diff options
Diffstat (limited to 'lib/inflate.c')
| -rw-r--r-- | lib/inflate.c | 1210 | 
1 files changed, 1210 insertions, 0 deletions
diff --git a/lib/inflate.c b/lib/inflate.c new file mode 100644 index 00000000000..75e7d303c72 --- /dev/null +++ b/lib/inflate.c @@ -0,0 +1,1210 @@ +#define DEBG(x) +#define DEBG1(x) +/* inflate.c -- Not copyrighted 1992 by Mark Adler +   version c10p1, 10 January 1993 */ + +/*  + * Adapted for booting Linux by Hannu Savolainen 1993 + * based on gzip-1.0.3  + * + * Nicolas Pitre <nico@cam.org>, 1999/04/14 : + *   Little mods for all variable to reside either into rodata or bss segments + *   by marking constant variables with 'const' and initializing all the others + *   at run-time only.  This allows for the kernel uncompressor to run + *   directly from Flash or ROM memory on embedded systems. + */ + +/* +   Inflate deflated (PKZIP's method 8 compressed) data.  The compression +   method searches for as much of the current string of bytes (up to a +   length of 258) in the previous 32 K bytes.  If it doesn't find any +   matches (of at least length 3), it codes the next byte.  Otherwise, it +   codes the length of the matched string and its distance backwards from +   the current position.  There is a single Huffman code that codes both +   single bytes (called "literals") and match lengths.  A second Huffman +   code codes the distance information, which follows a length code.  Each +   length or distance code actually represents a base value and a number +   of "extra" (sometimes zero) bits to get to add to the base value.  At +   the end of each deflated block is a special end-of-block (EOB) literal/ +   length code.  The decoding process is basically: get a literal/length +   code; if EOB then done; if a literal, emit the decoded byte; if a +   length then get the distance and emit the referred-to bytes from the +   sliding window of previously emitted data. + +   There are (currently) three kinds of inflate blocks: stored, fixed, and +   dynamic.  The compressor deals with some chunk of data at a time, and +   decides which method to use on a chunk-by-chunk basis.  A chunk might +   typically be 32 K or 64 K.  If the chunk is incompressible, then the +   "stored" method is used.  In this case, the bytes are simply stored as +   is, eight bits per byte, with none of the above coding.  The bytes are +   preceded by a count, since there is no longer an EOB code. + +   If the data is compressible, then either the fixed or dynamic methods +   are used.  In the dynamic method, the compressed data is preceded by +   an encoding of the literal/length and distance Huffman codes that are +   to be used to decode this block.  The representation is itself Huffman +   coded, and so is preceded by a description of that code.  These code +   descriptions take up a little space, and so for small blocks, there is +   a predefined set of codes, called the fixed codes.  The fixed method is +   used if the block codes up smaller that way (usually for quite small +   chunks), otherwise the dynamic method is used.  In the latter case, the +   codes are customized to the probabilities in the current block, and so +   can code it much better than the pre-determined fixed codes. +  +   The Huffman codes themselves are decoded using a multi-level table +   lookup, in order to maximize the speed of decoding plus the speed of +   building the decoding tables.  See the comments below that precede the +   lbits and dbits tuning parameters. + */ + + +/* +   Notes beyond the 1.93a appnote.txt: + +   1. Distance pointers never point before the beginning of the output +      stream. +   2. Distance pointers can point back across blocks, up to 32k away. +   3. There is an implied maximum of 7 bits for the bit length table and +      15 bits for the actual data. +   4. If only one code exists, then it is encoded using one bit.  (Zero +      would be more efficient, but perhaps a little confusing.)  If two +      codes exist, they are coded using one bit each (0 and 1). +   5. There is no way of sending zero distance codes--a dummy must be +      sent if there are none.  (History: a pre 2.0 version of PKZIP would +      store blocks with no distance codes, but this was discovered to be +      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow +      zero distance codes, which is sent as one code of zero bits in +      length. +   6. There are up to 286 literal/length codes.  Code 256 represents the +      end-of-block.  Note however that the static length tree defines +      288 codes just to fill out the Huffman codes.  Codes 286 and 287 +      cannot be used though, since there is no length base or extra bits +      defined for them.  