diff options
Diffstat (limited to 'tools/perf/bench/numa.c')
| -rw-r--r-- | tools/perf/bench/numa.c | 1731 | 
1 files changed, 1731 insertions, 0 deletions
diff --git a/tools/perf/bench/numa.c b/tools/perf/bench/numa.c new file mode 100644 index 00000000000..30d1c3225b4 --- /dev/null +++ b/tools/perf/bench/numa.c @@ -0,0 +1,1731 @@ +/* + * numa.c + * + * numa: Simulate NUMA-sensitive workload and measure their NUMA performance + */ + +#include "../perf.h" +#include "../builtin.h" +#include "../util/util.h" +#include "../util/parse-options.h" + +#include "bench.h" + +#include <errno.h> +#include <sched.h> +#include <stdio.h> +#include <assert.h> +#include <malloc.h> +#include <signal.h> +#include <stdlib.h> +#include <string.h> +#include <unistd.h> +#include <pthread.h> +#include <sys/mman.h> +#include <sys/time.h> +#include <sys/wait.h> +#include <sys/prctl.h> +#include <sys/types.h> + +#include <numa.h> +#include <numaif.h> + +/* + * Regular printout to the terminal, supressed if -q is specified: + */ +#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) + +/* + * Debug printf: + */ +#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) + +struct thread_data { +	int			curr_cpu; +	cpu_set_t		bind_cpumask; +	int			bind_node; +	u8			*process_data; +	int			process_nr; +	int			thread_nr; +	int			task_nr; +	unsigned int		loops_done; +	u64			val; +	u64			runtime_ns; +	pthread_mutex_t		*process_lock; +}; + +/* Parameters set by options: */ + +struct params { +	/* Startup synchronization: */ +	bool			serialize_startup; + +	/* Task hierarchy: */ +	int			nr_proc; +	int			nr_threads; + +	/* Working set sizes: */ +	const char		*mb_global_str; +	const char		*mb_proc_str; +	const char		*mb_proc_locked_str; +	const char		*mb_thread_str; + +	double			mb_global; +	double			mb_proc; +	double			mb_proc_locked; +	double			mb_thread; + +	/* Access patterns to the working set: */ +	bool			data_reads; +	bool			data_writes; +	bool			data_backwards; +	bool			data_zero_memset; +	bool			data_rand_walk; +	u32			nr_loops; +	u32			nr_secs; +	u32			sleep_usecs; + +	/* Working set initialization: */ +	bool			init_zero; +	bool			init_random; +	bool			init_cpu0; + +	/* Misc options: */ +	int			show_details; +	int			run_all; +	int			thp; + +	long			bytes_global; +	long			bytes_process; +	long			bytes_process_locked; +	long			bytes_thread; + +	int			nr_tasks; +	bool			show_quiet; + +	bool			show_convergence; +	bool			measure_convergence; + +	int			perturb_secs; +	int			nr_cpus; +	int			nr_nodes; + +	/* Affinity options -C and -N: */ +	char			*cpu_list_str; +	char			*node_list_str; +}; + + +/* Global, read-writable area, accessible to all processes and threads: */ + +struct global_info { +	u8			*data; + +	pthread_mutex_t		startup_mutex; +	int			nr_tasks_started; + +	pthread_mutex_t		startup_done_mutex; + +	pthread_mutex_t		start_work_mutex; +	int			nr_tasks_working; + +	pthread_mutex_t		stop_work_mutex; +	u64			bytes_done; + +	struct thread_data	*threads; + +	/* Convergence latency measurement: */ +	bool			all_converged; +	bool			stop_work; + +	int			print_once; + +	struct params		p; +}; + +static struct global_info	*g = NULL; + +static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); +static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); + +struct params p0; + +static const struct option options[] = { +	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"), +	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"), + +	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"), +	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"), +	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), +	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"), + +	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run"), +	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run"), +	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"), + +	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"), +	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"), +	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"), +	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), +	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"), + + +	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"), +	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"), +	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"), +	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"), + +	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"), +	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"), +	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), +	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), +	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"), +	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"bzero the initial allocations"), +	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), + +	/* Special option string parsing callbacks: */ +        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", +			"bind the first N tasks to these specific cpus (the rest is unbound)", +			parse_cpus_opt), +        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", +			"bind the first N tasks to these specific memory nodes (the rest is