or may use the more detailed +	 * information below if they desire +	 */ +	u_int32_t erasesize; + +	u_int32_t oobblock;  // Size of OOB blocks (e.g. 512) +	u_int32_t oobsize;   // Amount of OOB data per block (e.g. 16) +	u_int32_t oobavail;  // Number of bytes in OOB area available for fs  +	u_int32_t ecctype; +	u_int32_t eccsize; +	 + +	// Kernel-only stuff starts here. +	char *name; +	int index; + +	// oobinfo is a nand_oobinfo structure, which can be set by iotcl (MEMSETOOBINFO) +	struct nand_oobinfo oobinfo; + +	/* Data for variable erase regions. If numeraseregions is zero, +	 * it means that the whole device has erasesize as given above.  +	 */ +	int numeraseregions; +	struct mtd_erase_region_info *eraseregions;  + +	/* This really shouldn't be here. It can go away in 2.5 */ +	u_int32_t bank_size; + +	int (*erase) (struct mtd_info *mtd, struct erase_info *instr); + +	/* This stuff for eXecute-In-Place */ +	int (*point) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char **mtdbuf); + +	/* We probably shouldn't allow XIP if the unpoint isn't a NULL */ +	void (*unpoint) (struct mtd_info *mtd, u_char * addr, loff_t from, size_t len); + + +	int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); +	int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); + +	int (*read_ecc) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); +	int (*write_ecc) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); + +	int (*read_oob) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); +	int (*write_oob) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf); + +	/*  +	 * Methods to access the protection register area, present in some  +	 * flash devices. The user data is one time programmable but the +	 * factory data is read only.  +	 */ +	int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); + +	int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); + +	/* This function is not yet implemented */ +	int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf); +#if 0 +	/* kvec-based read/write methods. We need these especially for NAND flash, +	   with its limited number of write cycles per erase. +	   NB: The 'count' parameter is the number of _vectors_, each of  +	   which contains an (ofs, len) tuple. +	*/ +	int (*readv) (struct mtd_info *mtd, struct kvec *vecs, unsigned long count, loff_t from, size_t *retlen); +	int (*readv_ecc) (struct mtd_info *mtd, struct kvec *vecs, unsigned long count, loff_t from,  +		size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel); +	int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen); +	int (*writev_ecc) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to,  +		size_t *retlen, u_char *eccbuf, struct nand_oobinfo *oobsel); +#endif +	/* Sync */ +	void (*sync) (struct mtd_info *mtd); +#if 0 +	/* Chip-supported device locking */ +	int (*lock) (struct mtd_info *mtd, loff_t ofs, size_t len); +	int (*unlock) (struct mtd_info *mtd, loff_t ofs, size_t len); + +	/* Power Management functions */ +	int (*suspend) (struct mtd_info *mtd); +	void (*resume) (struct mtd_info *mtd); +#endif +	/* Bad block management functions */ +	int (*block_isbad) (struct mtd_info *mtd, loff_t ofs); +	int (*block_markbad) (struct mtd_info *mtd, loff_t ofs); + +	void *priv; + +	struct module *owner; +	int usecount; +}; + + +	/* Kernel-side ioctl definitions */ + +extern int add_mtd_device(struct mtd_info *mtd); +extern int del_mtd_device (struct mtd_info *mtd); + +extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); + +extern void put_mtd_device(struct mtd_info *mtd); + +#if 0 +struct mtd_notifier { +	void (*add)(struct mtd_info *mtd); +	void (*remove)(struct mtd_info *mtd); +	struct list_head list; +}; + + +extern void register_mtd_user (struct mtd_notifier *new); +extern int unregister_mtd_user (struct mtd_notifier *old); + +int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, +		       unsigned long count, loff_t to, size_t *retlen); + +int default_mtd_readv(struct mtd_info *mtd, struct kvec *vecs, +		      unsigned long count, loff_t from, size_t *retlen); +#endif + +#define MTD_ERASE(mtd, args...) (*(mtd->erase))(mtd, args) +#define MTD_POINT(mtd, a,b,c,d) (*(mtd->point))(mtd, a,b,c, (u_char **)(d)) +#define MTD_UNPOINT(mtd, arg) (*(mtd->unpoint))(mtd, (u_char *)arg) +#define MTD_READ(mtd, args...) (*(mtd->read))(mtd, args) +#define MTD_WRITE(mtd, args...) (*(mtd->write))(mtd, args) +#define MTD_READV(mtd, args...) (*(mtd->readv))(mtd, args) +#define MTD_WRITEV(mtd, args...) (*(mtd->writev))(mtd, args) +#define MTD_READECC(mtd, args...) (*(mtd->read_ecc))(mtd, args) +#define MTD_WRITEECC(mtd, args...) (*(mtd->write_ecc))(mtd, args) +#define MTD_READOOB(mtd, args...) (*(mtd->read_oob))(mtd, args) +#define MTD_WRITEOOB(mtd, args...) (*(mtd->write_oob))(mtd, args) +#define MTD_SYNC(mtd) do { if (mtd->sync) (*(mtd->sync))(mtd);  } while (0)  + + +#ifdef CONFIG_MTD_PARTITIONS +void mtd_erase_callback(struct erase_info *instr); +#else +static inline void mtd_erase_callback(struct erase_info *instr) +{ +	if (instr->callback) +		instr->callback(instr); +} +#endif + +/* + * Debugging macro and defines + */ +#define MTD_DEBUG_LEVEL0	(0)	/* Quiet   */ +#define MTD_DEBUG_LEVEL1	(1)	/* Audible */ +#define MTD_DEBUG_LEVEL2	(2)	/* Loud    */ +#define MTD_DEBUG_LEVEL3	(3)	/* Noisy   */ + +#ifdef CONFIG_MTD_DEBUG +#define DEBUG(n, args...)				\ + 	do {						\ +		if (n <= CONFIG_MTD_DEBUG_VERBOSE)	\ +			printk(KERN_INFO args);		\ +	} while(0) +#else /* CONFIG_MTD_DEBUG */ +#define DEBUG(n, args...) do { } while(0) + +#endif /* CONFIG_MTD_DEBUG */ + +#endif /* __MTD_MTD_H__ */ diff --git a/include/linux/mtd/nand.h b/include/linux/mtd/nand.h index 523690495..9a0108f78 100644 --- a/include/linux/mtd/nand.h +++ b/include/linux/mtd/nand.h @@ -2,10 +2,10 @@   *  linux/include/linux/mtd/nand.h   *   *  Copyright (c) 2000 David Woodhouse <dwmw2@mvhi.com> - *                     Steven J. Hill <sjhill@cotw.com> - *		       Thomas Gleixner <gleixner@autronix.de> + *                     Steven J. Hill <sjhill@realitydiluted.com> + *		       Thomas Gleixner <tglx@linutronix.de>   * - * $Id: nand.h,v 1.7 2003/07/24 23:30:46 a0384864 Exp $ + * $Id: nand.h,v 1.68 2004/11/12 10:40:37 gleixner Exp $   *   * This program is free software; you can redistribute it and/or modify   * it under the terms of the GNU General Public License version 2 as @@ -24,7 +24,7 @@   *			bat later if I did something naughty.   *   10-11-2000 SJH     Added private NAND flash structure for driver   *   10-24-2000 SJH     Added prototype for 'nand_scan' function - *   10-29-2001 TG	changed nand_chip structure to support + *   10-29-2001 TG	changed nand_chip structure to support    *			hardwarespecific function for accessing control lines   *   02-21-2002 TG	added support for different read/write adress and   *			ready/busy line access function @@ -32,10 +32,68 @@   *			command delay times for different chips   *   04-28-2002 TG	OOB config defines moved from nand.c to avoid duplicate   *			defines in jffs2/wbuf.c + *   08-07-2002 TG	forced bad block location to byte 5 of OOB, even if + *			CONFIG_MTD_NAND_ECC_JFFS2 is not set + *   08-10-2002 TG	extensions to nand_chip structure to support HW-ECC + * + *   08-29-2002 tglx 	nand_chip structure: data_poi for selecting  + *			internal / fs-driver buffer + *			support for 6byte/512byte hardware ECC + *			read_ecc, write_ecc extended for different oob-layout + *			oob layout selections: NAND_NONE_OOB, NAND_JFFS2_OOB, + *			