Similarly, there are up to 30 distance codes. +      However, static trees define 32 codes (all 5 bits) to fill out the +      Huffman codes, but the last two had better not show up in the data. +   7. Unzip can check dynamic Huffman blocks for complete code sets. +      The exception is that a single code would not be complete (see #4). +   8. The five bits following the block type is really the number of +      literal codes sent minus 257. +   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits +      (1+6+6).  Therefore, to output three times the length, you output +      three codes (1+1+1), whereas to output four times the same length, +      you only need two codes (1+3).  Hmm. +  10. In the tree reconstruction algorithm, Code = Code + Increment +      only if BitLength(i) is not zero.  (Pretty obvious.) +  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19) +  12. Note: length code 284 can represent 227-258, but length code 285 +      really is 258.  The last length deserves its own, short code +      since it gets used a lot in very redundant files.  The length +      258 is special since 258 - 3 (the min match length) is 255. +  13. The literal/length and distance code bit lengths are read as a +      single stream of lengths.  It is possible (and advantageous) for +      a repeat code (16, 17, or 18) to go across the boundary between +      the two sets of lengths. + */ +#include <linux/compiler.h> + +#ifdef RCSID +static char rcsid[] = "#Id: inflate.c,v 0.14 1993/06/10 13:27:04 jloup Exp #"; +#endif + +#ifndef STATIC + +#if defined(STDC_HEADERS) || defined(HAVE_STDLIB_H) +#  include <sys/types.h> +#  include <stdlib.h> +#endif + +#include "gzip.h" +#define STATIC +#endif /* !STATIC */ + +#ifndef INIT +#define INIT +#endif +	 +#define slide window + +/* Huffman code lookup table entry--this entry is four bytes for machines +   that have 16-bit pointers (e.g. PC's in the small or medium model). +   Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16 +   means that v is a literal, 16 < e < 32 means that v is a pointer to +   the next table, which codes e - 16 bits, and lastly e == 99 indicates +   an unused code.  If a code with e == 99 is looked up, this implies an +   error in the data. */ +struct huft { +  uch e;                /* number of extra bits or operation */ +  uch b;                /* number of bits in this code or subcode */ +  union { +    ush n;              /* literal, length base, or distance base */ +    struct huft *t;     /* pointer to next level of table */ +  } v; +}; + + +/* Function prototypes */ +STATIC int INIT huft_build OF((unsigned *, unsigned, unsigned,  +		const ush *, const ush *, struct huft **, int *)); +STATIC int INIT huft_free OF((struct huft *)); +STATIC int INIT inflate_codes OF((struct huft *, struct huft *, int, int)); +STATIC int INIT inflate_stored OF((void)); +STATIC int INIT inflate_fixed OF((void)); +STATIC int INIT inflate_dynamic OF((void)); +STATIC int INIT inflate_block OF((int *)); +STATIC int INIT inflate OF((void)); + + +/* The inflate algorithm uses a sliding 32 K byte window on the uncompressed +   stream to find repeated byte strings.  This is implemented here as a +   circular buffer.  The index is updated simply by incrementing and then +   ANDing with 0x7fff (32K-1). */ +/* It is left to other modules to supply the 32 K area.  It is assumed +   to be usable as if it were declared "uch slide[32768];" or as just +   "uch *slide;" and then malloc'ed in the latter case.  The definition +   must be in unzip.h, included above. */ +/* unsigned wp;             current position in slide */ +#define wp outcnt +#define flush_output(w) (wp=(w),flush_window()) + +/* Tables for deflate from PKZIP's appnote.txt. */ +static const unsigned border[] = {    /* Order of the bit length code lengths */ +        16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; +static const ush cplens[] = {         /* Copy lengths for literal codes 257..285 */ +        3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31, +        35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; +        /* note: see note #13 above about the 258 in this list. */ +static const ush cplext[] = {         /* Extra bits for literal codes 257..285 */ +        0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, +        3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */ +static const ush cpdist[] = {         /* Copy offsets for distance codes 0..29 */ +        1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, +        257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, +        8193, 12289, 16385, 24577}; +static const ush cpdext[] = {         /* Extra bits for distance codes */ +        0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, +        7, 7, 8, 8, 9, 9, 10, 10, 11, 11, +        12, 12, 13, 13}; + + + +/* Macros for inflate() bit peeking and grabbing. +   The usage is: +    +        NEEDBITS(j) +        x = b & mask_bits[j]; +        DUMPBITS(j) + +   where NEEDBITS makes sure that b has at least j bits in it, and +   DUMPBITS removes the bits from b.  