diff options
Diffstat (limited to 'kernel/sched/rt.c')
| -rw-r--r-- | kernel/sched/rt.c | 2048 | 
1 files changed, 2048 insertions, 0 deletions
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c new file mode 100644 index 00000000000..3640ebbb466 --- /dev/null +++ b/kernel/sched/rt.c @@ -0,0 +1,2048 @@ +/* + * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR + * policies) + */ + +#include "sched.h" + +#include <linux/slab.h> + +static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); + +struct rt_bandwidth def_rt_bandwidth; + +static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) +{ +	struct rt_bandwidth *rt_b = +		container_of(timer, struct rt_bandwidth, rt_period_timer); +	ktime_t now; +	int overrun; +	int idle = 0; + +	for (;;) { +		now = hrtimer_cb_get_time(timer); +		overrun = hrtimer_forward(timer, now, rt_b->rt_period); + +		if (!overrun) +			break; + +		idle = do_sched_rt_period_timer(rt_b, overrun); +	} + +	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; +} + +void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) +{ +	rt_b->rt_period = ns_to_ktime(period); +	rt_b->rt_runtime = runtime; + +	raw_spin_lock_init(&rt_b->rt_runtime_lock); + +	hrtimer_init(&rt_b->rt_period_timer, +			CLOCK_MONOTONIC, HRTIMER_MODE_REL); +	rt_b->rt_period_timer.function = sched_rt_period_timer; +} + +static void start_rt_bandwidth(struct rt_bandwidth *rt_b) +{ +	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) +		return; + +	if (hrtimer_active(&rt_b->rt_period_timer)) +		return; + +	raw_spin_lock(&rt_b->rt_runtime_lock); +	start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period); +	raw_spin_unlock(&rt_b->rt_runtime_lock); +} + +void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) +{ +	struct rt_prio_array *array; +	int i; + +	array = &rt_rq->active; +	for (i = 0; i < MAX_RT_PRIO; i++) { +		INIT_LIST_HEAD(array->queue + i); +		__clear_bit(i, array->bitmap); +	} +	/* delimiter for bitsearch: */ +	__set_bit(MAX_RT_PRIO, array->bitmap); + +#if defined CONFIG_SMP +	rt_rq->highest_prio.curr = MAX_RT_PRIO; +	rt_rq->highest_prio.next = MAX_RT_PRIO; +	rt_rq->rt_nr_migratory = 0; +	rt_rq->overloaded = 0; +	plist_head_init(&rt_rq->pushable_tasks); +#endif + +	rt_rq->rt_time = 0; +	rt_rq->rt_throttled = 0; +	rt_rq->rt_runtime = 0; +	raw_spin_lock_init(&rt_rq->rt_runtime_lock); +} + +#ifdef CONFIG_RT_GROUP_SCHED +static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) +{ +	hrtimer_cancel(&rt_b->rt_period_timer); +} + +#define rt_entity_is_task(rt_se) (!(rt_se)->my_q) + +static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +{ +#ifdef CONFIG_SCHED_DEBUG +	WARN_ON_ONCE(!rt_entity_is_task(rt_se)); +#endif +	return container_of(rt_se, struct task_struct, rt); +} + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ +	return rt_rq->rq; +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ +	return rt_se->rt_rq; +} + +void free_rt_sched_group(struct task_group *tg) +{ +	int i; + +	if (tg->rt_se) +		destroy_rt_bandwidth(&tg->rt_bandwidth); + +	for_each_possible_cpu(i) { +		if (tg->rt_rq) +			kfree(tg->rt_rq[i]); +		if (tg->rt_se) +			kfree(tg->rt_se[i]); +	} + +	kfree(tg->rt_rq); +	kfree(tg->rt_se); +} + +void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, +		struct sched_rt_entity *rt_se, int cpu, +		struct sched_rt_entity *parent) +{ +	struct rq *rq = cpu_rq(cpu); + +	rt_rq->highest_prio.curr = MAX_RT_PRIO; +	rt_rq->rt_nr_boosted = 0; +	rt_rq->rq = rq; +	rt_rq->tg = tg; + +	tg->rt_rq[cpu] = rt_rq; +	tg->rt_se[cpu] = rt_se; + +	if (!rt_se) +		return; + +	if (!parent) +		rt_se->rt_rq = &rq->rt; +	else +		rt_se->rt_rq = parent->my_q; + +	rt_se->my_q = rt_rq; +	rt_se->parent = parent; +	INIT_LIST_HEAD(&rt_se->run_list); +} + +int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) +{ +	struct rt_rq *rt_rq; +	struct sched_rt_entity *rt_se; +	int i; + +	tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); +	if (!tg->rt_rq) +		goto err; +	tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); +	if (!tg->rt_se) +		goto err; + +	init_rt_bandwidth(&tg->rt_bandwidth, +			ktime_to_ns(def_rt_bandwidth.rt_period), 0); + +	for_each_possible_cpu(i) { +		rt_rq = kzalloc_node(sizeof(struct rt_rq), +				     GFP_KERNEL, cpu_to_node(i)); +		if (!rt_rq) +			goto err; + +		rt_se = kzalloc_node(sizeof(struct sched_rt_entity), +				     GFP_KERNEL, cpu_to_node(i)); +		if (!rt_se) +			goto err_free_rq; + +		init_rt_rq(rt_rq, cpu_rq(i)); +		rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; +		init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]); +	} + +	return 1; + +err_free_rq: +	kfree(rt_rq); +err: +	return 0; +} + +#else /* CONFIG_RT_GROUP_SCHED */ + +#define rt_entity_is_task(rt_se) (1) + +static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se) +{ +	return container_of(rt_se, struct task_struct, rt); +} + +static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq) +{ +	return container_of(rt_rq, struct rq, rt); +} + +static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se) +{ +	struct task_struct *p = rt_task_of(rt_se); +	struct rq *rq = task_rq(p); + +	return &rq->rt; +} + +void free_rt_sched_group(struct task_group *tg) { } + +int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) +{ +	return 1; +} +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_SMP + +static inline int rt_overloaded(struct rq *rq) +{ +	return atomic_read(&rq->rd->rto_count); +} + +static inline void rt_set_overload(struct rq *rq) +{ +	if (!rq->online) +		return; + +	cpumask_set_cpu(rq->cpu, rq->rd->rto_mask); +	/* +	 * Make sure the mask is visible before we set +	 * the overload count. That is checked to determine +	 * if we should look at the mask. It would be a shame +	 * if we looked at the mask, but the mask was not +	 * updated yet. +	 */ +	wmb(); +	atomic_inc(&rq->rd->rto_count); +} + +static inline void rt_clear_overload(struct rq *rq) +{ +	if (!rq->online) +		return; + +	/* the order here really doesn't matter */ +	atomic_dec(&rq->rd->rto_count); +	cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask); +} + +static void update_rt_migration(struct rt_rq *rt_rq) +{ +	if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) { +		if (!rt_rq->overloaded) { +			rt_set_overload(rq_of_rt_rq(rt_rq)); +			rt_rq->overloaded = 1; +		} +	} else if (rt_rq->overloaded) { +		rt_clear_overload(rq_of_rt_rq(rt_rq)); +		rt_rq->overloaded = 0; +	} +} + +static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +	if (!rt_entity_is_task(rt_se)) +		return; + +	rt_rq = &rq_of_rt_rq(rt_rq)->rt; + +	rt_rq->rt_nr_total++; +	if (rt_se->nr_cpus_allowed > 1) +		rt_rq->rt_nr_migratory++; + +	update_rt_migration(rt_rq); +} + +static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +	if (!rt_entity_is_task(rt_se)) +		return; + +	rt_rq = &rq_of_rt_rq(rt_rq)->rt; + +	rt_rq->rt_nr_total--; +	if (rt_se->nr_cpus_allowed > 1) +		rt_rq->rt_nr_migratory--; + +	update_rt_migration(rt_rq); +} + +static inline int has_pushable_tasks(struct rq *rq) +{ +	return !plist_head_empty(&rq->rt.pushable_tasks); +} + +static void enqueue_pushable_task(struct rq *rq, struct task_struct *p) +{ +	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); +	plist_node_init(&p->pushable_tasks, p->prio); +	plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks); + +	/* Update the highest prio pushable task */ +	if (p->prio < rq->rt.highest_prio.next) +		rq->rt.highest_prio.next = p->prio; +} + +static void dequeue_pushable_task(struct rq *rq, struct task_struct *p) +{ +	plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks); + +	/* Update the new highest prio pushable task */ +	if (has_pushable_tasks(rq)) { +		p = plist_first_entry(&rq->rt.pushable_tasks, +				      struct task_struct, pushable_tasks); +		rq->rt.highest_prio.next = p->prio; +	} else +		rq->rt.highest_prio.next = MAX_RT_PRIO; +} + +#else + +static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p) +{ +} + +static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p) +{ +} + +static inline +void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +} + +static inline +void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +} + +#endif /* CONFIG_SMP */ + +static inline int on_rt_rq(struct sched_rt_entity *rt_se) +{ +	return !list_empty(&rt_se->run_list); +} + +#ifdef CONFIG_RT_GROUP_SCHED + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) +{ +	if (!rt_rq->tg) +		return RUNTIME_INF; + +	return rt_rq->rt_runtime; +} + +static inline u64 sched_rt_period(struct rt_rq *rt_rq) +{ +	return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period); +} + +typedef struct task_group *rt_rq_iter_t; + +static inline struct task_group *next_task_group(struct task_group *tg) +{ +	do { +		tg = list_entry_rcu(tg->list.next, +			typeof(struct task_group), list); +	} while (&tg->list != &task_groups && task_group_is_autogroup(tg)); + +	if (&tg->list == &task_groups) +		tg = NULL; + +	return tg; +} + +#define for_each_rt_rq(rt_rq, iter, rq)					\ +	for (iter = container_of(&task_groups, typeof(*iter), list);	\ +		(iter = next_task_group(iter)) &&			\ +		(rt_rq = iter->rt_rq[cpu_of(rq)]);) + +static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) +{ +	list_add_rcu(&rt_rq->leaf_rt_rq_list, +			&rq_of_rt_rq(rt_rq)->leaf_rt_rq_list); +} + +static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) +{ +	list_del_rcu(&rt_rq->leaf_rt_rq_list); +} + +#define for_each_leaf_rt_rq(rt_rq, rq) \ +	list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list) + +#define for_each_sched_rt_entity(rt_se) \ +	for (; rt_se; rt_se = rt_se->parent) + +static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) +{ +	return rt_se->my_q; +} + +static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head); +static void dequeue_rt_entity(struct sched_rt_entity *rt_se); + +static void sched_rt_rq_enqueue(struct rt_rq *rt_rq) +{ +	struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr; +	struct sched_rt_entity *rt_se; + +	int cpu = cpu_of(rq_of_rt_rq(rt_rq)); + +	rt_se = rt_rq->tg->rt_se[cpu]; + +	if (rt_rq->rt_nr_running) { +		if (rt_se && !on_rt_rq(rt_se)) +			enqueue_rt_entity(rt_se, false); +		if (rt_rq->highest_prio.curr < curr->prio) +			resched_task(curr); +	} +} + +static void sched_rt_rq_dequeue(struct rt_rq *rt_rq) +{ +	struct sched_rt_entity *rt_se; +	int cpu = cpu_of(rq_of_rt_rq(rt_rq)); + +	rt_se = rt_rq->tg->rt_se[cpu]; + +	if (rt_se && on_rt_rq(rt_se)) +		dequeue_rt_entity(rt_se); +} + +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ +	return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted; +} + +static int rt_se_boosted(struct sched_rt_entity *rt_se) +{ +	struct rt_rq *rt_rq = group_rt_rq(rt_se); +	struct task_struct *p; + +	if (rt_rq) +		return !!rt_rq->rt_nr_boosted; + +	p = rt_task_of(rt_se); +	return p->prio != p->normal_prio; +} + +#ifdef CONFIG_SMP +static inline const struct cpumask *sched_rt_period_mask(void) +{ +	return cpu_rq(smp_processor_id())->rd->span; +} +#else +static inline const struct cpumask *sched_rt_period_mask(void) +{ +	return cpu_online_mask; +} +#endif + +static inline +struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) +{ +	return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu]; +} + +static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) +{ +	return &rt_rq->tg->rt_bandwidth; +} + +#else /* !CONFIG_RT_GROUP_SCHED */ + +static inline u64 sched_rt_runtime(struct rt_rq *rt_rq) +{ +	return rt_rq->rt_runtime; +} + +static inline u64 sched_rt_period(struct rt_rq *rt_rq) +{ +	return ktime_to_ns(def_rt_bandwidth.rt_period); +} + +typedef struct rt_rq *rt_rq_iter_t; + +#define for_each_rt_rq(rt_rq, iter, rq) \ +	for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL) + +static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq) +{ +} + +static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq) +{ +} + +#define for_each_leaf_rt_rq(rt_rq, rq) \ +	for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL) + +#define for_each_sched_rt_entity(rt_se) \ +	for (; rt_se; rt_se = NULL) + +static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se) +{ +	return NULL; +} + +static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq) +{ +	if (rt_rq->rt_nr_running) +		