NAND_YAFFS_OOB + *  11-25-2002 tglx	Added Manufacturer code FUJITSU, NATIONAL + *			Split manufacturer and device ID structures  + * + *  02-08-2004 tglx 	added option field to nand structure for chip anomalities + *  05-25-2004 tglx 	added bad block table support, ST-MICRO manufacturer id + *			update of nand_chip structure description   */  #ifndef __LINUX_MTD_NAND_H  #define __LINUX_MTD_NAND_H +#include <linux/mtd/compat.h> +#include <linux/mtd/mtd.h> + +struct mtd_info; +/* Scan and identify a NAND device */ +extern int nand_scan (struct mtd_info *mtd, int max_chips); +/* Free resources held by the NAND device */ +extern void nand_release (struct mtd_info *mtd); + +/* Read raw data from the device without ECC */ +extern int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen); + + +/* The maximum number of NAND chips in an array */ +#define NAND_MAX_CHIPS		8 + +/* This constant declares the max. oobsize / page, which + * is supported now. If you add a chip with bigger oobsize/page + * adjust this accordingly. + */ +#define NAND_MAX_OOBSIZE	64 + +/* + * Constants for hardware specific CLE/ALE/NCE function +*/ +/* Select the chip by setting nCE to low */ +#define NAND_CTL_SETNCE 	1 +/* Deselect the chip by setting nCE to high */ +#define NAND_CTL_CLRNCE		2 +/* Select the command latch by setting CLE to high */ +#define NAND_CTL_SETCLE		3 +/* Deselect the command latch by setting CLE to low */ +#define NAND_CTL_CLRCLE		4 +/* Select the address latch by setting ALE to high */ +#define NAND_CTL_SETALE		5 +/* Deselect the address latch by setting ALE to low */ +#define NAND_CTL_CLRALE		6 +/* Set write protection by setting WP to high. Not used! */ +#define NAND_CTL_SETWP		7 +/* Clear write protection by setting WP to low. Not used! */ +#define NAND_CTL_CLRWP		8 +  /*   * Standard NAND flash commands   */ @@ -45,12 +103,104 @@  #define NAND_CMD_READOOB	0x50  #define NAND_CMD_ERASE1		0x60  #define NAND_CMD_STATUS		0x70 +#define NAND_CMD_STATUS_MULTI	0x71  #define NAND_CMD_SEQIN		0x80  #define NAND_CMD_READID		0x90  #define NAND_CMD_ERASE2		0xd0  #define NAND_CMD_RESET		0xff +/* Extended commands for large page devices */ +#define NAND_CMD_READSTART	0x30 +#define NAND_CMD_CACHEDPROG	0x15 + +/* Status bits */ +#define NAND_STATUS_FAIL	0x01 +#define NAND_STATUS_FAIL_N1	0x02 +#define NAND_STATUS_TRUE_READY	0x20 +#define NAND_STATUS_READY	0x40 +#define NAND_STATUS_WP		0x80 + +/*  + * Constants for ECC_MODES + */ + +/* No ECC. Usage is not recommended ! */ +#define NAND_ECC_NONE		0 +/* Software ECC 3 byte ECC per 256 Byte data */ +#define NAND_ECC_SOFT		1 +/* Hardware ECC 3 byte ECC per 256 Byte data */ +#define NAND_ECC_HW3_256	2 +/* Hardware ECC 3 byte ECC per 512 Byte data */ +#define NAND_ECC_HW3_512	3 +/* Hardware ECC 3 byte ECC per 512 Byte data */ +#define NAND_ECC_HW6_512	4 +/* Hardware ECC 8 byte ECC per 512 Byte data */ +#define NAND_ECC_HW8_512	6 +/* Hardware ECC 12 byte ECC per 2048 Byte data */ +#define NAND_ECC_HW12_2048	7 +  /* + * Constants for Hardware ECC +*/ +/* Reset Hardware ECC for read */ +#define NAND_ECC_READ		0 +/* Reset Hardware ECC for write */ +#define NAND_ECC_WRITE		1 +/* Enable Hardware ECC before syndrom is read back from flash */ +#define NAND_ECC_READSYN	2 + +/* Option constants for bizarre disfunctionality and real +*  features +*/ +/* Chip can not auto increment pages */ +#define NAND_NO_AUTOINCR	0x00000001 +/* Buswitdh is 16 bit */ +#define NAND_BUSWIDTH_16	0x00000002 +/* Device supports partial programming without padding */ +#define NAND_NO_PADDING		0x00000004 +/* Chip has cache program function */ +#define NAND_CACHEPRG		0x00000008 +/* Chip has copy back function */ +#define NAND_COPYBACK		0x00000010 +/* AND Chip which has 4 banks and a confusing page / block  + * assignment. See Renesas datasheet for further information */ +#define NAND_IS_AND		0x00000020 +/* Chip has a array of 4 pages which can be read without + * additional ready /busy waits */ +#define NAND_4PAGE_ARRAY	0x00000040  + +/* Options valid for Samsung large page devices */ +#define NAND_SAMSUNG_LP_OPTIONS \ +	(NAND_NO_PADDING | NAND_CACHEPRG | NAND_COPYBACK) + +/* Macros to identify the above */ +#define NAND_CANAUTOINCR(chip) (!