The macros use the variable k +   for the number of bits in b.  Normally, b and k are register +   variables for speed, and are initialized at the beginning of a +   routine that uses these macros from a global bit buffer and count. + +   If we assume that EOB will be the longest code, then we will never +   ask for bits with NEEDBITS that are beyond the end of the stream. +   So, NEEDBITS should not read any more bytes than are needed to +   meet the request.  Then no bytes need to be "returned" to the buffer +   at the end of the last block. + +   However, this assumption is not true for fixed blocks--the EOB code +   is 7 bits, but the other literal/length codes can be 8 or 9 bits. +   (The EOB code is shorter than other codes because fixed blocks are +   generally short.  So, while a block always has an EOB, many other +   literal/length codes have a significantly lower probability of +   showing up at all.)  However, by making the first table have a +   lookup of seven bits, the EOB code will be found in that first +   lookup, and so will not require that too many bits be pulled from +   the stream. + */ + +STATIC ulg bb;                         /* bit buffer */ +STATIC unsigned bk;                    /* bits in bit buffer */ + +STATIC const ush mask_bits[] = { +    0x0000, +    0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff, +    0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff +}; + +#define NEXTBYTE()  ({ int v = get_byte(); if (v < 0) goto underrun; (uch)v; }) +#define NEEDBITS(n) {while(k<(n)){b|=((ulg)NEXTBYTE())<<k;k+=8;}} +#define DUMPBITS(n) {b>>=(n);k-=(n);} + + +/* +   Huffman code decoding is performed using a multi-level table lookup. +   The fastest way to decode is to simply build a lookup table whose +   size is determined by the longest code.  However, the time it takes +   to build this table can also be a factor if the data being decoded +   is not very long.  The most common codes are necessarily the +   shortest codes, so those codes dominate the decoding time, and hence +   the speed.  The idea is you can have a shorter table that decodes the +   shorter, more probable codes, and then point to subsidiary tables for +   the longer codes.  The time it costs to decode the longer codes is +   then traded against the time it takes to make longer tables. + +   This results of this trade are in the variables lbits and dbits +   below.  lbits is the number of bits the first level table for literal/ +   length codes can decode in one step, and dbits is the same thing for +   the distance codes.  Subsequent tables are also less than or equal to +   those sizes.  These values may be adjusted either when all of the +   codes are shorter than that, in which case the longest code length in +   bits is used, or when the shortest code is *longer* than the requested +   table size, in which case the length of the shortest code in bits is +   used. + +   There are two different values for the two tables, since they code a +   different number of possibilities each.  The literal/length table +   codes 286 possible values, or in a flat code, a little over eight +   bits.  The distance table codes 30 possible values, or a little less +   than five bits, flat.  The optimum values for speed end up being +   about one bit more than those, so lbits is 8+1 and dbits is 5+1. +   The optimum values may differ though from machine to machine, and +   possibly even between compilers.  Your mileage may vary. + */ + + +STATIC const int lbits = 9;          /* bits in base literal/length lookup table */ +STATIC const int dbits = 6;          /* bits in base distance lookup table */ + + +/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */ +#define BMAX 16         /* maximum bit length of any code (16 for explode) */ +#define N_MAX 288       /* maximum number of codes in any set */ + + +STATIC unsigned hufts;         /* track memory usage */ + + +STATIC int INIT huft_build( +	unsigned *b,            /* code lengths in bits (all assumed <= BMAX) */ +	unsigned n,             /* number of codes (assumed <= N_MAX) */ +	unsigned s,             /* number of simple-valued codes (0..s-1) */ +	const ush *d,           /* list of base values for non-simple codes */ +	const ush *e,           /* list of extra bits for non-simple codes */ +	struct huft **t,        /* result: starting table */ +	int *m                  /* maximum lookup bits, returns actual */ +	) +/* Given a list of code lengths and a maximum table size, make a set of +   tables to decode that set of codes.  