/* * Bluetooth Broadcomm and low power control via GPIO * * Copyright (C) 2011 Google, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ /* * Adapted from board-tuna-bluetooth.c by Evan Wilson #include #include #include #include #include #include #include #include #include #include #include #include "serial.h" #include "board-omap3h1.h" #include static void set_host_wake_locked(int); #define BT_RESET_GPIO 179 #define BT_REG_GPIO 180 #define BT_WAKE_GPIO 93 #define BT_HOST_WAKE_GPIO 11 #define UART_PORT 0 /* UART 1 = 0 */ #define olio_debug(format, ...) printk ("OLIO %s: ", __FUNCTION__); printk (format, ##__VA_ARGS__) static struct rfkill *bt_rfkill; static struct regulator *clk32ksys_reg; static bool bt_enabled; static bool host_wake_uart_enabled = 0; static bool wake_uart_enabled = 0; static struct dentry *btdebugdent; static struct bcm_bt_lpm { int bcm_wake; int host_wake; struct hrtimer enter_lpm_timer; ktime_t enter_lpm_delay; struct uart_port *uport; /* Lock for use when host is communicating with chip */ struct wake_lock bcm_wake_lock; /* Lock used when chip wakes up the host */ struct wake_lock host_wake_lock; char host_wake_lock_name[100]; char bcm_wake_lock_name[100]; } bt_lpm; static int bcm20702_bt_rfkill_set_power(void *data, bool blocked) { // rfkill_ops callback. Turn transmitter on when blocked is false if (!blocked) { if (clk32ksys_reg && !bt_enabled) regulator_enable(clk32ksys_reg); gpio_set_value(BT_RESET_GPIO, 1); gpio_set_value(BT_REG_GPIO, 1); gpio_set_value(BT_RESET_GPIO, 1); } else { // Chip won't toggle host_wake after reset. Make sure // we don't hold the wake_lock until chip wakes up again. // set_host_wake_locked(0); // OLIO removed, we'll let go of the wake lock when HOST_WAKE drops. gpio_set_value(BT_RESET_GPIO, 0); gpio_set_value(BT_REG_GPIO, 0); if (clk32ksys_reg && bt_enabled) regulator_disable(clk32ksys_reg); } bt_enabled = !blocked; return 0; } static const struct rfkill_ops bcm20702_bt_rfkill_ops = { .set_block = bcm20702_bt_rfkill_set_power, }; static void set_wake_locked(int wake) { if (bt_lpm.bcm_wake == wake) { return; } bt_lpm.bcm_wake = wake; if (wake) { olio_debug ("Now locking wake lock\n"); wake_lock (&bt_lpm.bcm_wake_lock); /* Does this even make sense here? We've already using the port, doesn't that mean that we're */ if (!wake_uart_enabled) omap_serial_ext_uart_enable(UART_PORT); } gpio_set_value(BT_WAKE_GPIO, wake); /* Let UART know we're done with it */ if (wake_uart_enabled && !wake) omap_serial_ext_uart_disable(UART_PORT); wake_uart_enabled = wake; if (!wake) { olio_debug ("Now unlocking wake lock\n"); wake_unlock(&bt_lpm.bcm_wake_lock); } } static enum hrtimer_restart enter_lpm(struct hrtimer *timer) { unsigned long flags; spin_lock_irqsave(&bt_lpm.uport->lock, flags); set_wake_locked(0); spin_unlock_irqrestore(&bt_lpm.uport->lock, flags); return HRTIMER_NORESTART; } void bcm_bt_lpm_exit_lpm_locked(struct uart_port *uport) { int ret; bt_lpm.uport = uport; ret = hrtimer_try_to_cancel(&bt_lpm.enter_lpm_timer); if (ret == -1) { olio_debug ("timer executing, unable to