(chip->options & NAND_NO_AUTOINCR)) +#define NAND_MUST_PAD(chip) (!(chip->options & NAND_NO_PADDING)) +#define NAND_HAS_CACHEPROG(chip) ((chip->options & NAND_CACHEPRG)) +#define NAND_HAS_COPYBACK(chip) ((chip->options & NAND_COPYBACK)) + +/* Mask to zero out the chip options, which come from the id table */ +#define NAND_CHIPOPTIONS_MSK	(0x0000ffff & ~NAND_NO_AUTOINCR) + +/* Non chip related options */ +/* Use a flash based bad block table. This option is passed to the + * default bad block table function. */ +#define NAND_USE_FLASH_BBT	0x00010000 +/* The hw ecc generator provides a syndrome instead a ecc value on read  + * This can only work if we have the ecc bytes directly behind the  + * data bytes. Applies for DOC and AG-AND Renesas HW Reed Solomon generators */ +#define NAND_HWECC_SYNDROME	0x00020000 + + +/* Options set by nand scan */ +/* Nand scan has allocated oob_buf */ +#define NAND_OOBBUF_ALLOC	0x40000000 +/* Nand scan has allocated data_buf */ +#define NAND_DATABUF_ALLOC	0x80000000 + + +/* + * nand_state_t - chip states   * Enumeration for NAND flash chip state   */  typedef enum { @@ -58,71 +208,138 @@ typedef enum {  	FL_READING,  	FL_WRITING,  	FL_ERASING, -	FL_SYNCING +	FL_SYNCING, +	FL_CACHEDPRG,  } nand_state_t; +/* Keep gcc happy */ +struct nand_chip; -/* - * NAND Private Flash Chip Data - * - * Structure overview: - * - *  IO_ADDR - address to access the 8 I/O lines of the flash device - * - *  hwcontrol - hardwarespecific function for accesing control-lines - * - *  dev_ready - hardwarespecific function for accesing device ready/busy line - * - *  chip_lock - spinlock used to protect access to this structure - * - *  wq - wait queue to sleep on if a NAND operation is in progress - * - *  state - give the current state of the NAND device - * - *  page_shift - number of address bits in a page (column address bits) - * - *  data_buf - data buffer passed to/from MTD user modules - * - *  data_cache - data cache for redundant page access and shadow for - *		 ECC failure - * - *  ecc_code_buf - used only for holding calculated or read ECCs for - *                 a page read or written when ECC is in use - * - *  reserved - padding to make structure fall on word boundary if - *             when ECC is in use +#if 0 +/** + * struct nand_hw_control - Control structure for hardware controller (e.g ECC generator) shared among independend devices + * @lock:               protection lock   + * @active:		the mtd device which holds the controller currently   */ -struct Nand { -	char floor, chip; -	unsigned long curadr; -	unsigned char curmode; -	/* Also some erase/write/pipeline info when we get that far */ +struct nand_hw_control { +	spinlock_t	 lock; +	struct nand_chip *active;  }; +#endif +/** + * struct nand_chip - NAND Private Flash Chip Data + * @IO_ADDR_R:		[BOARDSPECIFIC] address to read the 8 I/O lines of the flash device  + * @IO_ADDR_W:		[BOARDSPECIFIC] address to write the 8 I/O lines of the flash device  + * @read_byte:		[REPLACEABLE] read one byte from the chip + * @write_byte:		[REPLACEABLE] write one byte to the chip + * @read_word:		[REPLACEABLE] read one word from the chip + * @write_word:		[REPLACEABLE] write one word to the chip + * @write_buf:		[REPLACEABLE] write