Return zero on success, one if +   the given code set is incomplete (the tables are still built in this +   case), two if the input is invalid (all zero length codes or an +   oversubscribed set of lengths), and three if not enough memory. */ +{ +  unsigned a;                   /* counter for codes of length k */ +  unsigned c[BMAX+1];           /* bit length count table */ +  unsigned f;                   /* i repeats in table every f entries */ +  int g;                        /* maximum code length */ +  int h;                        /* table level */ +  register unsigned i;          /* counter, current code */ +  register unsigned j;          /* counter */ +  register int k;               /* number of bits in current code */ +  int l;                        /* bits per table (returned in m) */ +  register unsigned *p;         /* pointer into c[], b[], or v[] */ +  register struct huft *q;      /* points to current table */ +  struct huft r;                /* table entry for structure assignment */ +  struct huft *u[BMAX];         /* table stack */ +  unsigned v[N_MAX];            /* values in order of bit length */ +  register int w;               /* bits before this table == (l * h) */ +  unsigned x[BMAX+1];           /* bit offsets, then code stack */ +  unsigned *xp;                 /* pointer into x */ +  int y;                        /* number of dummy codes added */ +  unsigned z;                   /* number of entries in current table */ + +DEBG("huft1 "); + +  /* Generate counts for each bit length */ +  memzero(c, sizeof(c)); +  p = b;  i = n; +  do { +    Tracecv(*p, (stderr, (n-i >= ' ' && n-i <= '~' ? "%c %d\n" : "0x%x %d\n"),  +	    n-i, *p)); +    c[*p]++;                    /* assume all entries <= BMAX */ +    p++;                      /* Can't combine with above line (Solaris bug) */ +  } while (--i); +  if (c[0] == n)                /* null input--all zero length codes */ +  { +    *t = (struct huft *)NULL; +    *m = 0; +    return 0; +  } + +DEBG("huft2 "); + +  /* Find minimum and maximum length, bound *m by those */ +  l = *m; +  for (j = 1; j <= BMAX; j++) +    if (c[j]) +      break; +  k = j;                        /* minimum code length */ +  if ((unsigned)l < j) +    l = j; +  for (i = BMAX; i; i--) +    if (c[i]) +      break; +  g = i;                        /* maximum code length */ +  if ((unsigned)l > i) +    l = i; +  *m = l; + +DEBG("huft3 "); + +  /* Adjust last length count to fill out codes, if needed */ +  for (y = 1 << j; j < i; j++, y <<= 1) +    if ((y -= c[j]) < 0) +      return 2;                 /* bad input: more codes than bits */ +  if ((y -= c[i]) < 0) +    return 2; +  c[i] += y; + +DEBG("huft4 "); + +  /* Generate starting offsets into the value table for each length */ +  x[1] = j = 0; +  p = c + 1;  xp = x + 2; +  while (--i) {                 /* note that i == g from above */ +    *xp++ = (j += *p++); +  } + +DEBG("huft5 "); + +  /* Make a table of values in order of bit lengths */ +  p = b;  i = 0; +  do { +    if ((j = *p++) != 0) +      v[x[j]++] = i; +  } while (++i < n); + +DEBG("h6 "); + +  /* Generate the Huffman codes and for each, make the table entries */ +  x[0] = i = 0;                 /* first Huffman code is zero */ +  p = v;                        /* grab values in bit order */ +  h = -1;                       /* no tables yet--level -1 */ +  w = -l;                       /* bits decoded == (l * h) */ +  u[0] = (struct huft *)NULL;   /* just to keep compilers happy */ +  q = (struct huft *)NULL;      /* ditto */ +  z = 0;                        /* ditto */ +DEBG("h6a "); + +  /* go through the bit lengths (k already is bits in shortest code) */ +  for (; k <= g; k++) +  { +DEBG("h6b "); +    a = c[k]; +    while (a--) +    { +DEBG("h6b1 "); +      /* here i is the Huffman code of length k bits for value *p */ +      /* make tables up to required level */ +      while (k > w + l) +      { +DEBG1("1 "); +        h++; +        w += l;                 /* previous table always l bits */ + +        /* compute minimum size table less than or equal to l bits */ +        z = (z = g - w) > (unsigned)l ? l : z;  /* upper limit on table size */ +        if ((f = 1 << (j = k - w)) > a + 1)     /* try a k-w bit table */ +        {                       /* too few codes for k-w bit table */ +DEBG1("2 "); +          f -= a + 1;           /* deduct codes from patterns left */ +          xp = c + k; +          while (++j < z)       /* try smaller tables up to z bits */ +          { +            if ((f <<= 1) <= *++xp) +              break;            /* enough codes to use up j bits */ +            f -= *xp;           /* else deduct codes from patterns */ +          } +        } +DEBG1("3 "); +        z = 1 << j;             /* table entries for j-bit table */ + +        /* allocate and link in new table */ +        if ((q = (struct huft *)malloc((z + 1)*sizeof(struct huft))) == +            (struct huft *)NULL) +        { +          if (h) +            huft_free(u[0]); +          return 3;             /* not enough memory */ +        } +DEBG1("4 "); +        hufts += z + 1;         /* track memory usage */ +        *t = q + 1;             /* link to list for huft_free() */ +        *(t = &(q->v.t)) = (struct huft *)NULL; +        u[h] = ++q;             /* table starts after link */ + +DEBG1("5 "); +        /* connect to last table, if there is one */ +        if (h) +        { +          x[h] = i;             /* save pattern for backing up */ +          r.b = (uch)l;         /* bits to dump before this table */ +          r.e = (uch)(16 + j);  /* bits in this table */ +          r.v.t = q;            /* pointer to this table */ +          j = i >> (w - l);     /* (get around Turbo C bug) */ +          u[h-1][j] = r;        /* connect to last table */ +        } +DEBG1("6 "); +      } +DEBG("h6c "); + +      /* set up table entry in r */ +      r.b = (uch)(k - w); +      if (p >= v + n) +        r.e = 99;               /* out of values--invalid code */ +      else if (*p < s) +      { +        r.e = (uch)(*p < 256 ? 16 : 15);    /* 256 is end-of-block code */ +        r.v.n = (ush)(*p);             /* simple code is just the value */ +	p++;                           /* one compiler does not like *p++ */ +      } +      else +      { +        r.e = (uch)e[*p - s];   /* non-simple--look up in lists */ +        r.v.n = d[*p++ - s]; +      } +DEBG("h6d "); + +      /* fill code-like entries with r */ +      f = 1 << (k - w); +      for (j = i >> w; j < z; j += f) +        q[j] = r; + +      /* backwards increment the k-bit code i */ +      for (j = 1 << (k - 1); i & j; j >>= 1) +        i ^= j; +      i ^= j; + +      /* backup over finished tables */ +      while ((i & ((1 << w) - 1)) != x[h]) +      { +        h--;                    /* don't need to update q */ +        w -= l; +      } +DEBG("h6e "); +    } +DEBG("h6f "); +  } + +DEBG("huft7 "); + +  /* Return true (1) if we were given an incomplete table */ +  return y != 0 && g != 1; +} + + + +STATIC int INIT huft_free( +	struct huft *t         /* table to free */ +	) +/* Free the malloc'ed tables built by huft_build(), which makes a linked +   list of the tables it made, with the links in a dummy first entry of +   each table. */ +{ +  register struct huft *p, *q; + + +  /* Go through linked list, freeing from the malloced (t[-1]) address. */ +  p = t; +  while (p != (struct huft *)NULL) +  { +    q = (--p)->v.t; +    free((char*)p); +    p = q; +  }  +  return 0; +} + + +STATIC int INIT inflate_codes( +	struct huft *tl,    /* literal/length decoder tables */ +	struct huft *td,    /* distance decoder tables */ +	int bl,             /* number of bits decoded by tl[] */ +	int bd              /* number of bits decoded by td[] */ +	) +/* inflate (decompress) the codes in a deflated (compressed) block. +   Return an error code or zero if it all goes ok. */ +{ +  register unsigned e;  /* table entry flag/number of extra bits */ +  unsigned n, d;        /* length and index for copy */ +  unsigned w;           /* current window position */ +  struct huft *t;       /* pointer to table entry */ +  unsigned ml, md;      /* masks for bl and bd bits */ +  register ulg b;       /* bit buffer */ +  register unsigned k;  /* number of bits in bit buffer */ + + +  /* make local copies of globals */ +  b = bb;                       /* initialize bit buffer */ +  k = bk; +  w = wp;                       /* initialize window position */ + +  /* inflate the coded data */ +  ml = mask_bits[bl];           /* precompute masks for speed */ +  md = mask_bits[bd]; +  for (;;)                      /* do until end of block */ +  { +    NEEDBITS((unsigned)bl) +    if ((e = (t = tl + ((unsigned)b & ml))->e) > 16) +      do { +        if (e == 99) +          return 1; +        DUMPBITS(t->b) +        e -= 16; +        NEEDBITS(e) +      } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); +    DUMPBITS(t->b) +    if (e == 16)                /* then it's a literal */ +    { +      slide[w++] = (uch)t->v.n; +      Tracevv((stderr, "%c", slide[w-1])); +      if (w == WSIZE) +      { +        flush_output(w); +        w = 0; +      } +    } +    else                        /* it's an EOB or a length */ +    { +      /* exit if end of block */ +      if (e == 15) +        break; + +      /* get length of block to copy */ +      NEEDBITS(e) +      n = t->v.n + ((unsigned)b & mask_bits[e]); +      DUMPBITS(e); + +      /* decode distance of block to copy */ +      NEEDBITS((unsigned)bd) +      if ((e = (t = td + ((unsigned)b & md))->e) > 16) +        do { +          if (e == 99) +            return 1; +          DUMPBITS(t->b) +          e -= 16; +          NEEDBITS(e) +        } while ((e = (t = t->v.t + ((unsigned)b & mask_bits[e]))->e) > 16); +      DUMPBITS(t->b) +      NEEDBITS(e) +      d = w - t->v.n - ((unsigned)b & mask_bits[e]); +      DUMPBITS(e) +      Tracevv((stderr,"\\[%d,%d]", w-d, n)); + +      /* do the copy */ +      do { +        n -= (e = (e = WSIZE - ((d &= WSIZE-1) > w ? d : w)) > n ? n : e); +#if !defined(NOMEMCPY) && !defined(DEBUG) +        