unbound)", +			parse_nodes_opt), +	OPT_END() +}; + +static const char * const bench_numa_usage[] = { +	"perf bench numa <options>", +	NULL +}; + +static const char * const numa_usage[] = { +	"perf bench numa mem [<options>]", +	NULL +}; + +static cpu_set_t bind_to_cpu(int target_cpu) +{ +	cpu_set_t orig_mask, mask; +	int ret; + +	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); +	BUG_ON(ret); + +	CPU_ZERO(&mask); + +	if (target_cpu == -1) { +		int cpu; + +		for (cpu = 0; cpu < g->p.nr_cpus; cpu++) +			CPU_SET(cpu, &mask); +	} else { +		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); +		CPU_SET(target_cpu, &mask); +	} + +	ret = sched_setaffinity(0, sizeof(mask), &mask); +	BUG_ON(ret); + +	return orig_mask; +} + +static cpu_set_t bind_to_node(int target_node) +{ +	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; +	cpu_set_t orig_mask, mask; +	int cpu; +	int ret; + +	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); +	BUG_ON(!cpus_per_node); + +	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); +	BUG_ON(ret); + +	CPU_ZERO(&mask); + +	if (target_node == -1) { +		for (cpu = 0; cpu < g->p.nr_cpus; cpu++) +			CPU_SET(cpu, &mask); +	} else { +		int cpu_start = (target_node + 0) * cpus_per_node; +		int cpu_stop  = (target_node + 1) * cpus_per_node; + +		BUG_ON(cpu_stop > g->p.nr_cpus); + +		for (cpu = cpu_start; cpu < cpu_stop; cpu++) +			CPU_SET(cpu, &mask); +	} + +	ret = sched_setaffinity(0, sizeof(mask), &mask); +	BUG_ON(ret); + +	return orig_mask; +} + +static void bind_to_cpumask(cpu_set_t mask) +{ +	int ret; + +	ret = sched_setaffinity(0, sizeof(mask), &mask); +	BUG_ON(ret); +} + +static void mempol_restore(void) +{ +	int ret; + +	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); + +	BUG_ON(ret); +} + +static void bind_to_memnode(int node) +{ +	unsigned long nodemask; +	int ret; + +	if (node == -1) +		return; + +	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)); +	nodemask = 1L << node; + +	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); +	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); + +	BUG_ON(ret); +} + +#define HPSIZE (2*1024*1024) + +#define set_taskname(fmt...)				\ +do {							\ +	char name[20];					\ +							\ +	snprintf(name, 20, fmt);			\ +	prctl(PR_SET_NAME, name);			\ +} while (0) + +static u8 *alloc_data(ssize_t bytes0, int map_flags, +		      int init_zero, int init_cpu0, int thp, int init_random) +{ +	cpu_set_t orig_mask; +	ssize_t bytes; +	u8 *buf; +	int ret; + +	if (!bytes0) +		return NULL; + +	/* Allocate and initialize all memory on CPU#0: */ +	if (init_cpu0) { +		orig_mask = bind_to_node(0); +		bind_to_memnode(0); +	} + +	bytes = bytes0 + HPSIZE; + +	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); +	BUG_ON(buf == (void *)-1); + +	if (map_flags == MAP_PRIVATE) { +		if (thp > 0) { +			ret = madvise(buf, bytes, MADV_HUGEPAGE); +			if (ret && !g->print_once) { +				g->print_once = 1; +				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); +			} +		} +		if (thp < 0) { +			ret = madvise(buf, bytes, MADV_NOHUGEPAGE); +			if (ret && !g->print_once) { +				g->print_once = 1; +				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); +			} +		} +	} + +	if (init_zero) { +		bzero(buf, bytes); +	} else { +		/* Initialize random contents, different in each word: */ +		if (init_random) { +			u64 *wbuf = (void *)buf; +			long off = rand(); +			long i; + +			for (i = 0; i < bytes/8; i++) +				wbuf[i] = i + off; +		} +	} + +	/* Align to 2MB boundary: */ +	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); + +	/* Restore affinity: */ +	if (init_cpu0) { +		bind_to_cpumask(orig_mask); +		mempol_restore(); +	} + +	return buf; +} + +static void free_data(void *data, ssize_t bytes) +{ +	int ret; + +	if (!data) +		return; + +	ret = munmap(data, bytes); +	BUG_ON(ret); +} + +/* + * Create a shared memory buffer that can be shared between processes, zeroed: + */ +static void * zalloc_shared_data(ssize_t bytes) +{ +	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random); +} + +/* + * Create a shared memory buffer that can be shared between processes: + */ +static void * setup_shared_data(ssize_t bytes) +{ +	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random); +} + +/* + * Allocate process-local memory - this will either be shared between + * threads of this process, or only be accessed by this thread: + */ +static void * setup_private_data(ssize_t bytes) +{ +	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random); +} + +/* + * Return a process-shared (global) mutex: + */ +static void init_global_mutex(pthread_mutex_t *mutex) +{ +	pthread_mutexattr_t attr; + +	pthread_mutexattr_init(&attr); +	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); +	pthread_mutex_init(mutex, &attr); +} + +static int parse_cpu_list(const char *arg) +{ +	p0.cpu_list_str = strdup(arg); + +	dprintf("got CPU list: {%s}\n", p0.cpu_list_str); + +	return 0; +} + +static void parse_setup_cpu_list(void) +{ +	struct thread_data *td; +	char *str0, *str; +	int t; + +	if (!g->p.cpu_list_str) +		return; + +	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); + +	str0 = str = strdup(g->p.cpu_list_str); +	t = 0; + +	BUG_ON(!str); + +	tprintf("# binding tasks to