data from the buffer to the chip + * @read_buf:		[REPLACEABLE] read data from the chip into the buffer + * @verify_buf:		[REPLACEABLE] verify buffer contents against the chip data + * @select_chip:	[REPLACEABLE] select chip nr + * @block_bad:		[REPLACEABLE] check, if the block is bad + * @block_markbad:	[REPLACEABLE] mark the block bad + * @hwcontrol:		[BOARDSPECIFIC] hardwarespecific function for accesing control-lines + * @dev_ready:		[BOARDSPECIFIC] hardwarespecific function for accesing device ready/busy line + *			If set to NULL no access to ready/busy is available and the ready/busy information + *			is read from the chip status register + * @cmdfunc:		[REPLACEABLE] hardwarespecific function for writing commands to the chip + * @waitfunc:		[REPLACEABLE] hardwarespecific function for wait on ready + * @calculate_ecc: 	[REPLACEABLE] function for ecc calculation or readback from ecc hardware + * @correct_data:	[REPLACEABLE] function for ecc correction, matching to ecc generator (sw/hw) + * @enable_hwecc:	[BOARDSPECIFIC] function to enable (reset) hardware ecc generator. Must only + *			be provided if a hardware ECC is available + * @erase_cmd:		[INTERN] erase command write function, selectable due to AND support + * @scan_bbt:		[REPLACEABLE] function to scan bad block table + * @eccmode:		[BOARDSPECIFIC] mode of ecc, see defines  + * @eccsize: 		[INTERN] databytes used per ecc-calculation + * @eccbytes: 		[INTERN] number of ecc bytes per ecc-calculation step + * @eccsteps:		[INTERN] number of ecc calculation steps per page + * @chip_delay:		[BOARDSPECIFIC] chip dependent delay for transfering data from array to read regs (tR) + * @chip_lock:		[INTERN] spinlock used to protect access to this structure and the chip + * @wq:			[INTERN] wait queue to sleep on if a NAND operation is in progress + * @state: 		[INTERN] the current state of the NAND device + * @page_shift:		[INTERN] number of address bits in a page (column address bits) + * @phys_erase_shift:	[INTERN] number of address bits in a physical eraseblock + * @bbt_erase_shift:	[INTERN] number of address bits in a bbt entry + * @chip_shift:		[INTERN] number of address bits in one chip + * @data_buf:		[INTERN] internal buffer for one page + oob  + * @oob_buf:		[INTERN] oob buffer for one eraseblock + * @oobdirty:		[INTERN] indicates that oob_buf must be reinitialized + * @data_poi:		[INTERN] pointer to a data buffer + * @options:		[BOARDSPECIFIC] various chip options. They can partly be set to inform nand_scan about + *			special functionality. See the defines for further explanation + * @badblockpos:	[INTERN] position of the bad block marker in the oob area + * @numchips:		[INTERN] number of physical chips + * @chipsize:		[INTERN] the size of one chip for multichip arrays + * @pagemask:		[INTERN] page number mask = number of (pages / chip) - 1 + * @pagebuf:		[INTERN] holds the pagenumber which is currently in data_buf + * @autooob:		[REPLACEABLE] the default (auto)placement scheme + * @bbt:		[INTERN] bad block table pointer + * @bbt_td:		[REPLACEABLE] bad block table descriptor for flash lookup + * @bbt_md:		[REPLACEABLE] bad block table mirror descriptor + * @badblock_pattern:	[REPLACEABLE] bad block scan pattern used for initial bad block scan  + * @controller:		[OPTIONAL] a pointer to a hardware controller structure which is shared among multiple independend devices + * @priv:		[OPTIONAL] pointer to private chip date + */ +   struct nand_chip { +	void  __iomem	*IO_ADDR_R; +	void  __iomem 	*IO_ADDR_W; +	 +	u_char		(*read_byte)(struct mtd_info *mtd); +	void		(*write_byte)(struct mtd_info *mtd, u_char byte); +	u16		(*read_word)(struct mtd_info *mtd); +	void		(*write_word)(struct mtd_info *mtd, u16 word); +	 +	void		