if (w - d >= e)         /* (this test assumes unsigned comparison) */ +        { +          memcpy(slide + w, slide + d, e); +          w += e; +          d += e; +        } +        else                      /* do it slow to avoid memcpy() overlap */ +#endif /* !NOMEMCPY */ +          do { +            slide[w++] = slide[d++]; +	    Tracevv((stderr, "%c", slide[w-1])); +          } while (--e); +        if (w == WSIZE) +        { +          flush_output(w); +          w = 0; +        } +      } while (n); +    } +  } + + +  /* restore the globals from the locals */ +  wp = w;                       /* restore global window pointer */ +  bb = b;                       /* restore global bit buffer */ +  bk = k; + +  /* done */ +  return 0; + + underrun: +  return 4;			/* Input underrun */ +} + + + +STATIC int INIT inflate_stored(void) +/* "decompress" an inflated type 0 (stored) block. */ +{ +  unsigned n;           /* number of bytes in block */ +  unsigned w;           /* current window position */ +  register ulg b;       /* bit buffer */ +  register unsigned k;  /* number of bits in bit buffer */ + +DEBG("<stor"); + +  /* make local copies of globals */ +  b = bb;                       /* initialize bit buffer */ +  k = bk; +  w = wp;                       /* initialize window position */ + + +  /* go to byte boundary */ +  n = k & 7; +  DUMPBITS(n); + + +  /* get the length and its complement */ +  NEEDBITS(16) +  n = ((unsigned)b & 0xffff); +  DUMPBITS(16) +  NEEDBITS(16) +  if (n != (unsigned)((~b) & 0xffff)) +    return 1;                   /* error in compressed data */ +  DUMPBITS(16) + + +  /* read and output the compressed data */ +  while (n--) +  { +    NEEDBITS(8) +    slide[w++] = (uch)b; +    if (w == WSIZE) +    { +      flush_output(w); +      w = 0; +    } +    DUMPBITS(8) +  } + + +  /* restore the globals from the locals */ +  wp = w;                       /* restore global window pointer */ +  bb = b;                       /* restore global bit buffer */ +  bk = k; + +  DEBG(">"); +  return 0; + + underrun: +  return 4;			/* Input underrun */ +} + + +/* + * We use `noinline' here to prevent gcc-3.5 from using too much stack space + */ +STATIC int noinline INIT inflate_fixed(void) +/* decompress an inflated type 1 (fixed Huffman codes) block.  We should +   either replace this with a custom decoder, or at least precompute the +   Huffman tables. */ +{ +  int i;                /* temporary variable */ +  struct huft *tl;      /* literal/length code table */ +  struct huft *td;      /* distance code table */ +  int bl;               /* lookup bits for tl */ +  int bd;               /* lookup bits for td */ +  unsigned l[288];      /* length list for huft_build */ + +DEBG("<fix"); + +  /* set up literal table */ +  for (i = 0; i < 144; i++) +    l[i] = 8; +  for (; i < 256; i++) +    l[i] = 9; +  for (; i < 280; i++) +    l[i] = 7; +  for (; i < 288; i++)          /* make a complete, but wrong code set */ +    l[i] = 8; +  bl = 7; +  if ((i = huft_build(l, 288, 257, cplens, cplext, &tl, &bl)) != 0) +    return i; + + +  /* set up distance table */ +  for (i = 0; i < 30; i++)      /* make an incomplete code set */ +    l[i] = 5; +  bd = 5; +  if ((i = huft_build(l, 30, 0, cpdist, cpdext, &td, &bd)) > 1) +  { +    huft_free(tl); + +    DEBG(">"); +    return i; +  } + + +  /* decompress until an end-of-block code */ +  if (inflate_codes(tl, td, bl, bd)) +    return 1; + + +  /* free the decoding tables, return */ +  huft_free(tl); +  huft_free(td); +  return 0; +} + + +/* + * We use `noinline' here to prevent gcc-3.5 from using too much stack space + */ +STATIC int noinline INIT inflate_dynamic(void) +/* decompress an inflated type 2 (dynamic Huffman codes) block. */ +{ +  int i;                /* temporary variables */ +  unsigned j; +  unsigned l;           /* last length */ +  unsigned m;           /* mask for bit lengths table */ +  unsigned n;           /* number of lengths to get */ +  struct huft *tl;      /* literal/length code table */ +  struct huft *td;      /* distance code table */ +  int bl;               /* lookup bits for tl */ +  int bd;               /* lookup bits for td */ +  unsigned nb;          /* number of bit length codes */ +  unsigned nl;          /* number of literal/length codes */ +  unsigned nd;          /* number of distance codes */ +#ifdef PKZIP_BUG_WORKAROUND +  unsigned ll[288+32];  /* literal/length and distance code lengths */ +#else +  unsigned ll[286+30];  /* literal/length and distance code lengths */ +#endif +  register ulg b;       /* bit buffer */ +  register unsigned k;  /* number of bits in bit buffer */ + +DEBG("<dyn"); + +  /* make local bit buffer */ +  b = bb; +  k = bk; + + +  /* read in table lengths */ +  NEEDBITS(5) +  nl = 257 + ((unsigned)b & 0x1f);      /* number of literal/length codes */ +  DUMPBITS(5) +  NEEDBITS(5) +  nd = 1 + ((unsigned)b & 