resched_task(rq_of_rt_rq(rt_rq)->curr); +} + +static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq) +{ +} + +static inline int rt_rq_throttled(struct rt_rq *rt_rq) +{ +	return rt_rq->rt_throttled; +} + +static inline const struct cpumask *sched_rt_period_mask(void) +{ +	return cpu_online_mask; +} + +static inline +struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu) +{ +	return &cpu_rq(cpu)->rt; +} + +static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq) +{ +	return &def_rt_bandwidth; +} + +#endif /* CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_SMP +/* + * We ran out of runtime, see if we can borrow some from our neighbours. + */ +static int do_balance_runtime(struct rt_rq *rt_rq) +{ +	struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); +	struct root_domain *rd = cpu_rq(smp_processor_id())->rd; +	int i, weight, more = 0; +	u64 rt_period; + +	weight = cpumask_weight(rd->span); + +	raw_spin_lock(&rt_b->rt_runtime_lock); +	rt_period = ktime_to_ns(rt_b->rt_period); +	for_each_cpu(i, rd->span) { +		struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); +		s64 diff; + +		if (iter == rt_rq) +			continue; + +		raw_spin_lock(&iter->rt_runtime_lock); +		/* +		 * Either all rqs have inf runtime and there's nothing to steal +		 * or __disable_runtime() below sets a specific rq to inf to +		 * indicate its been disabled and disalow stealing. +		 */ +		if (iter->rt_runtime == RUNTIME_INF) +			goto next; + +		/* +		 * From runqueues with spare time, take 1/n part of their +		 * spare time, but no more than our period. +		 */ +		diff = iter->rt_runtime - iter->rt_time; +		if (diff > 0) { +			diff = div_u64((u64)diff, weight); +			if (rt_rq->rt_runtime + diff > rt_period) +				diff = rt_period - rt_rq->rt_runtime; +			iter->rt_runtime -= diff; +			rt_rq->rt_runtime += diff; +			more = 1; +			if (rt_rq->rt_runtime == rt_period) { +				raw_spin_unlock(&iter->rt_runtime_lock); +				break; +			} +		} +next: +		raw_spin_unlock(&iter->rt_runtime_lock); +	} +	raw_spin_unlock(&rt_b->rt_runtime_lock); + +	return more; +} + +/* + * Ensure this RQ takes back all the runtime it lend to its neighbours. + */ +static void __disable_runtime(struct rq *rq) +{ +	struct root_domain *rd = rq->rd; +	rt_rq_iter_t iter; +	struct rt_rq *rt_rq; + +	if (unlikely(!scheduler_running)) +		return; + +	for_each_rt_rq(rt_rq, iter, rq) { +		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); +		s64 want; +		int i; + +		raw_spin_lock(&rt_b->rt_runtime_lock); +		raw_spin_lock(&rt_rq->rt_runtime_lock); +		/* +		 * Either we're all inf and nobody needs to borrow, or we're +		 * already disabled and thus have nothing to do, or we have +		 * exactly the right amount of runtime to take out. +		 */ +		if (rt_rq->rt_runtime == RUNTIME_INF || +				rt_rq->rt_runtime == rt_b->rt_runtime) +			goto balanced; +		raw_spin_unlock(&rt_rq->rt_runtime_lock); + +		/* +		 * Calculate the difference between what we started out with +		 * and what we current have, that's the amount of runtime +		 * we lend and now have to reclaim. +		 */ +		want = rt_b->rt_runtime - rt_rq->rt_runtime; + +		/* +		 * Greedy reclaim, take back as much as we can. +		 */ +		for_each_cpu(i, rd->span) { +			struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i); +			s64 diff; + +			/* +			 * Can't reclaim from ourselves or disabled runqueues. +			 */ +			if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF) +				continue; + +			raw_spin_lock(&iter->rt_runtime_lock); +			if (want > 0) { +				diff = min_t(s64, iter->rt_runtime, want); +				iter->rt_runtime -= diff; +				want -= diff; +			} else { +				iter->rt_runtime -= want; +				want -= want; +			} +			raw_spin_unlock(&iter->rt_runtime_lock); + +			if (!want) +				break; +		} + +		raw_spin_lock(&rt_rq->rt_runtime_lock); +		/* +		 * We cannot be left wanting - that would mean some runtime +		 * leaked out of the system. +		 */ +		BUG_ON(want); +balanced: +		/* +		 * Disable all the borrow logic by pretending we have inf +		 * runtime - in which case borrowing doesn't make sense. +		 */ +		rt_rq->rt_runtime = RUNTIME_INF; +		raw_spin_unlock(&rt_rq->rt_runtime_lock); +		raw_spin_unlock(&rt_b->rt_runtime_lock); +	} +} + +static void disable_runtime(struct rq *rq) +{ +	unsigned long flags; + +	raw_spin_lock_irqsave(&rq->lock, flags); +	__disable_runtime(rq); +	raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +static void __enable_runtime(struct rq *rq) +{ +	rt_rq_iter_t iter; +	struct rt_rq *rt_rq; + +	if (unlikely(!scheduler_running)) +		return; + +	/* +	 * Reset each runqueue's bandwidth settings +	 */ +	for_each_rt_rq(rt_rq, iter, rq) { +		struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq); + +		raw_spin_lock(&rt_b->rt_runtime_lock); +		raw_spin_lock(&rt_rq->rt_runtime_lock); +		rt_rq->rt_runtime = rt_b->rt_runtime; +		rt_rq->rt_time = 0; +		rt_rq->rt_throttled = 0; +		raw_spin_unlock(&rt_rq->rt_runtime_lock); +		raw_spin_unlock(&rt_b->rt_runtime_lock); +	} +} + +static void enable_runtime(struct rq *rq) +{ +	unsigned long flags; + +	raw_spin_lock_irqsave(&rq->lock, flags); +	__enable_runtime(rq); +	raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +int update_runtime(struct notifier_block *nfb, unsigned long action, void *hcpu) +{ +	int cpu = (int)(long)hcpu; + +	switch (action) { +	case CPU_DOWN_PREPARE: +	case CPU_DOWN_PREPARE_FROZEN: +		disable_runtime(cpu_rq(cpu)); +		return NOTIFY_OK; + +	case CPU_DOWN_FAILED: +	case CPU_DOWN_FAILED_FROZEN: +	case CPU_ONLINE: +	case CPU_ONLINE_FROZEN: +		enable_runtime(cpu_rq(cpu)); +		return NOTIFY_OK; + +	default: +		return NOTIFY_DONE; +	} +} + +static int balance_runtime(struct rt_rq *rt_rq) +{ +	int more = 0; + +	if (!sched_feat(RT_RUNTIME_SHARE)) +		return more; + +	if (rt_rq->rt_time > rt_rq->rt_runtime) { +		raw_spin_unlock(&rt_rq->rt_runtime_lock); +		more = do_balance_runtime(rt_rq); +		raw_spin_lock(&rt_rq->rt_runtime_lock); +	} + +	return more; +} +#else /* !CONFIG_SMP */ +static inline int balance_runtime(struct rt_rq *rt_rq) +{ +	return 0; +} +#endif /* CONFIG_SMP */ + +static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun) +{ +	int i, idle = 1; +	const struct cpumask *span; + +	if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF) +		return 1; + +	span = sched_rt_period_mask(); +	for_each_cpu(i, span) { +		int enqueue = 0; +		struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i); +		struct rq *rq = rq_of_rt_rq(rt_rq); + +		raw_spin_lock(&rq->lock); +		if (rt_rq->rt_time) { +			u64 runtime; + +			raw_spin_lock(&rt_rq->rt_runtime_lock); +			if (rt_rq->rt_throttled) +				balance_runtime(rt_rq); +			runtime = rt_rq->rt_runtime; +			rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime); +			if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) { +				rt_rq->rt_throttled = 0; +				enqueue = 1; + +				/* +				 * Force a clock update if the CPU was idle, +				 * lest wakeup -> unthrottle time accumulate. +				 */ +				if (rt_rq->rt_nr_running && rq->curr == rq->idle) +					rq->skip_clock_update = -1; +			} +			if (rt_rq->rt_time || rt_rq->rt_nr_running) +				idle = 0; +			raw_spin_unlock(&rt_rq->rt_runtime_lock); +		} else if (rt_rq->rt_nr_running) { +			idle = 0; +			if (!rt_rq_throttled(rt_rq)) +				enqueue = 1; +		} + +		if (enqueue) +			sched_rt_rq_enqueue(rt_rq); +		raw_spin_unlock(&rq->lock); +	} + +	return idle; +} + +static inline int rt_se_prio(struct sched_rt_entity *rt_se) +{ +#ifdef CONFIG_RT_GROUP_SCHED +	struct rt_rq *rt_rq = group_rt_rq(rt_se); + +	if (rt_rq) +		return rt_rq->highest_prio.curr; +#endif + +	return rt_task_of(rt_se)->prio; +} + +static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq) +{ +	u64 runtime = sched_rt_runtime(rt_rq); + +	if (rt_rq->rt_throttled) +		return rt_rq_throttled(rt_rq); + +	if (runtime >= sched_rt_period(rt_rq)) +		return 0; + +	balance_runtime(rt_rq); +	runtime = sched_rt_runtime(rt_rq); +	if (runtime == RUNTIME_INF) +		return 0; + +	if (rt_rq->rt_time > runtime) { +		rt_rq->rt_throttled = 1; +		printk_once(KERN_WARNING "sched: RT throttling activated\n"); +		if (rt_rq_throttled(rt_rq)) { +			sched_rt_rq_dequeue(rt_rq); +			return 1; +		} +	} + +	return 0; +} + +/* + * Update the current task's runtime statistics. Skip current tasks that + * are not in our scheduling class. + */ +static void update_curr_rt(struct rq *rq) +{ +	struct task_struct *curr = rq->curr; +	struct sched_rt_entity *rt_se = &curr->rt; +	struct rt_rq *rt_rq = rt_rq_of_se(rt_se); +	u64 delta_exec; + +	if (curr->sched_class != &rt_sched_class) +		return; + +	delta_exec = rq->clock_task - curr->se.exec_start; +	if (unlikely((s64)delta_exec < 0)) +		delta_exec = 0; + +	schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec)); + +	curr->se.sum_exec_runtime += delta_exec; +	account_group_exec_runtime(curr, delta_exec); + +	curr->se.exec_start = rq->clock_task; +	cpuacct_charge(curr, delta_exec); + +	sched_rt_avg_update(rq, delta_exec); + +	if (!rt_bandwidth_enabled()) +		return; + +	for_each_sched_rt_entity(rt_se) { +		rt_rq = rt_rq_of_se(rt_se); + +		if (sched_rt_runtime(rt_rq) != RUNTIME_INF) { +			raw_spin_lock(&rt_rq->rt_runtime_lock); +			rt_rq->rt_time += delta_exec; +			if (sched_rt_runtime_exceeded(rt_rq)) +				resched_task(curr); +			raw_spin_unlock(&rt_rq->rt_runtime_lock); +		} +	} +} + +#if defined CONFIG_SMP + +static void +inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) +{ +	struct rq *rq = rq_of_rt_rq(rt_rq); + +	if (rq->online && prio < prev_prio) +		cpupri_set(&rq->rd->cpupri, rq->cpu, prio); +} + +static void +dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) +{ +	struct rq *rq = rq_of_rt_rq(rt_rq); + +	if (rq->online && rt_rq->highest_prio.curr != prev_prio) +		cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr); +} + +#else /* CONFIG_SMP */ + +static inline +void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} +static inline +void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {} + +#endif /* CONFIG_SMP */ + +#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED +static void +inc_rt_prio(struct rt_rq *rt_rq, int prio) +{ +	int prev_prio = rt_rq->highest_prio.curr; + +	if (prio < prev_prio) +		rt_rq->highest_prio.curr = prio; + +	inc_rt_prio_smp(rt_rq, prio, prev_prio); +} + +static void +dec_rt_prio(struct rt_rq *rt_rq, int prio) +{ +	int prev_prio = rt_rq->highest_prio.curr; + +	if (rt_rq->rt_nr_running) { + +		WARN_ON(prio < prev_prio); + +		/* +		 * This may have been our highest task, and therefore +		 * we may have some recomputation to do +		 */ +		if (prio == prev_prio) { +			struct rt_prio_array *array = &rt_rq->active; + +			rt_rq->highest_prio.curr = +				sched_find_first_bit(array->bitmap); +		} + +	} else +		rt_rq->highest_prio.curr = MAX_RT_PRIO; + +	dec_rt_prio_smp(rt_rq, prio, prev_prio); +} + +#else + +static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {} +static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {} + +#endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */ + +#ifdef CONFIG_RT_GROUP_SCHED + +static void +inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +	if (rt_se_boosted(rt_se)) +		rt_rq->rt_nr_boosted++; + +	if (rt_rq->tg) +		start_rt_bandwidth(&rt_rq->tg->rt_bandwidth); +} + +static void +dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +	if (rt_se_boosted(rt_se)) +		rt_rq->rt_nr_boosted--; + +	WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted); +} + +#else /* CONFIG_RT_GROUP_SCHED */ + +static void +inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +	start_rt_bandwidth(&def_rt_bandwidth); +} + +static inline +void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {} + +#endif /* CONFIG_RT_GROUP_SCHED */ + +static inline +void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +	int prio = rt_se_prio(rt_se); + +	WARN_ON(!rt_prio(prio)); +	rt_rq->rt_nr_running++; + +	inc_rt_prio(rt_rq, prio); +	inc_rt_migration(rt_se, rt_rq); +	inc_rt_group(rt_se, rt_rq); +} + +static inline +void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) +{ +	WARN_ON(!rt_prio(rt_se_prio(rt_se))); +	WARN_ON(!rt_rq->rt_nr_running); +	rt_rq->rt_nr_running--; + +	dec_rt_prio(rt_rq, rt_se_prio(rt_se)); +	dec_rt_migration(rt_se, rt_rq); +	dec_rt_group(rt_se, rt_rq); +} + +static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) +{ +	struct rt_rq *rt_rq = rt_rq_of_se(rt_se); +	struct rt_prio_array *array = &rt_rq->active; +	struct rt_rq *group_rq = group_rt_rq(rt_se); +	struct list_head *queue = array->queue + rt_se_prio(rt_se); + +	/* +	 * Don't enqueue the group if its throttled, or when empty. +	 * The latter is a consequence of the former when a child group +	 * get throttled and the current group doesn't have any other +	 * active members. +	 */ +	if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) +		return; + +	if (!rt_rq->rt_nr_running) +		list_add_leaf_rt_rq(rt_rq); + +	if (head) +		list_add(&rt_se->run_list, queue); +	else +		list_add_tail(&rt_se->run_list, queue); +	__set_bit(rt_se_prio(rt_se), array->bitmap); + +	inc_rt_tasks(rt_se, rt_rq); +} + +static void __dequeue_rt_entity(struct sched_rt_entity *rt_se) +{ +	struct rt_rq *rt_rq = rt_rq_of_se(rt_se); +	struct rt_prio_array *array = &rt_rq->active; + +	list_del_init(&rt_se->run_list); +	if (list_empty(array->queue + rt_se_prio(rt_se))) +		__clear_bit(rt_se_prio(rt_se), array->bitmap); + +	dec_rt_tasks(rt_se, rt_rq); +	if (!rt_rq->rt_nr_running) +		list_del_leaf_rt_rq(rt_rq); +} + +/* + * Because the prio of an upper entry depends on the lower + * entries, we must remove entries top - down. + */ +static void dequeue_rt_stack(struct sched_rt_entity *rt_se) +{ +	struct sched_rt_entity *back = NULL; + +	for_each_sched_rt_entity(rt_se) { +		rt_se->back = back; +		back = rt_se; +	} + +	for (rt_se = back; rt_se; rt_se = rt_se->back) { +		if (on_rt_rq(rt_se)) +			__dequeue_rt_entity(rt_se); +	} +} + +static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head) +{ +	dequeue_rt_stack(rt_se); +	for_each_sched_rt_entity(rt_se) +		__enqueue_rt_entity(rt_se, head); +} + +static void dequeue_rt_entity(struct sched_rt_entity *rt_se) +{ +	dequeue_rt_stack(rt_se); + +	for_each_sched_rt_entity(rt_se) { +		struct rt_rq *rt_rq = group_rt_rq(rt_se); + +		if (rt_rq && rt_rq->rt_nr_running) +			__enqueue_rt_entity(rt_se, false); +	} +} + +/* + * Adding/removing a task to/from a priority array: + */ +static void +enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags) +{ +	struct sched_rt_entity *rt_se = &p->rt; + +	if (flags & ENQUEUE_WAKEUP) +		rt_se->timeout = 0; + +	enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD); + +	if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1) +		enqueue_pushable_task(rq, p); + +	inc_nr_running(rq); +} + +static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags) +{ +	struct sched_rt_entity *rt_se = &p->rt; + +	update_curr_rt(rq); +	dequeue_rt_entity(rt_se); + +	dequeue_pushable_task(rq, p); + +	dec_nr_running(rq); +} + +/* + * Put task to the head or the end of the run list without the overhead of + * dequeue followed by enqueue. + */ +static void +requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head) +{ +	if (on_rt_rq(rt_se)) { +		struct rt_prio_array *array = &rt_rq->active; +		struct list_head *queue = array->queue + rt_se_prio(rt_se); + +		if (head) +			list_move(&rt_se->run_list, queue); +		else +			list_move_tail(&rt_se->run_list, queue); +	} +} + +static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head) +{ +	struct sched_rt_entity *rt_se = &p->rt; +	struct rt_rq *rt_rq; + +	for_each_sched_rt_entity(rt_se) { +		rt_rq = rt_rq_of_se(rt_se); +		requeue_rt_entity(rt_rq, rt_se, head); +	} +} + +static void yield_task_rt(struct rq *rq) +{ +	requeue_task_rt(rq, rq->curr, 0); +} + +#ifdef CONFIG_SMP +static int find_lowest_rq(struct task_struct *task); + +static int +select_task_rq_rt(struct task_struct *p, int sd_flag, int flags) +{ +	struct task_struct *curr; +	struct rq *rq; +	int cpu; + +	cpu = task_cpu(p); + +	if (p->rt.nr_cpus_allowed == 1) +		goto out; + +	/* For anything but wake ups, just return the task_cpu */ +	if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK) +		goto out; + +	rq = cpu_rq(cpu); + +	rcu_read_lock(); +	curr = ACCESS_ONCE(rq->curr); /* unlocked access */ + +	/* +	 * If the current task on @p's runqueue is an RT task, then +	 * try to see if we can wake this RT task up on another +	 * runqueue. Otherwise simply start this RT task +	 * on its current runqueue. +	 * +	 * We want to avoid overloading runqueues. If the woken +	 * task is a higher priority, then it will stay on this CPU +	 * and the lower prio task should be moved to another CPU. +	 * Even though this will probably make the lower prio task +	 * lose its cache, we do not want to bounce a higher task +	 * around just because it gave up its CPU, perhaps for a +	 * lock? +	 * +	 * For equal prio tasks, we just let the scheduler sort it out. +	 * +	 * Otherwise, just let it ride on the affined RQ and the +	 * post-schedule router will push the preempted task away +	 * +	 * This test is optimistic, if we get it wrong the load-balancer +	 * will have to sort it out. +	 */ +	if (curr && unlikely(rt_task(curr)) && +	    (curr->rt.nr_cpus_allowed < 2 || +	     curr->prio <= p->prio) && +	    (p->rt.nr_cpus_allowed > 1)) { +		int target = find_lowest_rq(p); + +		if (target != -1) +			cpu = target; +	} +	rcu_read_unlock(); + +out: +	return cpu; +} + +static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p) +{ +	if (rq->curr->rt.nr_cpus_allowed == 1) +		return; + +	if (p->rt.nr_cpus_allowed != 1 +	    && cpupri_find(&rq->rd->cpupri, p, NULL)) +		return; + +	if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL)) +		return; + +	/* +	 * There appears to be other cpus that can accept +	 * current and none to run 'p', so lets reschedule +	 * to try and push current away: +	 */ +	requeue_task_rt(rq, p, 1); +	resched_task(rq->curr); +} + +#endif /* CONFIG_SMP */ + +/* + * Preempt the current task with a newly woken task if needed: + */ +static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags) +{ +	if (p->prio < rq->curr->prio) { +		resched_task(rq->curr); +		return; +	} + +#ifdef CONFIG_SMP +	/* +	 * If: +	 * +	 * - the newly woken task is of equal priority to the current task +	 * - the newly woken task is non-migratable while current is migratable +	 * - current will be preempted on the next reschedule +	 * +	 * we should check to see if current can readily move to a different +	 * cpu.  