diff options
Diffstat (limited to 'kernel/sched/fair.c')
| -rw-r--r-- | kernel/sched/fair.c | 5592 | 
1 files changed, 5592 insertions, 0 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c new file mode 100644 index 00000000000..8e42de9105f --- /dev/null +++ b/kernel/sched/fair.c @@ -0,0 +1,5592 @@ +/* + * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH) + * + *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> + * + *  Interactivity improvements by Mike Galbraith + *  (C) 2007 Mike Galbraith <efault@gmx.de> + * + *  Various enhancements by Dmitry Adamushko. + *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com> + * + *  Group scheduling enhancements by Srivatsa Vaddagiri + *  Copyright IBM Corporation, 2007 + *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com> + * + *  Scaled math optimizations by Thomas Gleixner + *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de> + * + *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra + *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> + */ + +#include <linux/latencytop.h> +#include <linux/sched.h> +#include <linux/cpumask.h> +#include <linux/slab.h> +#include <linux/profile.h> +#include <linux/interrupt.h> + +#include <trace/events/sched.h> + +#include "sched.h" + +/* + * Targeted preemption latency for CPU-bound tasks: + * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds) + * + * NOTE: this latency value is not the same as the concept of + * 'timeslice length' - timeslices in CFS are of variable length + * and have no persistent notion like in traditional, time-slice + * based scheduling concepts. + * + * (to see the precise effective timeslice length of your workload, + *  run vmstat and monitor the context-switches (cs) field) + */ +unsigned int sysctl_sched_latency = 6000000ULL; +unsigned int normalized_sysctl_sched_latency = 6000000ULL; + +/* + * The initial- and re-scaling of tunables is configurable + * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus)) + * + * Options are: + * SCHED_TUNABLESCALING_NONE - unscaled, always *1 + * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus) + * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus + */ +enum sched_tunable_scaling sysctl_sched_tunable_scaling +	= SCHED_TUNABLESCALING_LOG; + +/* + * Minimal preemption granularity for CPU-bound tasks: + * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds) + */ +unsigned int sysctl_sched_min_granularity = 750000ULL; +unsigned int normalized_sysctl_sched_min_granularity = 750000ULL; + +/* + * is kept at sysctl_sched_latency / sysctl_sched_min_granularity + */ +static unsigned int sched_nr_latency = 8; + +/* + * After fork, child runs first. If set to 0 (default) then + * parent will (try to) run first. + */ +unsigned int sysctl_sched_child_runs_first __read_mostly; + +/* + * SCHED_OTHER wake-up granularity. + * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds) + * + * This option delays the preemption effects of decoupled workloads + * and reduces their over-scheduling. Synchronous workloads will still + * have immediate wakeup/sleep latencies. + */ +unsigned int sysctl_sched_wakeup_granularity = 1000000UL; +unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL; + +const_debug unsigned int sysctl_sched_migration_cost = 500000UL; + +/* + * The exponential sliding  window over which load is averaged for shares + * distribution. + * (default: 10msec) + */ +unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL; + +#ifdef CONFIG_CFS_BANDWIDTH +/* + * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool + * each time a cfs_rq requests quota. + * + * Note: in the case that the slice exceeds the runtime remaining (either due + * to consumption or the quota being specified to be smaller than the slice) + * we will always only issue the remaining available time. + * + * default: 5 msec, units: microseconds +  */ +unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL; +#endif + +/* + * Increase the granularity value when there are more CPUs, + * because with more CPUs the 'effective latency' as visible + * to users decreases. But the relationship is not linear, + * so pick a second-best guess by going with the log2 of the + * number of CPUs. + * + * This idea comes from the SD scheduler of Con Kolivas: + */ +static int get_update_sysctl_factor(void) +{ +	unsigned int cpus = min_t(int, num_online_cpus(), 8); +	unsigned int factor; + +	switch (sysctl_sched_tunable_scaling) { +	case SCHED_TUNABLESCALING_NONE: +		factor = 1; +		break; +	case SCHED_TUNABLESCALING_LINEAR: +		factor = cpus; +		break; +	case SCHED_TUNABLESCALING_LOG: +	default: +		factor = 1 + ilog2(cpus); +		break; +	} + +	return factor; +} + +static void