0x1f);        /* number of distance codes */ +  DUMPBITS(5) +  NEEDBITS(4) +  nb = 4 + ((unsigned)b & 0xf);         /* number of bit length codes */ +  DUMPBITS(4) +#ifdef PKZIP_BUG_WORKAROUND +  if (nl > 288 || nd > 32) +#else +  if (nl > 286 || nd > 30) +#endif +    return 1;                   /* bad lengths */ + +DEBG("dyn1 "); + +  /* read in bit-length-code lengths */ +  for (j = 0; j < nb; j++) +  { +    NEEDBITS(3) +    ll[border[j]] = (unsigned)b & 7; +    DUMPBITS(3) +  } +  for (; j < 19; j++) +    ll[border[j]] = 0; + +DEBG("dyn2 "); + +  /* build decoding table for trees--single level, 7 bit lookup */ +  bl = 7; +  if ((i = huft_build(ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) +  { +    if (i == 1) +      huft_free(tl); +    return i;                   /* incomplete code set */ +  } + +DEBG("dyn3 "); + +  /* read in literal and distance code lengths */ +  n = nl + nd; +  m = mask_bits[bl]; +  i = l = 0; +  while ((unsigned)i < n) +  { +    NEEDBITS((unsigned)bl) +    j = (td = tl + ((unsigned)b & m))->b; +    DUMPBITS(j) +    j = td->v.n; +    if (j < 16)                 /* length of code in bits (0..15) */ +      ll[i++] = l = j;          /* save last length in l */ +    else if (j == 16)           /* repeat last length 3 to 6 times */ +    { +      NEEDBITS(2) +      j = 3 + ((unsigned)b & 3); +      DUMPBITS(2) +      if ((unsigned)i + j > n) +        return 1; +      while (j--) +        ll[i++] = l; +    } +    else if (j == 17)           /* 3 to 10 zero length codes */ +    { +      NEEDBITS(3) +      j = 3 + ((unsigned)b & 7); +      DUMPBITS(3) +      if ((unsigned)i + j > n) +        return 1; +      while (j--) +        ll[i++] = 0; +      l = 0; +    } +    else                        /* j == 18: 11 to 138 zero length codes */ +    { +      NEEDBITS(7) +      j = 11 + ((unsigned)b & 0x7f); +      DUMPBITS(7) +      if ((unsigned)i + j > n) +        return 1; +      while (j--) +        ll[i++] = 0; +      l = 0; +    } +  } + +DEBG("dyn4 "); + +  /* free decoding table for trees */ +  huft_free(tl); + +DEBG("dyn5 "); + +  /* restore the global bit buffer */ +  bb = b; +  bk = k; + +DEBG("dyn5a "); + +  /* build the decoding tables for literal/length and distance codes */ +  bl = lbits; +  if ((i = huft_build(ll, nl, 257, cplens, cplext, &tl, &bl)) != 0) +  { +DEBG("dyn5b "); +    if (i == 1) { +      error("incomplete literal tree"); +      huft_free(tl); +    } +    return i;                   /* incomplete code set */ +  } +DEBG("dyn5c "); +  bd = dbits; +  if ((i = huft_build(ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0) +  { +DEBG("dyn5d "); +    if (i == 1) { +      error("incomplete distance tree"); +#ifdef PKZIP_BUG_WORKAROUND +      i = 0; +    } +#else +      huft_free(td); +    } +    huft_free(tl); +    return i;                   /* incomplete code set */ +#endif +  } + +DEBG("dyn6 "); + +  /* decompress until an end-of-block code */ +  if (inflate_codes(tl, td, bl, bd)) +    return 1; + +DEBG("dyn7 "); + +  /* free the decoding tables, return */ +  huft_free(tl); +  huft_free(td); + +  DEBG(">"); +  return 0; + + underrun: +  return 4;			/* Input underrun */ +} + + + +STATIC int INIT inflate_block( +	int *e                  /* last block flag */ +	) +/* decompress an inflated block */ +{ +  unsigned t;           /* block type */ +  register ulg b;       /* bit buffer */ +  register unsigned k;  /* number of bits in bit buffer */ + +  DEBG("<blk"); + +  /* make local bit buffer */ +  b = bb; +  k = bk; + + +  /* read in last block bit */ +  NEEDBITS(1) +  *e = (int)b & 1; +  DUMPBITS(1) + + +  /* read in block type */ +  NEEDBITS(2) +  t = (unsigned)b & 3; +  DUMPBITS(2) + + +  /* restore the global bit buffer */ +  bb = b; +  bk = k; + +  /* inflate that block type */ +  if (t == 2) +    return inflate_dynamic(); +  if (t == 0) +    return inflate_stored(); +  if (t == 1) +    return inflate_fixed(); + +  DEBG(">"); + +  /* bad block type */ +  return 2; + + underrun: +  return 4;			/* Input underrun */ +} + + + +STATIC int INIT inflate(void) +/* decompress an inflated entry */ +{ +  int e;                /* last block flag */ +  int r;                /* result code */ +  unsigned h;           /* maximum struct huft's malloc'ed */ +  void *ptr; + +  /* initialize window, bit buffer */ +  wp = 0; +  bk = 0; +  bb = 0; + + +  /* decompress until the last block */ +  h = 0; +  do { +    hufts = 0; +    gzip_mark(&ptr); +    if ((r = inflate_block(&e)) != 0) { +      gzip_release(&ptr);	     +      return r; +    } +    gzip_release(&ptr); +    if (hufts > h) +      h = hufts; +  } while (!e); + +  /* Undo too much lookahead. The next read will be byte aligned so we +   * can discard unused bits in the last meaningful byte. +   */ +  while (bk >= 8) { +    bk -= 8; +    inptr--; +  } + +  /* flush out slide */ +  flush_output(wp); + + +  /* return success */ +#ifdef