CPUs:\n"); +	tprintf("#  "); + +	while (true) { +		int bind_cpu, bind_cpu_0, bind_cpu_1; +		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; +		int bind_len; +		int step; +		int mul; + +		tok = strsep(&str, ","); +		if (!tok) +			break; + +		tok_end = strstr(tok, "-"); + +		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); +		if (!tok_end) { +			/* Single CPU specified: */ +			bind_cpu_0 = bind_cpu_1 = atol(tok); +		} else { +			/* CPU range specified (for example: "5-11"): */ +			bind_cpu_0 = atol(tok); +			bind_cpu_1 = atol(tok_end + 1); +		} + +		step = 1; +		tok_step = strstr(tok, "#"); +		if (tok_step) { +			step = atol(tok_step + 1); +			BUG_ON(step <= 0 || step >= g->p.nr_cpus); +		} + +		/* +		 * Mask length. +		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', +		 * where the _4 means the next 4 CPUs are allowed. +		 */ +		bind_len = 1; +		tok_len = strstr(tok, "_"); +		if (tok_len) { +			bind_len = atol(tok_len + 1); +			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); +		} + +		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ +		mul = 1; +		tok_mul = strstr(tok, "x"); +		if (tok_mul) { +			mul = atol(tok_mul + 1); +			BUG_ON(mul <= 0); +		} + +		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); + +		BUG_ON(bind_cpu_0 < 0 || bind_cpu_0 >= g->p.nr_cpus); +		BUG_ON(bind_cpu_1 < 0 || bind_cpu_1 >= g->p.nr_cpus); +		BUG_ON(bind_cpu_0 > bind_cpu_1); + +		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { +			int i; + +			for (i = 0; i < mul; i++) { +				int cpu; + +				if (t >= g->p.nr_tasks) { +					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); +					goto out; +				} +				td = g->threads + t; + +				if (t) +					tprintf(","); +				if (bind_len > 1) { +					tprintf("%2d/%d", bind_cpu, bind_len); +				} else { +					tprintf("%2d", bind_cpu); +				} + +				CPU_ZERO(&td->bind_cpumask); +				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { +					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); +					CPU_SET(cpu, &td->bind_cpumask); +				} +				t++; +			} +		} +	} +out: + +	tprintf("\n"); + +	if (t < g->p.nr_tasks) +		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); + +	free(str0); +} + +static int parse_cpus_opt(const struct option *opt __maybe_unused, +			  const char *arg, int unset __maybe_unused) +{ +	if (!arg) +		return -1; + +	return parse_cpu_list(arg); +} + +static int parse_node_list(const char *arg) +{ +	p0.node_list_str = strdup(arg); + +	dprintf("got NODE list: {%s}\n", p0.node_list_str); + +	return 0; +} + +static void parse_setup_node_list(void) +{ +	struct thread_data *td; +	char *str0, *str; +	int t; + +	if (!g->p.node_list_str) +		return; + +	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); + +	str0 = str = strdup(g->p.node_list_str); +	t = 0; + +	BUG_ON(!str); + +	tprintf("# binding tasks to NODEs:\n"); +	tprintf("# "); + +	while (true) { +		int bind_node, bind_node_0, bind_node_1; +		char *tok, *tok_end, *tok_step, *tok_mul; +		int step; +		int mul; + +		tok = strsep(&str, ","); +		if (!tok) +			break; + +		tok_end = strstr(tok, "-"); + +		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); +		if (!tok_end) { +			/* Single NODE specified: */ +			bind_node_0 = bind_node_1 = atol(tok); +		} else { +			/* NODE range specified (for example: "5-11"): */ +			bind_node_0 = atol(tok); +			bind_node_1 = atol(tok_end + 1); +		} + +		step = 1; +		tok_step = strstr(tok, "#"); +		if (tok_step) { +			step = atol(tok_step + 1); +			BUG_ON(step <= 0 || step >= g->p.nr_nodes); +		} + +		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ +		mul = 1; +		tok_mul = strstr(tok, "x"); +		if (tok_mul) { +			mul = atol(tok_mul + 1); +			BUG_ON(mul <= 0); +		} + +		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); + +		BUG_ON(bind_node_0 < 0 || bind_node_0 >= g->p.nr_nodes); +		BUG_ON(bind_node_1 < 0 || bind_node_1 >= g->p.nr_nodes); +		BUG_ON(bind_node_0 > bind_node_1); + +		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { +			int i; + +			for (i = 0; i < mul; i++) { +				if (t >= g->p.nr_tasks) { +					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); +					goto out; +				} +				td = g->threads + t; + +				if (!t) +					tprintf(" %2d", bind_node); +				else +					tprintf(",%2d", bind_node); + +				td->bind_node = bind_node; +				t++; +			} +		} +	} +out: + +	tprintf("\n"); + +	if (t < g->p.nr_tasks) +		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); + +	free(str0); +} + +static int parse_nodes_opt(const struct option *opt __maybe_unused, +			  const char *arg, int unset __maybe_unused) +{ +	if (!arg) +		return -1; + +	return parse_node_list(arg); + +	return 0; +} + +#define BIT(x) (1ul << x) + +static inline uint32_t lfsr_32(uint32_t lfsr) +{ +	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); +	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); +} + +/* + * Make sure there's real data dependency to RAM (when read + * accesses are enabled), so the compiler, the CPU and the + * kernel (KSM, zero page, etc.) cannot optimize away RAM + * accesses: + */ +static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) +{ +	if (g->p.data_reads) +		val += *data; +	if (g->p.data_writes) +		*data = val + 1; +	return