(*write_buf)(struct mtd_info *mtd, const u_char *buf, int len); +	void		(*read_buf)(struct mtd_info *mtd, u_char *buf, int len); +	int		(*verify_buf)(struct mtd_info *mtd, const u_char *buf, int len); +	void		(*select_chip)(struct mtd_info *mtd, int chip); +	int		(*block_bad)(struct mtd_info *mtd, loff_t ofs, int getchip); +	int		(*block_markbad)(struct mtd_info *mtd, loff_t ofs); +	void 		(*hwcontrol)(struct mtd_info *mtd, int cmd); +	int  		(*dev_ready)(struct mtd_info *mtd); +	void 		(*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr); +	int 		(*waitfunc)(struct mtd_info *mtd, struct nand_chip *this, int state); +	int		(*calculate_ecc)(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code); +	int 		(*correct_data)(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc); +	void		(*enable_hwecc)(struct mtd_info *mtd, int mode); +	void		(*erase_cmd)(struct mtd_info *mtd, int page); +	int		(*scan_bbt)(struct mtd_info *mtd); +	int		eccmode; +	int		eccsize; +	int		eccbytes; +	int		eccsteps; +	int 		chip_delay; +#if 0 +	spinlock_t	chip_lock; +	wait_queue_head_t wq; +	nand_state_t 	state; +#endif  	int 		page_shift; +	int		phys_erase_shift; +	int		bbt_erase_shift; +	int		chip_shift;  	u_char 		*data_buf; -	u_char 		*data_cache; -	int		cache_page; -	u_char 		ecc_code_buf[6]; -	u_char 		reserved[2]; -	char ChipID; /* Type of DiskOnChip */ -	struct Nand *chips; -	int chipshift; -	char* chips_name; -	unsigned long erasesize; -	unsigned long mfr; /* Flash IDs - only one type of flash per device */ -	unsigned long id; -	char* name; -	int numchips; -	char page256; -	char pageadrlen; -	unsigned long IO_ADDR;  /* address to access the 8 I/O lines to the flash device */ -	unsigned long totlen; -	uint oobblock;  /* Size of OOB blocks (e.g. 512) */ -	uint oobsize;   /* Amount of OOB data per block (e.g. 16) */ -	uint eccsize; -	int bus16; +	u_char		*oob_buf; +	int		oobdirty; +	u_char		*data_poi; +	unsigned int	options; +	int		badblockpos; +	int		numchips; +	unsigned long	chipsize; +	int		pagemask; +	int		pagebuf; +	struct nand_oobinfo	*autooob; +	uint8_t		*bbt; +	struct nand_bbt_descr	*bbt_td; +	struct nand_bbt_descr	*bbt_md; +	struct nand_bbt_descr	*badblock_pattern; +	struct nand_hw_control  *controller; +	void		*priv;  };  /* @@ -130,71 +347,125 @@ struct nand_chip {   */  #define NAND_MFR_TOSHIBA	0x98  #define NAND_MFR_SAMSUNG	0xec +#define NAND_MFR_FUJITSU	0x04 +#define NAND_MFR_NATIONAL	0x8f +#define NAND_MFR_RENESAS	0x07 +#define NAND_MFR_STMICRO	0x20 -/* - * NAND Flash Device ID Structure - * - * Structure overview: - * - *  name - Complete name of device - * - *  manufacture_id - manufacturer ID code of device. - * - *  model_id - model ID code of device. - * - *  chipshift - total number of address bits for the device which - *              is used to calculate address offsets and the total - *              number of bytes the device is capable of. - * - *  page256 - denotes if flash device has 256 byte pages or not. +/** + * struct nand_flash_dev - NAND Flash Device ID Structure   * - *  pageadrlen - number of bytes minus one needed to hold the - *               complete address into the flash array. Keep in - *               mind that when a read or write is done to a - *               specific address, the address is input serially - *               8 bits at a time. This structure member is used - *               by the read/write routines as a loop index for - *               shifting the address out 8 bits at a time. - * - *  erasesize - size of an erase block in the flash device. + * @name:  	Identify the device type + * @id:   	device ID code + * @pagesize:  	Pagesize in bytes. Either 256 or 512 or 0 + *		If the pagesize is 0, then the real pagesize  + *		