If so, we will reschedule to allow the push logic to try +	 * to move current somewhere else, making room for our non-migratable +	 * task. +	 */ +	if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr)) +		check_preempt_equal_prio(rq, p); +#endif +} + +static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq, +						   struct rt_rq *rt_rq) +{ +	struct rt_prio_array *array = &rt_rq->active; +	struct sched_rt_entity *next = NULL; +	struct list_head *queue; +	int idx; + +	idx = sched_find_first_bit(array->bitmap); +	BUG_ON(idx >= MAX_RT_PRIO); + +	queue = array->queue + idx; +	next = list_entry(queue->next, struct sched_rt_entity, run_list); + +	return next; +} + +static struct task_struct *_pick_next_task_rt(struct rq *rq) +{ +	struct sched_rt_entity *rt_se; +	struct task_struct *p; +	struct rt_rq *rt_rq; + +	rt_rq = &rq->rt; + +	if (!rt_rq->rt_nr_running) +		return NULL; + +	if (rt_rq_throttled(rt_rq)) +		return NULL; + +	do { +		rt_se = pick_next_rt_entity(rq, rt_rq); +		BUG_ON(!rt_se); +		rt_rq = group_rt_rq(rt_se); +	} while (rt_rq); + +	p = rt_task_of(rt_se); +	p->se.exec_start = rq->clock_task; + +	return p; +} + +static struct task_struct *pick_next_task_rt(struct rq *rq) +{ +	struct task_struct *p = _pick_next_task_rt(rq); + +	/* The running task is never eligible for pushing */ +	if (p) +		dequeue_pushable_task(rq, p); + +#ifdef CONFIG_SMP +	/* +	 * We detect this state here so that we can avoid taking the RQ +	 * lock again later if there is no need to push +	 */ +	rq->post_schedule = has_pushable_tasks(rq); +#endif + +	return p; +} + +static void put_prev_task_rt(struct rq *rq, struct task_struct *p) +{ +	update_curr_rt(rq); + +	/* +	 * The previous task needs to be made eligible for pushing +	 * if it is still active +	 */ +	if (on_rt_rq(&p->rt) && p->rt.nr_cpus_allowed > 1) +		enqueue_pushable_task(rq, p); +} + +#ifdef CONFIG_SMP + +/* Only try algorithms three times */ +#define RT_MAX_TRIES 3 + +static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu) +{ +	if (!task_running(rq, p) && +	    (cpu < 0 || cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) && +	    (p->rt.nr_cpus_allowed > 1)) +		return 1; +	return 0; +} + +/* Return the second highest RT task, NULL otherwise */ +static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu) +{ +	struct task_struct *next = NULL; +	struct sched_rt_entity *rt_se; +	struct rt_prio_array *array; +	struct rt_rq *rt_rq; +	int idx; + +	for_each_leaf_rt_rq(rt_rq, rq) { +		array = &rt_rq->active; +		idx = sched_find_first_bit(array->bitmap); +next_idx: +		if (idx >= MAX_RT_PRIO) +			continue; +		if (next && next->prio < idx) +			continue; +		list_for_each_entry(rt_se, array->queue + idx, run_list) { +			struct task_struct *p; + +			if (!rt_entity_is_task(rt_se)) +				continue; + +			p = rt_task_of(rt_se); +			if (pick_rt_task(rq, p, cpu)) { +				next = p; +				break; +			} +		} +		if (!next) { +			idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1); +			goto next_idx; +		} +	} + +	return next; +} + +static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask); + +static int find_lowest_rq(struct task_struct *task) +{ +	struct sched_domain *sd; +	struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask); +	int this_cpu = smp_processor_id(); +	int cpu      = task_cpu(task); + +	/* Make sure the mask is initialized first */ +	if (unlikely(!lowest_mask)) +		return -1; + +	if (task->rt.nr_cpus_allowed == 1) +		return -1; /* No other targets possible */ + +	if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask)) +		return -1; /* No targets found */ + +	/* +	 * At this point we have built a mask of cpus representing the +	 * lowest priority tasks in the system.  Now we want to elect +	 * the best one based on our affinity and topology. +	 * +	 * We prioritize the last cpu that the task executed on since +	 * it is most likely cache-hot in that location. +	 */ +	if (cpumask_test_cpu(cpu, lowest_mask)) +		return cpu; + +	/* +	 * Otherwise, we consult the sched_domains span maps to figure +	 * out which cpu is logically closest to our hot cache data. +	 */ +	if (!cpumask_test_cpu(this_cpu, lowest_mask)) +		this_cpu = -1; /* Skip this_cpu opt if not among lowest */ + +	rcu_read_lock(); +	for_each_domain(cpu, sd) { +		if (sd->flags & SD_WAKE_AFFINE) { +			int best_cpu; + +			/* +			 * "this_cpu" is cheaper to preempt than a +			 * remote processor. +			 */ +			if (this_cpu != -1 && +			    cpumask_test_cpu(this_cpu, sched_domain_span(sd))) { +				rcu_read_unlock(); +				return this_cpu; +			} + +			best_cpu = cpumask_first_and(lowest_mask, +						     sched_domain_span(sd)); +			if (best_cpu < nr_cpu_ids) { +				rcu_read_unlock(); +				return best_cpu; +			} +		} +	} +	rcu_read_unlock(); + +	/* +	 * And finally, if there were no matches within the domains +	 * just give the caller *something* to work with from the compatible +	 * locations. +	 */ +	if (this_cpu != -1) +		return this_cpu; + +	cpu = cpumask_any(lowest_mask); +	if (cpu < nr_cpu_ids) +		return cpu; +	return -1; +} + +/* Will lock the rq it finds */ +static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq) +{ +	struct rq *lowest_rq = NULL; +	int tries; +	int cpu; + +	for (tries = 0; tries < RT_MAX_TRIES; tries++) { +		cpu = find_lowest_rq(task); + +		if ((cpu == -1) || (cpu == rq->cpu)) +			break; + +		lowest_rq = cpu_rq(cpu); + +		/* if the prio of this runqueue changed, try again */ +		if (double_lock_balance(rq, lowest_rq)) { +			/* +			 * We had to unlock the run queue. In +			 * the mean time, task could have +			 * migrated already or had its affinity changed. +			 * Also make sure that it wasn't scheduled on its rq. +			 */ +			if (unlikely(task_rq(task) != rq || +				     !cpumask_test_cpu(lowest_rq->cpu, +						       tsk_cpus_allowed(task)) || +				     task_running(rq, task) || +				     !task->on_rq)) { + +				raw_spin_unlock(&lowest_rq->lock); +				lowest_rq = NULL; +				break; +			} +		} + +		/* If this rq is still suitable use it. */ +		if (lowest_rq->rt.highest_prio.curr > task->prio) +			break; + +		/* try again */ +		double_unlock_balance(rq, lowest_rq); +		lowest_rq = NULL; +	} + +	return lowest_rq; +} + +static struct task_struct *pick_next_pushable_task(struct rq *rq) +{ +	struct task_struct *p; + +	if (!has_pushable_tasks(rq)) +		return NULL; + +	p = plist_first_entry(&rq->rt.pushable_tasks, +			      struct task_struct, pushable_tasks); + +	BUG_ON(rq->cpu != task_cpu(p)); +	BUG_ON(task_current(rq, p)); +	BUG_ON(p->rt.nr_cpus_allowed <= 1); + +	BUG_ON(!p->on_rq); +	BUG_ON(!rt_task(p)); + +	return p; +} + +/* + * If the current CPU has more than one RT task, see if the non + * running task can migrate over to a CPU that is running a task + * of lesser priority. + */ +static int push_rt_task(struct rq *rq) +{ +	struct task_struct *next_task; +	struct rq *lowest_rq; +	int ret = 0; + +	if (!rq->rt.overloaded) +		return 0; + +	next_task = pick_next_pushable_task(rq); +	if (!next_task) +		return 0; + +retry: +	if (unlikely(next_task == rq->curr)) { +		WARN_ON(1); +		return 0; +	} + +	/* +	 * It's possible that the next_task slipped in of +	 * higher priority than current. If that's the case +	 * just reschedule current. +	 */ +	if (unlikely(next_task->prio < rq->curr->prio)) { +		resched_task(rq->curr); +		return 0; +	} + +	/* We might release rq lock */ +	get_task_struct(next_task); + +	/* find_lock_lowest_rq locks the rq if found */ +	lowest_rq = find_lock_lowest_rq(next_task, rq); +	if (!lowest_rq) { +		struct task_struct *task; +		/* +		 * find_lock_lowest_rq releases rq->lock +		 * so it is possible that next_task has migrated. +		 * +		 * We need to make sure that the task is still on the same +		 * run-queue and is also still the next task eligible for +		 * pushing. +		 */ +		task = pick_next_pushable_task(rq); +		if (task_cpu(next_task) == rq->cpu && task == next_task) { +			/* +			 * The task hasn't migrated, and is still the next +			 * eligible task, but we failed to find a run-queue +			 * to push it to.  Do not retry in this case, since +			 * other cpus will pull from us when ready. +			 */ +			goto out; +		} + +		if (!task) +			/* No more tasks, just exit */ +			goto out; + +		/* +		 * Something has shifted, try again. +		 */ +		put_task_struct(next_task); +		next_task = task; +		goto retry; +	} + +	deactivate_task(rq, next_task, 0); +	set_task_cpu(next_task, lowest_rq->cpu); +	activate_task(lowest_rq, next_task, 0); +	ret = 1; + +	resched_task(lowest_rq->curr); + +	double_unlock_balance(rq, lowest_rq); + +out: +	put_task_struct(next_task); + +	return ret; +} + +static void push_rt_tasks(struct rq *rq) +{ +	/* push_rt_task will return true if it moved an RT */ +	while (push_rt_task(rq)) +		; +} + +static int pull_rt_task(struct rq *this_rq) +{ +	int this_cpu = this_rq->cpu, ret = 0, cpu; +	struct task_struct *p; +	struct rq *src_rq; + +	if (likely(!rt_overloaded(this_rq))) +		return 0; + +	for_each_cpu(cpu, this_rq->rd->rto_mask) { +		if (this_cpu == cpu) +			continue; + +		src_rq = cpu_rq(cpu); + +		/* +		 * Don't bother taking the src_rq->lock if the next highest +		 * task is known to be lower-priority than our current task. +		 * This may look racy, but if this value is about to go +		 * logically higher, the src_rq will push this task away. +		 * And if its going logically lower, we do not care +		 */ +		if (src_rq->rt.highest_prio.next >= +		    this_rq->rt.highest_prio.curr) +			continue; + +		/* +		 * We can potentially drop this_rq's lock in +		 * double_lock_balance, and another CPU could +		 * alter this_rq +		 */ +		double_lock_balance(this_rq, src_rq); + +		/* +		 * Are there still pullable RT tasks? +		 */ +		if (src_rq->rt.rt_nr_running <= 1) +			goto skip; + +		p = pick_next_highest_task_rt(src_rq, this_cpu); + +		/* +		 * Do we have an RT task that preempts +		 * the to-be-scheduled task? +		 */ +		if (p && (p->prio < this_rq->rt.highest_prio.curr)) { +			WARN_ON(p == src_rq->curr); +			WARN_ON(!p->on_rq); + +			/* +			 * There's a chance that p is higher in priority +			 * than what's currently running on its cpu. +			 * This is just that p is wakeing up and hasn't +			 * had a chance to schedule. We only pull +			 * p if it is lower in priority than the +			 * current task on the run queue +			 */ +			if (p->prio < src_rq->curr->prio) +				goto skip; + +			ret = 1; + +			deactivate_task(src_rq, p, 0); +			set_task_cpu(p, this_cpu); +			activate_task(this_rq, p, 0); +			/* +			 * We continue with the search, just in +			 * case there's an even higher prio task +			 * in another runqueue. (low likelihood +			 * but possible) +			 */ +		} +skip: +		double_unlock_balance(this_rq, src_rq); +	} + +	return ret; +} + +static void pre_schedule_rt(struct rq *rq, struct task_struct *prev) +{ +	/* Try to pull RT tasks here if we lower this rq's prio */ +	if (rq->rt.highest_prio.curr > prev->prio) +		pull_rt_task(rq); +} + +static void post_schedule_rt(struct rq *rq) +{ +	push_rt_tasks(rq); +} + +/* + * If we are not running and we are not going to reschedule soon, we should + * try to push tasks away now + */ +static void task_woken_rt(struct rq *rq, struct task_struct *p) +{ +	if (!task_running(rq, p) && +	    !test_tsk_need_resched(rq->curr) && +	    has_pushable_tasks(rq) && +	    p->rt.nr_cpus_allowed > 1 && +	    rt_task(rq->curr) && +	    (rq->curr->rt.nr_cpus_allowed < 2 || +	     rq->curr->prio <= p->prio)) +		push_rt_tasks(rq); +} + +static void set_cpus_allowed_rt(struct task_struct *p, +				const struct cpumask *new_mask) +{ +	int weight = cpumask_weight(new_mask); + +	BUG_ON(!rt_task(p)); + +	/* +	 * Update the migration status of the RQ if we have an RT task +	 * which is running AND changing its weight value. +	 */ +	if (p->on_rq && (weight != p->rt.nr_cpus_allowed)) { +		struct rq *rq = task_rq(p); + +		if (!task_current(rq, p)) { +			/* +			 * Make sure we dequeue this task from the pushable list +			 * before going further.  