val; +} + +/* + * The worker process does two types of work, a forwards going + * loop and a backwards going loop. + * + * We do this so that on multiprocessor systems we do not create + * a 'train' of processing, with highly synchronized processes, + * skewing the whole benchmark. + */ +static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) +{ +	long words = bytes/sizeof(u64); +	u64 *data = (void *)__data; +	long chunk_0, chunk_1; +	u64 *d0, *d, *d1; +	long off; +	long i; + +	BUG_ON(!data && words); +	BUG_ON(data && !words); + +	if (!data) +		return val; + +	/* Very simple memset() work variant: */ +	if (g->p.data_zero_memset && !g->p.data_rand_walk) { +		bzero(data, bytes); +		return val; +	} + +	/* Spread out by PID/TID nr and by loop nr: */ +	chunk_0 = words/nr_max; +	chunk_1 = words/g->p.nr_loops; +	off = nr*chunk_0 + loop*chunk_1; + +	while (off >= words) +		off -= words; + +	if (g->p.data_rand_walk) { +		u32 lfsr = nr + loop + val; +		int j; + +		for (i = 0; i < words/1024; i++) { +			long start, end; + +			lfsr = lfsr_32(lfsr); + +			start = lfsr % words; +			end = min(start + 1024, words-1); + +			if (g->p.data_zero_memset) { +				bzero(data + start, (end-start) * sizeof(u64)); +			} else { +				for (j = start; j < end; j++) +					val = access_data(data + j, val); +			} +		} +	} else if (!g->p.data_backwards || (nr + loop) & 1) { + +		d0 = data + off; +		d  = data + off + 1; +		d1 = data + words; + +		/* Process data forwards: */ +		for (;;) { +			if (unlikely(d >= d1)) +				d = data; +			if (unlikely(d == d0)) +				break; + +			val = access_data(d, val); + +			d++; +		} +	} else { +		/* Process data backwards: */ + +		d0 = data + off; +		d  = data + off - 1; +		d1 = data + words; + +		/* Process data forwards: */ +		for (;;) { +			if (unlikely(d < data)) +				d = data + words-1; +			if (unlikely(d == d0)) +				break; + +			val = access_data(d, val); + +			d--; +		} +	} + +	return val; +} + +static void update_curr_cpu(int task_nr, unsigned long bytes_worked) +{ +	unsigned int cpu; + +	cpu = sched_getcpu(); + +	g->threads[task_nr].curr_cpu = cpu; +	prctl(0, bytes_worked); +} + +#define MAX_NR_NODES	64 + +/* + * Count the number of nodes a process's threads + * are spread out on. + * + * A count of 1 means that the process is compressed + * to a single node. A count of g->p.nr_nodes means it's + * spread out on the whole system. + */ +static int count_process_nodes(int process_nr) +{ +	char node_present[MAX_NR_NODES] = { 0, }; +	int nodes; +	int n, t; + +	for (t = 0; t < g->p.nr_threads; t++) { +		struct thread_data *td; +		int task_nr; +		int node; + +		task_nr = process_nr*g->p.nr_threads + t; +		td = g->threads + task_nr; + +		node = numa_node_of_cpu(td->curr_cpu); +		node_present[node] = 1; +	} + +	nodes = 0; + +	for (n = 0; n < MAX_NR_NODES; n++) +		nodes += node_present[n]; + +	return nodes; +} + +/* + * Count the number of distinct process-threads a node contains. + * + * A count of 1 means that the node contains only a single + * process. If all nodes on the system contain at most one + * process then we are well-converged. + */ +static int count_node_processes(int node) +{ +	int processes = 0; +	int t, p; + +	for (p = 0; p < g->p.nr_proc; p++) { +		for (t = 0; t < g->p.nr_threads; t++) { +			struct thread_data *td; +			int task_nr; +			int n; + +			task_nr = p*g->p.nr_threads + t; +			td = g->threads + task_nr; + +			n = numa_node_of_cpu(td->curr_cpu); +			if (n == node) { +				processes++; +				break; +			} +		} +	} + +	return processes; +} + +static void calc_convergence_compression(int *strong) +{ +	unsigned int nodes_min, nodes_max; +	int p; + +	nodes_min = -1; +	nodes_max =  0; + +	for (p = 0; p < g->p.nr_proc; p++) { +		unsigned int nodes = count_process_nodes(p); + +		nodes_min = min(nodes, nodes_min); +		nodes_max = max(nodes, nodes_max); +	} + +	/* Strong convergence: all threads compress on a single node: */ +	if (nodes_min == 1 && nodes_max == 1) { +		*strong = 1; +	} else { +		*strong = 0; +		tprintf(" {%d-%d}", nodes_min, nodes_max); +	} +} + +static void calc_convergence(double runtime_ns_max, double *convergence) +{ +	unsigned int loops_done_min, loops_done_max; +	int process_groups; +	int nodes[MAX_NR_NODES]; +	int distance; +	int nr_min; +	int nr_max; +	int strong; +	int sum; +	int nr; +	int node; +	int cpu; +	int t; + +	if (!g->p.show_convergence && !g->p.measure_convergence) +		return; + +	for (node = 0; node < g->p.nr_nodes; node++) +		nodes[node] = 0; + +	loops_done_min = -1; +	loops_done_max = 0; + +	for (t = 0; t < g->p.nr_tasks; t++) { +		struct thread_data *td = g->threads + t; +		unsigned int loops_done; + +		cpu = td->curr_cpu; + +		/* Not all threads have written it yet: */ +		if (cpu < 0) +			continue; + +		node = numa_node_of_cpu(cpu); + +		nodes[node]++; + +		loops_done = td->loops_done; +		loops_done_min = min(loops_done, loops_done_min); +		loops_done_max = max(loops_done, loops_done_max); +	} + +	nr_max = 0; +	nr_min = g->p.nr_tasks; +	sum = 0; + +	for (node = 0; node < g->p.nr_nodes; node++) { +		nr = nodes[node]; +		nr_min = min(nr, nr_min); +		nr_max = max(nr, nr_max); +		sum += nr; +	} +	BUG_ON(nr_min > nr_max); + +	BUG_ON(sum > g->p.nr_tasks); + +	if (0 && (sum < g->p.nr_tasks)) +		return; + +	/* +	 * Count the number of distinct process groups present +	 * on nodes - when we are converged this will decrease +	 * to g->p.nr_proc: +	 */ +	process_groups = 0; + +	for (node = 0; node < g->p.nr_nodes; node++) { +		int processes = count_node_processes(node); + +		nr = nodes[node]; +		tprintf(" %2d/%-2d", nr, processes); + +		process_groups += processes; +	} + +	distance = nr_max - nr_min; + +	tprintf(" [%2d/%-2d]", distance, process_groups); + +	tprintf(" l:%3d-%-3d (%3d)", +		loops_done_min, loops_done_max, loops_done_max-loops_done_min); + +	if (loops_done_min && loops_done_max) { +		double skew = 1.0 - (double)loops_done_min/loops_done_max; + +		tprintf(" [%4.1f%%]", skew * 100.0); +	} + +	calc_convergence_compression(&strong); + +	if (strong && process_groups == g->p.nr_proc) { +		if (!*convergence) { +			*convergence = runtime_ns_max; +			tprintf(" (%6.1fs converged)\n", *convergence/1e9); +			if (g->p.measure_convergence) { +				g->all_converged = true; +				g->stop_work = true; +			} +		} +	} else { +		if (*convergence) { +			tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); +			*convergence = 0; +		} +		tprintf("\n"); +	} +} + +static void show_summary(double runtime_ns_max, int l, double *convergence) +{ +	tprintf("\r #  %5.1f%%  [%.1f mins]", +		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); + +	calc_convergence(runtime_ns_max, convergence); + +	if (g->p.show_details >= 0) +		fflush(stdout); +} + +static void *worker_thread(void *__tdata) +{ +	struct thread_data *td = __tdata; +	struct timeval start0, start, stop, diff; +	int process_nr = td->process_nr; +	int thread_nr = td->thread_nr; +	unsigned long last_perturbance; +	int task_nr = td->task_nr; +	int details = g->p.show_details; +	int first_task, last_task; +	double convergence = 0; +	u64 val = td->val; +	double runtime_ns_max; +	u8 *global_data; +	u8 *process_data; +	u8 *thread_data; +	u64 bytes_done; +	long work_done; +	u32 l; + +	bind_to_cpumask(td->bind_cpumask); +	bind_to_memnode(td->bind_node); + +	set_taskname("thread %d/%d", process_nr, thread_nr); + +	global_data = g->data; +	process_data = td->process_data; +	thread_data = setup_private_data(g->p.bytes_thread); + +	bytes_done = 0; + +	last_task = 0; +	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) +		last_task = 1; + +	first_task = 0; +	if (process_nr == 0 && thread_nr == 0) +		first_task = 1; + +	if (details >= 2) { +		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", +			process_nr, thread_nr, global_data, process_data, thread_data); +	} + +	if (g->p.serialize_startup) { +		pthread_mutex_lock(&g->startup_mutex); +		g->nr_tasks_started++; +		pthread_mutex_unlock(&g->startup_mutex); + +		/* Here we will wait for the main process to start us all at once: */ +		pthread_mutex_lock(&g->start_work_mutex); +		g->nr_tasks_working++; + +		/* Last one wake the main process: */ +		if (g->nr_tasks_working == g->p.nr_tasks) +			pthread_mutex_unlock(&g->startup_done_mutex); + +		pthread_mutex_unlock(&g->start_work_mutex); +	} + +	gettimeofday(&start0, NULL); + +	start = stop = start0; +	last_perturbance = start.tv_sec; + +	for (l = 0; l < g->p.nr_loops; l++) { +		start = stop; + +		if (g->stop_work) +			break; + +		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val); +		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val); +		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val); + +		if (g->p.sleep_usecs) { +			pthread_mutex_lock(td->process_lock); +			usleep(g->p.sleep_usecs); +			pthread_mutex_unlock(td->process_lock); +		} +		/* +		 * Amount of work to be done under a process-global lock: +		 */ +		if (g->p.bytes_process_locked) { +			pthread_mutex_lock(td->process_lock); +			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val); +			pthread_mutex_unlock(td->process_lock); +		} + +		work_done = g->p.bytes_global + g->p.bytes_process + +			    g->p.bytes_process_locked + g->p.bytes_thread; + +		update_curr_cpu(task_nr, work_done); +		bytes_done += work_done; + +		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) +			continue; + +		td->loops_done = l; + +		gettimeofday(&stop, NULL); + +		/* Check whether our max runtime timed out: */ +		if (g->p.nr_secs) { +			timersub(&stop, &start0, &diff); +			if (diff.tv_sec >= g->p.nr_secs) { +				g->stop_work = true; +				break; +			} +		} + +		/* Update the summary at most once per second: */ +		if (start.tv_sec == stop.tv_sec) +			continue; + +		/* +		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, +		 * by migrating to CPU#0: +		 */ +		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { +			cpu_set_t orig_mask; +			int target_cpu; +			int this_cpu; + +			last_perturbance = stop.tv_sec; + +			/* +			 * Depending on where we are running, move into +			 * the other half of the system, to create some +			 * real disturbance: +			 */ +			this_cpu = g->threads[task_nr].curr_cpu; +			if (this_cpu < g->p.nr_cpus/2) +				target_cpu = g->p.nr_cpus-1; +			else +				target_cpu = 0; + +			orig_mask = bind_to_cpu(target_cpu); + +			/* Here we are running on the target CPU already */ +			if (details >= 1) +				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); + +			