and the eraseize are determined from the + *		extended id bytes in the chip + * @erasesize: 	Size of an erase block in the flash device. + * @chipsize:  	Total chipsize in Mega Bytes + * @options:	Bitfield to store chip relevant options   */  struct nand_flash_dev { -	char * name; -	int manufacture_id; -	int model_id; -	int chipshift; -	char page256; -	char pageadrlen; +	char *name; +	int id; +	unsigned long pagesize; +	unsigned long chipsize;  	unsigned long erasesize; -	int bus16; +	unsigned long options;  }; -/* -* Constants for oob configuration +/** + * struct nand_manufacturers - NAND Flash Manufacturer ID Structure + * @name:	Manufacturer name + * @id: 	manufacturer ID code of device.  */ -#define NAND_NOOB_ECCPOS0		0 -#define NAND_NOOB_ECCPOS1		1 -#define NAND_NOOB_ECCPOS2		2 -#define NAND_NOOB_ECCPOS3		3 -#define NAND_NOOB_ECCPOS4		6 -#define NAND_NOOB_ECCPOS5		7 -#define NAND_NOOB_BADBPOS		-1 -#define NAND_NOOB_ECCVPOS		-1 +struct nand_manufacturers { +	int id; +	char * name; +}; + +extern struct nand_flash_dev nand_flash_ids[]; +extern struct nand_manufacturers nand_manuf_ids[]; + +/**  + * struct nand_bbt_descr - bad block table descriptor + * @options:	options for this descriptor + * @pages:	the page(s) where we find the bbt, used with option BBT_ABSPAGE + *		when bbt is searched, then we store the found bbts pages here. + *		Its an array and supports up to 8 chips now + * @offs:	offset of the pattern in the oob area of the page + * @veroffs:	offset of the bbt version counter in the oob are of the page + * @version:	version read from the bbt page during scan + * @len:	length of the pattern, if 0 no pattern check is performed + * @maxblocks:	maximum number of blocks to search for a bbt. This number of + *		blocks is reserved at the end of the device where the tables are  + *		written. + * @reserved_block_code: if non-0, this pattern denotes a reserved (rather than + *              bad) block in the stored bbt + * @pattern:	pattern to identify bad block table or factory marked good /  + *		bad blocks, can be NULL, if len = 0 + * + * Descriptor for the bad block table marker and the descriptor for the  + * pattern which identifies good and bad blocks. The assumption is made + * that the pattern and the version count are always located in the oob area + * of the first block. + */ +struct nand_bbt_descr { +	int	options; +	int	pages[NAND_MAX_CHIPS]; +	int	offs; +	int	veroffs; +	uint8_t	version[NAND_MAX_CHIPS]; +	int	len; +	int 	maxblocks; +	int	reserved_block_code; +	uint8_t	*pattern; +}; + +/* Options for the bad block table descriptors */ -#define NAND_JFFS2_OOB_ECCPOS0		0 -#define NAND_JFFS2_OOB_ECCPOS1		1 -#define NAND_JFFS2_OOB_ECCPOS2		2 -#define NAND_JFFS2_OOB_ECCPOS3		3 -#define NAND_JFFS2_OOB_ECCPOS4		6 -#define NAND_JFFS2_OOB_ECCPOS5		7 -#define NAND_JFFS2_OOB_BADBPOS		5 -#define NAND_JFFS2_OOB_ECCVPOS		4 +/* The number of bits used per block in the bbt on the device */ +#define NAND_BBT_NRBITS_MSK	0x0000000F +#define NAND_BBT_1BIT		0x00000001 +#define NAND_BBT_2BIT		0x00000002 +#define NAND_BBT_4BIT		0x00000004 +#define NAND_BBT_8BIT		0x00000008 +/* The bad block table is in the last good block of the device */ +#define	NAND_BBT_LASTBLOCK	0x00000010 +/* The bbt is at the given page, else we must scan for the bbt */ +#define NAND_BBT_ABSPAGE	0x00000020 +/* The bbt is at the given page, else we must scan for the bbt */ +#define NAND_BBT_SEARCH		0x00000040 +/* bbt is stored per chip on multichip devices */ +#define NAND_BBT_PERCHIP	0x00000080 +/* bbt has a version counter at offset veroffs */ +#define NAND_BBT_VERSION	0x00000100 +/* Create a bbt if none axists */ +#define NAND_BBT_CREATE		0x00000200 +/* Search good / bad pattern through all pages of a block */ +#define NAND_BBT_SCANALLPAGES	0x00000400 +/* Scan block empty during good / bad block scan */ +#define NAND_BBT_SCANEMPTY	0x00000800 +/* Write bbt if neccecary */ +#define NAND_BBT_WRITE		0x00001000 +/* Read and write back block contents when writing bbt */ +#define NAND_BBT_SAVECONTENT	0x00002000 +/* Search good / bad pattern on the first and the second page */ +#define NAND_BBT_SCAN2NDPAGE	0x00004000 -#define NAND_JFFS2_OOB8_FSDAPOS		6 -#define NAND_JFFS2_OOB16_FSDAPOS	8 -#define NAND_JFFS2_OOB8_FSDALEN		2 -#define NAND_JFFS2_OOB16_FSDALEN	8 +/* The maximum number of blocks to scan for a bbt */ +#define NAND_BBT_SCAN_MAXBLOCKS	4 -unsigned long nand_probe(unsigned long physadr); +extern int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd); +extern int nand_update_bbt (struct mtd_info *mtd, loff_t offs); +extern int nand_default_bbt (struct mtd_info *mtd); +extern int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt); +extern int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt); + +/* +* Constants for oob configuration +*/ +#define NAND_SMALL_BADBLOCK_POS		5 +#define NAND_LARGE_BADBLOCK_POS		0  #endif /* __LINUX_MTD_NAND_H */ diff --git a/include/linux/mtd/nand_ecc.h b/include/linux/mtd/nand_ecc.h new file mode 100644 index 000000000..12c5bc342 --- /dev/null +++ b/include/linux/mtd/nand_ecc.h @@ -0,0 +1,30 @@ +/* + *  drivers/mtd/nand_ecc.h + * + *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * + * $Id: nand_ecc.h,v 1.4 2004/06/17 02:35:02 dbrown Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * This file is the header for the ECC algorithm. + */ + +#ifndef __MTD_NAND_ECC_H__ +#define __MTD_NAND_ECC_H__ + +struct mtd_info; + +/* + * Calculate 3 byte ECC code for 256 byte block + */ +int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code); + +/* + * Detect and correct a 1 bit error for 256 byte block + */ +int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc); + +#endif /* __MTD_NAND_ECC_H__ */ diff --git a/include/linux/mtd/nand_ids.h b/include/linux/mtd/nand_ids.h index a3d0363a2..75c305b56 100644 --- a/include/linux/mtd/nand_ids.h +++ b/include/linux/mtd/nand_ids.h @@ -49,6 +49,7 @@ static struct nand_flash_dev nand_flash_ids[] = {  	{"Samsung KM29W16000",    NAND_MFR_SAMSUNG, 0xea, 21, 1, 2, 0x1000, 0},  	{"Samsung K9F5616Q0C",    NAND_MFR_SAMSUNG, 0x45, 25, 0, 2, 0x4000, 1},  	{"Samsung K9K1216Q0C",    NAND_MFR_SAMSUNG, 0x46, 26, 0, 3, 0x4000, 1}, +	{"Samsung K9F1G08U0M",    NAND_MFR_SAMSUNG, 0xf1, 27, 0, 2, 0, 0},  	{NULL,}  }; diff --git a/include/nand.h b/include/nand.h new file mode 100644 index 000000000..29580da4f --- /dev/null +++ b/include/nand.h @@ -0,0 +1,56 @@ +/* + * (C) Copyright 2005 + * 2N Telekomunikace, a.s. <www.2n.cz> + * Ladislav Michl <michl@2n.cz> + * + * See file CREDITS for list of people who contributed to this + * project. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License + * version 2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, + * MA 02111-1307 USA + */ + +#ifndef _NAND_H_ +#define _NAND_H_ + +#include <linux_compat.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> + +typedef struct mtd_info nand_info_t; + +extern int nand_curr_device; +extern nand_info_t nand_info[]; + +static inline int nand_read(nand_info_t *info, ulong ofs, ulong *len, u_char *buf) +{ +	return info->read(info, ofs, *len, len, buf); +} + +static inline int nand_write(nand_info_t *info, ulong ofs, ulong *len, u_char *buf) +{ +	return info->write(info, ofs, *len, len, buf); +} + +static inline int nand_block_isbad(nand_info_t *info, ulong ofs) +{ +	return info->block_isbad(info, ofs); +} + +static inline int nand_erase(nand_info_t *info, ulong off, ulong size) +{ +	return 0; /* FIXME */ +} + +#endif |