update_sysctl(void) +{ +	unsigned int factor = get_update_sysctl_factor(); + +#define SET_SYSCTL(name) \ +	(sysctl_##name = (factor) * normalized_sysctl_##name) +	SET_SYSCTL(sched_min_granularity); +	SET_SYSCTL(sched_latency); +	SET_SYSCTL(sched_wakeup_granularity); +#undef SET_SYSCTL +} + +void sched_init_granularity(void) +{ +	update_sysctl(); +} + +#if BITS_PER_LONG == 32 +# define WMULT_CONST	(~0UL) +#else +# define WMULT_CONST	(1UL << 32) +#endif + +#define WMULT_SHIFT	32 + +/* + * Shift right and round: + */ +#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) + +/* + * delta *= weight / lw + */ +static unsigned long +calc_delta_mine(unsigned long delta_exec, unsigned long weight, +		struct load_weight *lw) +{ +	u64 tmp; + +	/* +	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched +	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than +	 * 2^SCHED_LOAD_RESOLUTION. +	 */ +	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION))) +		tmp = (u64)delta_exec * scale_load_down(weight); +	else +		tmp = (u64)delta_exec; + +	if (!lw->inv_weight) { +		unsigned long w = scale_load_down(lw->weight); + +		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST)) +			lw->inv_weight = 1; +		else if (unlikely(!w)) +			lw->inv_weight = WMULT_CONST; +		else +			lw->inv_weight = WMULT_CONST / w; +	} + +	/* +	 * Check whether we'd overflow the 64-bit multiplication: +	 */ +	if (unlikely(tmp > WMULT_CONST)) +		tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, +			WMULT_SHIFT/2); +	else +		tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); + +	return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); +} + + +const struct sched_class fair_sched_class; + +/************************************************************** + * CFS operations on generic schedulable entities: + */ + +#ifdef CONFIG_FAIR_GROUP_SCHED + +/* cpu runqueue to which this cfs_rq is attached */ +static inline struct rq *rq_of(struct cfs_rq *cfs_rq) +{ +	return cfs_rq->rq; +} + +/* An entity is a task if it doesn't "own" a runqueue */ +#define entity_is_task(se)	(!se->my_q) + +static inline struct task_struct *task_of(struct sched_entity *se) +{ +#ifdef CONFIG_SCHED_DEBUG +	WARN_ON_ONCE(!entity_is_task(se)); +#endif +	return container_of(se, struct task_struct, se); +} + +/* Walk up scheduling entities hierarchy */ +#define for_each_sched_entity(se) \ +		for (; se; se = se->parent) + +static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +{ +	return p->se.cfs_rq; +} + +/* runqueue on which this entity is (to be) queued */ +static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) +{ +	return se->cfs_rq; +} + +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) +{ +	return grp->my_q; +} + +static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ +	if (!cfs_rq->on_list) { +		/* +		 * Ensure we either appear before our parent (if already +		 * enqueued) or force our parent to appear after us when it is +		 * enqueued.  The fact that we always enqueue bottom-up +		 * reduces this to two cases. +		 */ +		if (cfs_rq->tg->parent && +		    cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) { +			list_add_rcu(&cfs_rq->leaf_cfs_rq_list, +				&rq_of(cfs_rq)->leaf_cfs_rq_list); +		} else { +			list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list, +				&rq_of(cfs_rq)->leaf_cfs_rq_list); +		} + +		cfs_rq->on_list = 1; +	} +} + +static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ +	if (cfs_rq->on_list) { +		list_del_rcu(&cfs_rq->leaf_cfs_rq_list); +		cfs_rq->on_list = 0; +	} +} + +/* Iterate thr' all leaf cfs_rq's on a runqueue */ +#define for_each_leaf_cfs_rq(rq, cfs_rq) \ +	list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list) + +/* Do the two (enqueued) entities belong to the same group ? */ +static inline int +is_same_group(struct sched_entity *se, struct sched_entity *pse) +{ +	if (se->cfs_rq == pse->cfs_rq) +		return 1; + +	return 0; +} + +static inline struct sched_entity *parent_entity(struct sched_entity *se) +{ +	return se->parent; +} + +/* return depth at which a sched entity is present in the hierarchy */ +static inline int depth_se(struct sched_entity *se) +{ +	int depth = 0; + +	for_each_sched_entity(se) +		depth++; + +	return depth; +} + +static void +find_matching_se(struct sched_entity **se, struct sched_entity **pse) +{ +	int se_depth, pse_depth; + +	/* +	 * preemption test can be made between sibling entities who are in the +	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of +	 * both tasks until we find their ancestors who are siblings of common +	 * parent. +	 */ + +	/* First walk up until both entities are at same depth */ +	se_depth = depth_se(*se); +	pse_depth = depth_se(*pse); + +	