bind_to_cpumask(orig_mask); +		} + +		if (details >= 3) { +			timersub(&stop, &start, &diff); +			runtime_ns_max = diff.tv_sec * 1000000000; +			runtime_ns_max += diff.tv_usec * 1000; + +			if (details >= 0) { +				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016lx]\n", +					process_nr, thread_nr, runtime_ns_max / bytes_done, val); +			} +			fflush(stdout); +		} +		if (!last_task) +			continue; + +		timersub(&stop, &start0, &diff); +		runtime_ns_max = diff.tv_sec * 1000000000ULL; +		runtime_ns_max += diff.tv_usec * 1000ULL; + +		show_summary(runtime_ns_max, l, &convergence); +	} + +	gettimeofday(&stop, NULL); +	timersub(&stop, &start0, &diff); +	td->runtime_ns = diff.tv_sec * 1000000000ULL; +	td->runtime_ns += diff.tv_usec * 1000ULL; + +	free_data(thread_data, g->p.bytes_thread); + +	pthread_mutex_lock(&g->stop_work_mutex); +	g->bytes_done += bytes_done; +	pthread_mutex_unlock(&g->stop_work_mutex); + +	return NULL; +} + +/* + * A worker process starts a couple of threads: + */ +static void worker_process(int process_nr) +{ +	pthread_mutex_t process_lock; +	struct thread_data *td; +	pthread_t *pthreads; +	u8 *process_data; +	int task_nr; +	int ret; +	int t; + +	pthread_mutex_init(&process_lock, NULL); +	set_taskname("process %d", process_nr); + +	/* +	 * Pick up the memory policy and the CPU binding of our first thread, +	 * so that we initialize memory accordingly: +	 */ +	task_nr = process_nr*g->p.nr_threads; +	td = g->threads + task_nr; + +	bind_to_memnode(td->bind_node); +	bind_to_cpumask(td->bind_cpumask); + +	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); +	process_data = setup_private_data(g->p.bytes_process); + +	if (g->p.show_details >= 3) { +		printf(" # process %2d global mem: %p, process mem: %p\n", +			process_nr, g->data, process_data); +	} + +	for (t = 0; t < g->p.nr_threads; t++) { +		task_nr = process_nr*g->p.nr_threads + t; +		td = g->threads + task_nr; + +		td->process_data = process_data; +		td->process_nr   = process_nr; +		td->thread_nr    = t; +		td->task_nr	 = task_nr; +		td->val          = rand(); +		td->curr_cpu	 = -1; +		td->process_lock = &process_lock; + +		ret = pthread_create(pthreads + t, NULL, worker_thread, td); +		BUG_ON(ret); +	} + +	for (t = 0; t < g->p.nr_threads; t++) { +                ret = pthread_join(pthreads[t], NULL); +		BUG_ON(ret); +	} + +	free_data(process_data, g->p.bytes_process); +	free(pthreads); +} + +static void print_summary(void) +{ +	if (g->p.show_details < 0) +		return; + +	printf("\n ###\n"); +	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", +		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); +	printf(" #      %5dx %5ldMB global  shared mem operations\n", +			g->p.nr_loops, g->p.bytes_global/1024/1024); +	printf(" #      %5dx %5ldMB process shared mem operations\n", +			g->p.nr_loops, g->p.bytes_process/1024/1024); +	printf(" #      %5dx %5ldMB thread  local  mem operations\n", +			g->p.nr_loops, g->p.bytes_thread/1024/1024); + +	printf(" ###\n"); + +	printf("\n ###\n"); fflush(stdout); +} + +static void init_thread_data(void) +{ +	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; +	int t; + +	g->threads = zalloc_shared_data(size); + +	for (t = 0; t < g->p.nr_tasks; t++) { +		struct thread_data *td = g->threads + t; +		int cpu; + +		/* Allow all nodes by default: */ +		td->bind_node = -1; + +		/* Allow all CPUs by default: */ +		CPU_ZERO(&td->bind_cpumask); +		for (cpu = 0; cpu < g->p.nr_cpus; cpu++) +			CPU_SET(cpu, &td->bind_cpumask); +	} +} + +static void deinit_thread_data(void) +{ +	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; + +	free_data(g->threads, size); +} + +static int init(void) +{ +	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); + +	/* Copy over options: */ +	g->p = p0; + +	g->p.nr_cpus = numa_num_configured_cpus(); + +	g->p.nr_nodes = numa_max_node() + 1; + +	/* char array in count_process_nodes(): */ +	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); + +	if (g->p.show_quiet && !g->p.show_details) +		g->p.show_details = -1; + +	/* Some memory should be specified: */ +	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) +		return -1; + +	if (g->p.mb_global_str) { +		g->p.mb_global = atof(g->p.mb_global_str); +		BUG_ON(g->p.mb_global < 0); +	} + +	if (g->p.mb_proc_str) { +		g->p.mb_proc = atof(g->p.mb_proc_str); +		BUG_ON(g->p.mb_proc < 0); +	} + +	if (g->p.mb_proc_locked_str) { +		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); +		BUG_ON(g->p.mb_proc_locked < 0); +		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); +	} + +	if (g->p.mb_thread_str) { +		g->p.mb_thread = atof(g->p.mb_thread_str); +		BUG_ON(g->p.mb_thread < 0); +	} + +	BUG_ON(g->p.nr_threads <= 0); +	BUG_ON(g->p.nr_proc <= 0); + +	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; + +	g->p.bytes_global		= g->p.mb_global	*1024L*1024L; +	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L; +	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L; +	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L; + +	g->data = setup_shared_data(g->p.bytes_global); + +	/* Startup serialization: */ +	init_global_mutex(&g->start_work_mutex); +	init_global_mutex(&g->startup_mutex); +	init_global_mutex(&g->startup_done_mutex); +	