cancel\n"); } set_wake_locked(1); hrtimer_start(&bt_lpm.enter_lpm_timer, bt_lpm.enter_lpm_delay, HRTIMER_MODE_REL); } EXPORT_SYMBOL(bcm_bt_lpm_exit_lpm_locked); static void set_host_wake_locked(int host_wake) { olio_debug ("Entered, requested host_wake is %d\n", host_wake); if (host_wake == bt_lpm.host_wake) { olio_debug ("Host wake lock is already in requested state\n"); return; } olio_debug ("host_wake (%d) is different from bt_lpm.host_wake (%d)\n", host_wake, bt_lpm.host_wake); bt_lpm.host_wake = host_wake; if (host_wake) { olio_debug ("host_wake is set, taking wake lock\n"); wake_lock(&bt_lpm.host_wake_lock); if (!host_wake_uart_enabled) { omap_serial_ext_uart_enable(UART_PORT); } } else { if (host_wake_uart_enabled) { omap_serial_ext_uart_disable(UART_PORT); } } /* Set wake lock to time out, so that upper layers can take it. * The chipset deasserts the host wake lock when there is no * more data to send. */ if (!host_wake) { olio_debug ("host_wake isn't set, adding timeout to wake lock\n"); wake_lock_timeout(&bt_lpm.host_wake_lock, HZ/2); } host_wake_uart_enabled = host_wake; olio_debug ("Exiting\n"); } static irqreturn_t host_wake_isr(int irq, void *dev) { int host_wake; unsigned long flags; host_wake = gpio_get_value(BT_HOST_WAKE_GPIO); /* Invert the interrupt type to catch the next transition */ irq_set_irq_type(irq, host_wake ? IRQF_TRIGGER_FALLING : IRQF_TRIGGER_RISING); olio_debug ("Set next trigger to be %s\n", host_wake ? "falling" : "rising"); if (!bt_lpm.uport) { bt_lpm.host_wake = host_wake; return IRQ_HANDLED; } spin_lock_irqsave(&bt_lpm.uport->lock, flags); set_host_wake_locked(host_wake); spin_unlock_irqrestore(&bt_lpm.uport->lock, flags); return IRQ_HANDLED; } static int bcm_bt_lpm_init(struct platform_device *pdev) { int irq; int ret; int rc; rc = gpio_request(BT_WAKE_GPIO, "bcm20702_wake_gpio"); if (unlikely(rc)) { return rc; } rc = gpio_request(BT_HOST_WAKE_GPIO, "bcm20702_host_wake_gpio"); if (unlikely(rc)) { gpio_free(BT_WAKE_GPIO); return rc; } hrtimer_init(&bt_lpm.enter_lpm_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); bt_lpm.enter_lpm_delay = ktime_set(1, 0); /* 1 sec */ bt_lpm.enter_lpm_timer.function = enter_lpm; bt_lpm.host_wake = 0; irq = gpio_to_irq(BT_HOST_WAKE_GPIO); ret = request_irq(irq, host_wake_isr, IRQF_TRIGGER_RISING, "bt host_wake", NULL); if (ret) { gpio_free(BT_WAKE_GPIO); gpio_free(BT_HOST_WAKE_GPIO); return ret; } ret = irq_set_irq_wake(irq, 1); if (ret) { gpio_free(BT_WAKE_GPIO); gpio_free(BT_HOST_WAKE_GPIO); return ret; } gpio_direction_output(BT_WAKE_GPIO, 0); gpio_direction_input(BT_HOST_WAKE_GPIO); snprintf(bt_lpm.bcm_wake_lock_name, sizeof(bt_lpm.bcm_wake_lock_name), "BCM BTLowPower"); snprintf(bt_lpm.host_wake_lock_name, sizeof(bt_lpm.host_wake_lock_name), "HOST BTLowPower"); wake_lock_init(&bt_lpm.bcm_wake_lock, WAKE_LOCK_SUSPEND, bt_lpm.bcm_wake_lock_name); wake_lock_init(&bt_lpm.host_wake_lock, WAKE_LOCK_SUSPEND, bt_lpm.host_wake_lock_name); return 0; } static int btdebug_dump(struct seq_file *sf, void *private) { seq_printf(sf, "en=%d bt_wake=%d lpm.w=%d w_uart_en=%d\n", bt_enabled, gpio_get_value(BT_WAKE_GPIO), bt_lpm.bcm_wake, wake_uart_enabled); seq_printf(sf, "bt_host_wake=%d lpm.hw=%d