DEBUG +  fprintf(stderr, "<%u> ", h); +#endif /* DEBUG */ +  return 0; +} + +/********************************************************************** + * + * The following are support routines for inflate.c + * + **********************************************************************/ + +static ulg crc_32_tab[256]; +static ulg crc;		/* initialized in makecrc() so it'll reside in bss */ +#define CRC_VALUE (crc ^ 0xffffffffUL) + +/* + * Code to compute the CRC-32 table. Borrowed from  + * gzip-1.0.3/makecrc.c. + */ + +static void INIT +makecrc(void) +{ +/* Not copyrighted 1990 Mark Adler	*/ + +  unsigned long c;      /* crc shift register */ +  unsigned long e;      /* polynomial exclusive-or pattern */ +  int i;                /* counter for all possible eight bit values */ +  int k;                /* byte being shifted into crc apparatus */ + +  /* terms of polynomial defining this crc (except x^32): */ +  static const int p[] = {0,1,2,4,5,7,8,10,11,12,16,22,23,26}; + +  /* Make exclusive-or pattern from polynomial */ +  e = 0; +  for (i = 0; i < sizeof(p)/sizeof(int); i++) +    e |= 1L << (31 - p[i]); + +  crc_32_tab[0] = 0; + +  for (i = 1; i < 256; i++) +  { +    c = 0; +    for (k = i | 256; k != 1; k >>= 1) +    { +      c = c & 1 ? (c >> 1) ^ e : c >> 1; +      if (k & 1) +        c ^= e; +    } +    crc_32_tab[i] = c; +  } + +  /* this is initialized here so this code could reside in ROM */ +  crc = (ulg)0xffffffffUL; /* shift register contents */ +} + +/* gzip flag byte */ +#define ASCII_FLAG   0x01 /* bit 0 set: file probably ASCII text */ +#define CONTINUATION 0x02 /* bit 1 set: continuation of multi-part gzip file */ +#define EXTRA_FIELD  0x04 /* bit 2 set: extra field present */ +#define ORIG_NAME    0x08 /* bit 3 set: original file name present */ +#define COMMENT      0x10 /* bit 4 set: file comment present */ +#define ENCRYPTED    0x20 /* bit 5 set: file is encrypted */ +#define RESERVED     0xC0 /* bit 6,7:   reserved */ + +/* + * Do the uncompression! + */ +static int INIT gunzip(void) +{ +    uch flags; +    unsigned char magic[2]; /* magic header */ +    char method; +    ulg orig_crc = 0;       /* original crc */ +    ulg orig_len = 0;       /* original uncompressed length */ +    int res; + +    magic[0] = NEXTBYTE(); +    magic[1] = NEXTBYTE(); +    method   = NEXTBYTE(); + +    if (magic[0] != 037 || +	((magic[1] != 0213) && (magic[1] != 0236))) { +	    error("bad gzip magic numbers"); +	    return -1; +    } + +    /* We only support method #8, DEFLATED */ +    if (method != 8)  { +	    error("internal error, invalid method"); +	    return -1; +    } + +    flags  = (uch)get_byte(); +    if ((flags & ENCRYPTED) != 0) { +	    error("Input is encrypted"); +	    return -1; +    } +    if ((flags & CONTINUATION) != 0) { +	    error("Multi part input"); +	    return -1; +    } +    if ((flags & RESERVED) != 0) { +	    error("Input has invalid flags"); +	    return -1; +    } +    NEXTBYTE();	/* Get timestamp */ +    NEXTBYTE(); +    NEXTBYTE(); +    NEXTBYTE(); + +    (void)NEXTBYTE();  /* Ignore extra flags for the moment */ +    (void)NEXTBYTE();  /* Ignore OS type for the moment */ + +    if ((flags & EXTRA_FIELD) != 0) { +	    unsigned len = (unsigned)NEXTBYTE(); +	    len |= ((unsigned)NEXTBYTE())<<8; +	    while (len--) (void)NEXTBYTE(); +    } + +    /* Get original file name if it was truncated */ +    if ((flags & ORIG_NAME) != 0) { +	    /* Discard the old name */ +	    while (NEXTBYTE() != 0) /* null */ ; +    }  + +    /* Discard file comment if any */ +    if ((flags & COMMENT) != 0) { +	    while (NEXTBYTE() != 0) /* null */ ; +    } + +    /* Decompress */ +    if ((res = inflate())) { +	    switch (res) { +	    case 0: +		    break; +	    case 1: +		    error("invalid compressed format (err=1)"); +		    break; +	    case 2: +		    error("invalid compressed format (err=2)"); +		    break; +	    case 3: +		    error("out of memory"); +		    break; +	    case 4: +		    error("out of input data"); +		    break; +	    default: +		    error("invalid compressed format (other)"); +	    } +	    return -1; +    } +	     +    /* Get the crc and original length */ +    /* crc32  (see algorithm.doc) +     * uncompressed input size modulo 2^32 +     */ +    orig_crc = (ulg) NEXTBYTE(); +    orig_crc |= (ulg) NEXTBYTE() << 8; +    orig_crc |= (ulg) NEXTBYTE() << 16; +    orig_crc |= (ulg) NEXTBYTE() << 24; +     +    orig_len = (ulg) NEXTBYTE(); +    orig_len |= (ulg) NEXTBYTE() << 8; +    orig_len |= (ulg) NEXTBYTE() << 16; +    orig_len |= (ulg) NEXTBYTE() << 24; +     +    /* Validate decompression */ +    if (orig_crc != CRC_VALUE) { +	    error("crc error"); +	    return -1; +    } +    if (orig_len != bytes_out) { +	    error("length error"); +	    return -1; +    } +    return 0; + + underrun:			/* NEXTBYTE() goto's here if needed */ +    error("out of input data"); +    return -1; +} + +  |