It will either remain off of +			 * the list because we are no longer pushable, or it +			 * will be requeued. +			 */ +			if (p->rt.nr_cpus_allowed > 1) +				dequeue_pushable_task(rq, p); + +			/* +			 * Requeue if our weight is changing and still > 1 +			 */ +			if (weight > 1) +				enqueue_pushable_task(rq, p); + +		} + +		if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) { +			rq->rt.rt_nr_migratory++; +		} else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) { +			BUG_ON(!rq->rt.rt_nr_migratory); +			rq->rt.rt_nr_migratory--; +		} + +		update_rt_migration(&rq->rt); +	} +} + +/* Assumes rq->lock is held */ +static void rq_online_rt(struct rq *rq) +{ +	if (rq->rt.overloaded) +		rt_set_overload(rq); + +	__enable_runtime(rq); + +	cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr); +} + +/* Assumes rq->lock is held */ +static void rq_offline_rt(struct rq *rq) +{ +	if (rq->rt.overloaded) +		rt_clear_overload(rq); + +	__disable_runtime(rq); + +	cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID); +} + +/* + * When switch from the rt queue, we bring ourselves to a position + * that we might want to pull RT tasks from other runqueues. + */ +static void switched_from_rt(struct rq *rq, struct task_struct *p) +{ +	/* +	 * If there are other RT tasks then we will reschedule +	 * and the scheduling of the other RT tasks will handle +	 * the balancing. But if we are the last RT task +	 * we may need to handle the pulling of RT tasks +	 * now. +	 */ +	if (p->on_rq && !rq->rt.rt_nr_running) +		pull_rt_task(rq); +} + +void init_sched_rt_class(void) +{ +	unsigned int i; + +	for_each_possible_cpu(i) { +		zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i), +					GFP_KERNEL, cpu_to_node(i)); +	} +} +#endif /* CONFIG_SMP */ + +/* + * When switching a task to RT, we may overload the runqueue + * with RT tasks. In this case we try to push them off to + * other runqueues. + */ +static void switched_to_rt(struct rq *rq, struct task_struct *p) +{ +	int check_resched = 1; + +	/* +	 * If we are already running, then there's nothing +	 * that needs to be done. But if we are not running +	 * we may need to preempt the current running task. +	 * If that current running task is also an RT task +	 * then see if we can move to another run queue. +	 */ +	if (p->on_rq && rq->curr != p) { +#ifdef CONFIG_SMP +		if (rq->rt.overloaded && push_rt_task(rq) && +		    /* Don't resched if we changed runqueues */ +		    rq != task_rq(p)) +			check_resched = 0; +#endif /* CONFIG_SMP */ +		if (check_resched && p->prio < rq->curr->prio) +			resched_task(rq->curr); +	} +} + +/* + * Priority of the task has changed. This may cause + * us to initiate a push or pull. + */ +static void +prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio) +{ +	if (!p->on_rq) +		return; + +	if (rq->curr == p) { +#ifdef CONFIG_SMP +		/* +		 * If our priority decreases while running, we +		 * may need to pull tasks to this runqueue. +		 */ +		if (oldprio < p->prio) +			pull_rt_task(rq); +		/* +		 * If there's a higher priority task waiting to run +		 * then reschedule. Note, the above pull_rt_task +		 * can release the rq lock and p could migrate. +		 * Only reschedule if p is still on the same runqueue. +		 */ +		if (p->prio > rq->rt.highest_prio.curr && rq->curr == p) +			resched_task(p); +#else +		/* For UP simply resched on drop of prio */ +		if (oldprio < p->prio) +			resched_task(p); +#endif /* CONFIG_SMP */ +	} else { +		/* +		 * This task is not running, but if it is +		 * greater than the current running task +		 * then reschedule. +		 */ +		if (p->prio < rq->curr->prio) +			resched_task(rq->curr); +	} +} + +static void watchdog(struct rq *rq, struct task_struct *p) +{ +	unsigned long soft, hard; + +	/* max may change after cur was read, this will be fixed next tick */ +	soft = task_rlimit(p, RLIMIT_RTTIME); +	hard = task_rlimit_max(p, RLIMIT_RTTIME); + +	if (soft != RLIM_INFINITY) { +		unsigned long next; + +		p->rt.timeout++; +		next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ); +		if (p->rt.timeout > next) +			p->cputime_expires.sched_exp = p->se.sum_exec_runtime; +	} +} + +static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued) +{ +	update_curr_rt(rq); + +	watchdog(rq, p); + +	/* +	 * RR tasks need a special form of timeslice management. +	 * FIFO tasks have no timeslices. +	 */ +	if (p->policy != SCHED_RR) +		return; + +	if (--p->rt.time_slice) +		return; + +	p->rt.time_slice = DEF_TIMESLICE; + +	/* +	 * Requeue to the end of queue if we are not the only element +	 * on the queue: +	 */ +	if (p->rt.run_list.prev != p->rt.run_list.next) { +		requeue_task_rt(rq, p, 0); +		set_tsk_need_resched(p); +	} +} + +static void set_curr_task_rt(struct rq *rq) +{ +	struct task_struct *p = rq->curr; + +	p->se.exec_start = rq->clock_task; + +	/* The running task is never eligible for pushing */ +	dequeue_pushable_task(rq, p); +} + +static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task) +{ +	/* +	 * Time slice is 0 for SCHED_FIFO tasks +	 */ +	if (task->policy == SCHED_RR) +		return DEF_TIMESLICE; +	else +		return 0; +} + +const struct sched_class rt_sched_class = { +	.next			= &fair_sched_class, +	.enqueue_task		= enqueue_task_rt, +	.dequeue_task		= dequeue_task_rt, +	.yield_task		= yield_task_rt, + +	.check_preempt_curr	= check_preempt_curr_rt, + +	.pick_next_task		= pick_next_task_rt, +	.put_prev_task		= put_prev_task_rt, + +#ifdef CONFIG_SMP +	.select_task_rq		= select_task_rq_rt, + +	.set_cpus_allowed       = set_cpus_allowed_rt, +	.rq_online              = rq_online_rt, +	.rq_offline             = rq_offline_rt, +	.pre_schedule		= pre_schedule_rt, +	.post_schedule		= post_schedule_rt, +	.task_woken		= task_woken_rt, +	.switched_from		= switched_from_rt, +#endif + +	.set_curr_task          = set_curr_task_rt, +	.task_tick		= task_tick_rt, + +	.get_rr_interval	= get_rr_interval_rt, + +	.prio_changed		= prio_changed_rt, +	.switched_to		= switched_to_rt, +}; + +#ifdef CONFIG_SCHED_DEBUG +extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); + +void print_rt_stats(struct seq_file *m, int cpu) +{ +	rt_rq_iter_t iter; +	struct rt_rq *rt_rq; + +	rcu_read_lock(); +	for_each_rt_rq(rt_rq, iter, cpu_rq(cpu)) +		print_rt_rq(m, cpu, rt_rq); +	rcu_read_unlock(); +} +#endif /* CONFIG_SCHED_DEBUG */  |