hw_uart_en=%d\n", gpio_get_value(BT_HOST_WAKE_GPIO), bt_lpm.host_wake, host_wake_uart_enabled); return 0; } static int btdebug_open(struct inode *inode, struct file *file) { return single_open(file, btdebug_dump, NULL); } static const struct file_operations btdebug_fops = { .open = btdebug_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static int bcm20702_bluetooth_probe(struct platform_device *pdev) { int rc = 0; int ret = 0; rc = gpio_request(BT_RESET_GPIO, "bcm20702_nreset_gpip"); if (unlikely(rc)) { return rc; } rc = gpio_request(BT_REG_GPIO, "bcm20702_nshutdown_gpio"); if (unlikely(rc)) { gpio_free(BT_RESET_GPIO); return rc; } clk32ksys_reg = regulator_get(0, "clk32ksys"); if (IS_ERR(clk32ksys_reg)) { pr_err("clk32ksys reg not found!\n"); clk32ksys_reg = NULL; } gpio_direction_output(BT_REG_GPIO, 1); gpio_direction_output(BT_RESET_GPIO, 1); bt_rfkill = rfkill_alloc("bcm20702 Bluetooth", &pdev->dev, RFKILL_TYPE_BLUETOOTH, &bcm20702_bt_rfkill_ops, NULL); if (unlikely(!bt_rfkill)) { gpio_free(BT_RESET_GPIO); gpio_free(BT_REG_GPIO); return -ENOMEM; } rfkill_set_states(bt_rfkill, true, false); rc = rfkill_register(bt_rfkill); if (unlikely(rc)) { rfkill_destroy(bt_rfkill); gpio_free(BT_RESET_GPIO); gpio_free(BT_REG_GPIO); return -1; } ret = bcm_bt_lpm_init(pdev); if (ret) { rfkill_unregister(bt_rfkill); rfkill_destroy(bt_rfkill); gpio_free(BT_RESET_GPIO); gpio_free(BT_REG_GPIO); } btdebugdent = debugfs_create_file("bt", S_IRUGO, NULL, NULL, &btdebug_fops); if (IS_ERR_OR_NULL(btdebugdent)) pr_err("%s: failed to create debugfs file\n", __func__); return ret; } static int bcm20702_bluetooth_remove(struct platform_device *pdev) { rfkill_unregister(bt_rfkill); rfkill_destroy(bt_rfkill); if (!IS_ERR_OR_NULL(btdebugdent)) debugfs_remove(btdebugdent); gpio_free(BT_REG_GPIO); gpio_free(BT_RESET_GPIO); gpio_free(BT_WAKE_GPIO); gpio_free(BT_HOST_WAKE_GPIO); regulator_put(clk32ksys_reg); wake_lock_destroy(&bt_lpm.bcm_wake_lock); wake_lock_destroy(&bt_lpm.host_wake_lock); return 0; } int bcm4430_bluetooth_suspend(struct platform_device *pdev, pm_message_t state) { int irq = gpio_to_irq(BT_HOST_WAKE_GPIO); int host_wake; disable_irq(irq); host_wake = gpio_get_value(BT_HOST_WAKE_GPIO); if (host_wake) { enable_irq(irq); return -EBUSY; } return 0; } int bcm4430_bluetooth_resume(struct platform_device *pdev) { int irq = gpio_to_irq(BT_HOST_WAKE_GPIO); enable_irq(irq); return 0; } /* .suspend = bcm4430_bluetooth_suspend, .resume = bcm4430_bluetooth_resume, */ static struct platform_driver bcm20702_bluetooth_platform_driver = { .probe = bcm20702_bluetooth_probe, .remove = bcm20702_bluetooth_remove, .driver = { .name = "bcm20702_bluetooth", .owner = THIS_MODULE, }, }; static int __init bcm20702_bluetooth_init(void) { bt_enabled = false; return platform_driver_register(&bcm20702_bluetooth_platform_driver); } static void __exit bcm20702_bluetooth_exit(void) { platform_driver_unregister(&bcm20702_bluetooth_platform_driver); } module_init(bcm20702_bluetooth_init); module_exit(bcm20702_bluetooth_exit); MODULE_ALIAS("platform:bcm20702"); MODULE_DESCRIPTION("bcm20702_bluetooth"); MODULE_AUTHOR("Jaikumar Ganesh "); MODULE_LICENSE("GPL");