init_global_mutex(&g->stop_work_mutex); + +	init_thread_data(); + +	tprintf("#\n"); +	parse_setup_cpu_list(); +	parse_setup_node_list(); +	tprintf("#\n"); + +	print_summary(); + +	return 0; +} + +static void deinit(void) +{ +	free_data(g->data, g->p.bytes_global); +	g->data = NULL; + +	deinit_thread_data(); + +	free_data(g, sizeof(*g)); +	g = NULL; +} + +/* + * Print a short or long result, depending on the verbosity setting: + */ +static void print_res(const char *name, double val, +		      const char *txt_unit, const char *txt_short, const char *txt_long) +{ +	if (!name) +		name = "main,"; + +	if (g->p.show_quiet) +		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); +	else +		printf(" %14.3f %s\n", val, txt_long); +} + +static int __bench_numa(const char *name) +{ +	struct timeval start, stop, diff; +	u64 runtime_ns_min, runtime_ns_sum; +	pid_t *pids, pid, wpid; +	double delta_runtime; +	double runtime_avg; +	double runtime_sec_max; +	double runtime_sec_min; +	int wait_stat; +	double bytes; +	int i, t; + +	if (init()) +		return -1; + +	pids = zalloc(g->p.nr_proc * sizeof(*pids)); +	pid = -1; + +	/* All threads try to acquire it, this way we can wait for them to start up: */ +	pthread_mutex_lock(&g->start_work_mutex); + +	if (g->p.serialize_startup) { +		tprintf(" #\n"); +		tprintf(" # Startup synchronization: ..."); fflush(stdout); +	} + +	gettimeofday(&start, NULL); + +	for (i = 0; i < g->p.nr_proc; i++) { +		pid = fork(); +		dprintf(" # process %2d: PID %d\n", i, pid); + +		BUG_ON(pid < 0); +		if (!pid) { +			/* Child process: */ +			worker_process(i); + +			exit(0); +		} +		pids[i] = pid; + +	} +	/* Wait for all the threads to start up: */ +	while (g->nr_tasks_started != g->p.nr_tasks) +		usleep(1000); + +	BUG_ON(g->nr_tasks_started != g->p.nr_tasks); + +	if (g->p.serialize_startup) { +		double startup_sec; + +		pthread_mutex_lock(&g->startup_done_mutex); + +		/* This will start all threads: */ +		pthread_mutex_unlock(&g->start_work_mutex); + +		/* This mutex is locked - the last started thread will wake us: */ +		pthread_mutex_lock(&g->startup_done_mutex); + +		gettimeofday(&stop, NULL); + +		timersub(&stop, &start, &diff); + +		startup_sec = diff.tv_sec * 1000000000.0; +		startup_sec += diff.tv_usec * 1000.0; +		startup_sec /= 1e9; + +		tprintf(" threads initialized in %.6f seconds.\n", startup_sec); +		tprintf(" #\n"); + +		start = stop; +		pthread_mutex_unlock(&g->startup_done_mutex); +	} else { +		gettimeofday(&start, NULL); +	} + +	/* Parent process: */ + + +	for (i = 0; i < g->p.nr_proc; i++) { +		wpid = waitpid(pids[i], &wait_stat, 0); +		BUG_ON(wpid < 0); +		BUG_ON(!WIFEXITED(wait_stat)); + +	} + +	runtime_ns_sum = 0; +	runtime_ns_min = -1LL; + +	for (t = 0; t < g->p.nr_tasks; t++) { +		u64 thread_runtime_ns = g->threads[t].runtime_ns; + +		runtime_ns_sum += thread_runtime_ns; +		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); +	} + +	gettimeofday(&stop, NULL); +	timersub(&stop, &start, &diff); + +	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); + +	tprintf("\n ###\n"); +	tprintf("\n"); + +	runtime_sec_max = diff.tv_sec * 1000000000.0; +	runtime_sec_max += diff.tv_usec * 1000.0; +	runtime_sec_max /= 1e9; + +	runtime_sec_min = runtime_ns_min/1e9; + +	bytes = g->bytes_done; +	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; + +	if (g->p.measure_convergence) { +		print_res(name, runtime_sec_max, +			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); +	} + +	print_res(name, runtime_sec_max, +		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime"); + +	print_res(name, runtime_sec_min, +		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime"); + +	print_res(name, runtime_avg, +		"secs,", "runtime-avg/thread",	"secs average thread-runtime"); + +	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; +	print_res(name, delta_runtime / runtime_sec_max * 100.0, +		"%,", "spread-runtime/thread",	"% difference between max/avg runtime"); + +	print_res(name, bytes / g->p.nr_tasks / 1e9, +		"GB,", "data/thread",		"GB data processed, per thread"); + +	print_res(name, bytes / 1e9, +		"GB,", "data-total",		"GB data processed, total"); + +	print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), +		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); + +	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, +		"GB/sec,", "thread-speed",	"GB/sec/thread speed"); + +	print_res(name, bytes / runtime_sec_max / 1e9, +		"GB/sec,", "total-speed",	"GB/sec total speed"); + +	free(pids); + +	deinit(); + +	return 0; +} + +#define MAX_ARGS 50 + +static int command_size(const char **argv) +{ +	int size = 0; + +	while (*argv) { +		size++; +		argv++; +	} + +	BUG_ON(size >= MAX_ARGS); + +	return size; +} + +static void init_params(struct params *p, const char *name, int argc, const char **argv) +{ +	int i; + +	printf("\n # Running %s \"perf bench numa", name); + +	for (i = 0; i < argc; i++) +		printf(" %s", argv[i]); + +	printf("\"\n"); + +	memset(p, 0, sizeof(*p)); + +	/* Initialize nonzero defaults: */ + +	p->serialize_startup		= 1; +	p->data_reads			= true; +	p->data_writes			= true; +	p->data_backwards		= true; +	p->data_rand_walk		= true; +	p->nr_loops			= -1; +	p->init_random			= true; +} + +static int run_bench_numa(const char *name, const char **argv) +{ +	int argc = command_size(argv); + +	init_params(&p0, name, argc, argv); +	argc = parse_options(argc, argv, options, bench_numa_usage, 0); +	if (argc) +		goto err; + +	if (__bench_numa(name)) +		goto err; + +	return 0; + +err: +	usage_with_options(numa_usage, options); +	return -1; +} + +#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk" +#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1" + +#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1" +#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1" + +#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1" +#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1" + +/* + * The built-in test-suite executed by "perf bench numa -a". + * + * (A minimum of 4 nodes and 16 GB of RAM is recommended.) + */ +static const char *tests[][MAX_ARGS] = { +   /* Basic single-stream NUMA bandwidth measurements: */ +   { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024", +			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM }, +   { "RAM-bw-local-NOTHP,", +			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024", +			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP }, +   { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024", +			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM }, + +   /* 2-stream NUMA bandwidth measurements: */ +   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024", +			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, +   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024", +		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, + +   /* Cross-stream NUMA bandwidth measurement: */ +   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024", +		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, + +   /* Convergence latency measurements: */ +   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV }, +   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV }, +   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV }, +   { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV }, +   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV }, +   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV }, +   { " 4x4-convergence-NOTHP,", +			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP }, +   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV }, +   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV }, +   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV }, +   { " 8x4-convergence-NOTHP,", +			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP }, +   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV }, +   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV }, +   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV }, +   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV }, +   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV }, + +   /* Various NUMA process/thread layout bandwidth measurements: */ +   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW }, +   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW }, +   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW }, +   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW }, +   { " 8x1-bw-process-NOTHP,", +			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP }, +   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW }, + +   { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW }, +   { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW }, +   { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW }, +   { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW }, + +   { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW }, +   { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW }, +   { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW }, +   { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW }, +   { " 4x8-bw-thread-NOTHP,", +			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP }, +   { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW }, +   { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW }, + +   { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW }, +   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW }, + +   { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW }, +   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP }, +   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW }, +   { "numa01-bw-thread-NOTHP,", +			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP }, +}; + +static int bench_all(void) +{ +	int nr = ARRAY_SIZE(tests); +	int ret; +	int i; + +	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); +	BUG_ON(ret < 0); + +	for (i = 0; i < nr; i++) { +		if (run_bench_numa(tests[i][0], tests[i] + 1)) +			return -1; +	} + +	printf("\n"); + +	return 0; +} + +int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) +{ +	init_params(&p0, "main,", argc, argv); +	argc = parse_options(argc, argv, options, bench_numa_usage, 0); +	if (argc) +		goto err; + +	if (p0.run_all) +		return bench_all(); + +	if (__bench_numa(NULL)) +		goto err; + +	return 0; + +err: +	usage_with_options(numa_usage, options); +	return -1; +}  |