while (se_depth > pse_depth) { +		se_depth--; +		*se = parent_entity(*se); +	} + +	while (pse_depth > se_depth) { +		pse_depth--; +		*pse = parent_entity(*pse); +	} + +	while (!is_same_group(*se, *pse)) { +		*se = parent_entity(*se); +		*pse = parent_entity(*pse); +	} +} + +#else	/* !CONFIG_FAIR_GROUP_SCHED */ + +static inline struct task_struct *task_of(struct sched_entity *se) +{ +	return container_of(se, struct task_struct, se); +} + +static inline struct rq *rq_of(struct cfs_rq *cfs_rq) +{ +	return container_of(cfs_rq, struct rq, cfs); +} + +#define entity_is_task(se)	1 + +#define for_each_sched_entity(se) \ +		for (; se; se = NULL) + +static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) +{ +	return &task_rq(p)->cfs; +} + +static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se) +{ +	struct task_struct *p = task_of(se); +	struct rq *rq = task_rq(p); + +	return &rq->cfs; +} + +/* runqueue "owned" by this group */ +static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) +{ +	return NULL; +} + +static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ +} + +static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq) +{ +} + +#define for_each_leaf_cfs_rq(rq, cfs_rq) \ +		for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL) + +static inline int +is_same_group(struct sched_entity *se, struct sched_entity *pse) +{ +	return 1; +} + +static inline struct sched_entity *parent_entity(struct sched_entity *se) +{ +	return NULL; +} + +static inline void +find_matching_se(struct sched_entity **se, struct sched_entity **pse) +{ +} + +#endif	/* CONFIG_FAIR_GROUP_SCHED */ + +static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, +				   unsigned long delta_exec); + +/************************************************************** + * Scheduling class tree data structure manipulation methods: + */ + +static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime) +{ +	s64 delta = (s64)(vruntime - min_vruntime); +	if (delta > 0) +		min_vruntime = vruntime; + +	return min_vruntime; +} + +static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime) +{ +	s64 delta = (s64)(vruntime - min_vruntime); +	if (delta < 0) +		min_vruntime = vruntime; + +	return min_vruntime; +} + +static inline int entity_before(struct sched_entity *a, +				struct sched_entity *b) +{ +	return (s64)(a->vruntime - b->vruntime) < 0; +} + +static void update_min_vruntime(struct cfs_rq *cfs_rq) +{ +	u64 vruntime = cfs_rq->min_vruntime; + +	if (cfs_rq->curr) +		vruntime = cfs_rq->curr->vruntime; + +	if (cfs_rq->rb_leftmost) { +		struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost, +						   struct sched_entity, +						   run_node); + +		if (!cfs_rq->curr) +			vruntime = se->vruntime; +		else +			vruntime = min_vruntime(vruntime, se->vruntime); +	} + +	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime); +#ifndef CONFIG_64BIT +	smp_wmb(); +	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; +#endif +} + +/* + * Enqueue an entity into the rb-tree: + */ +static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	struct rb_node **link = &cfs_rq->tasks_timeline.rb_node; +	struct rb_node *parent = NULL; +	struct sched_entity *entry; +	int leftmost = 1; + +	/* +	 * Find the right place in the rbtree: +	 */ +	while (*link) { +		parent = *link; +		entry = rb_entry(parent, struct sched_entity, run_node); +		/* +		 * We dont care about collisions. Nodes with +		 * the same key stay together. +		 */ +		if (entity_before(se, entry)) { +			link = &parent->rb_left; +		} else { +			link = &parent->rb_right; +			leftmost = 0; +		} +	} + +	/* +	 * Maintain a cache of leftmost tree entries (it is frequently +	 * used): +	 */ +	if (leftmost) +		cfs_rq->rb_leftmost = &se->run_node; + +	rb_link_node(&se->run_node, parent, link); +	rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline); +} + +static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	if (cfs_rq->rb_leftmost == &se->run_node) { +		struct rb_node *next_node; + +		next_node = rb_next(&se->run_node); +		cfs_rq->rb_leftmost = next_node; +	} + +	rb_erase(&se->run_node, &cfs_rq->tasks_timeline); +} + +struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) +{ +	struct rb_node *left = cfs_rq->rb_leftmost; + +	if (!left) +		return NULL; + +	return rb_entry(left, struct sched_entity, run_node); +} + +static struct sched_entity *__pick_next_entity(struct sched_entity *se) +{ +	struct rb_node *next = rb_next(&se->run_node); + +	if (!next) +		return NULL; + +	return rb_entry(next, struct sched_entity, run_node); +} + +#ifdef CONFIG_SCHED_DEBUG +struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq) +{ +	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline); + +	if (!last) +		return NULL; + +	return rb_entry(last, struct sched_entity, run_node); +} + +/************************************************************** + * Scheduling class statistics methods: + */ + +int sched_proc_update_handler(struct ctl_table *table, int write, +		void __user *buffer, size_t *lenp, +		loff_t *ppos) +{ +	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); +	int factor = get_update_sysctl_factor(); + +	if (ret || !write) +		return ret; + +	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency, +					sysctl_sched_min_granularity); + +#define WRT_SYSCTL(name) \ +	(normalized_sysctl_##name = sysctl_##name / (factor)) +	WRT_SYSCTL(sched_min_granularity); +	WRT_SYSCTL(sched_latency); +	WRT_SYSCTL(sched_wakeup_granularity); +#undef WRT_SYSCTL + +	return 0; +} +#endif + +/* + * delta /= w + */ +static inline unsigned long +calc_delta_fair(unsigned long delta, struct sched_entity *se) +{ +	if (unlikely(se->load.weight != NICE_0_LOAD)) +		delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load); + +	return delta; +} + +/* + * The idea is to set a period in which each task runs once. + * + * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch + * this period because otherwise the slices get too small. + * + * p = (nr <= nl) ? l : l*nr/nl + */ +static u64 __sched_period(unsigned long nr_running) +{ +	u64 period = sysctl_sched_latency; +	unsigned long nr_latency = sched_nr_latency; + +	if (unlikely(nr_running > nr_latency)) { +		period = sysctl_sched_min_granularity; +		period *= nr_running; +	} + +	return period; +} + +/* + * We calculate the wall-time slice from the period by taking a part + * proportional to the weight. + * + * s = p*P[w/rw] + */ +static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq); + +	for_each_sched_entity(se) { +		struct load_weight *load; +		struct load_weight lw; + +		cfs_rq = cfs_rq_of(se); +		load = &cfs_rq->load; + +		if (unlikely(!se->on_rq)) { +			lw = cfs_rq->load; + +			update_load_add(&lw, se->load.weight); +			load = &lw; +		} +		slice = calc_delta_mine(slice, se->load.weight, load); +	} +	return slice; +} + +/* + * We calculate the vruntime slice of a to be inserted task + * + * vs = s/w + */ +static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	return calc_delta_fair(sched_slice(cfs_rq, se), se); +} + +static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update); +static void update_cfs_shares(struct cfs_rq *cfs_rq); + +/* + * Update the current task's runtime statistics. Skip current tasks that + * are not in our scheduling class. + */ +static inline void +__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr, +	      unsigned long delta_exec) +{ +	unsigned long delta_exec_weighted; + +	schedstat_set(curr->statistics.exec_max, +		      max((u64)delta_exec, curr->statistics.exec_max)); + +	curr->sum_exec_runtime += delta_exec; +	schedstat_add(cfs_rq, exec_clock, delta_exec); +	delta_exec_weighted = calc_delta_fair(delta_exec, curr); + +	curr->vruntime += delta_exec_weighted; +	update_min_vruntime(cfs_rq); + +#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED +	cfs_rq->load_unacc_exec_time += delta_exec; +#endif +} + +static void update_curr(struct cfs_rq *cfs_rq) +{ +	struct sched_entity *curr = cfs_rq->curr; +	u64 now = rq_of(cfs_rq)->clock_task; +	unsigned long delta_exec; + +	if (unlikely(!curr)) +		return; + +	/* +	 * Get the amount of time the current task was running +	 * since the last time we changed load (this cannot +	 * overflow on 32 bits): +	 */ +	delta_exec = (unsigned long)(now - curr->exec_start); +	if (!delta_exec) +		return; + +	__update_curr(cfs_rq, curr, delta_exec); +	curr->exec_start = now; + +	if (entity_is_task(curr)) { +		struct task_struct *curtask = task_of(curr); + +		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime); +		cpuacct_charge(curtask, delta_exec); +		account_group_exec_runtime(curtask, delta_exec); +	} + +	account_cfs_rq_runtime(cfs_rq, delta_exec); +} + +static inline void +update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock); +} + +/* + * Task is being enqueued - update stats: + */ +static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	/* +	 * Are we enqueueing a waiting task? (for current tasks +	 * a dequeue/enqueue event is a NOP) +	 */ +	if (se != cfs_rq->curr) +		update_stats_wait_start(cfs_rq, se); +} + +static void +update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max, +			rq_of(cfs_rq)->clock - se->statistics.wait_start)); +	schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1); +	schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum + +			rq_of(cfs_rq)->clock - se->statistics.wait_start); +#ifdef CONFIG_SCHEDSTATS +	if (entity_is_task(se)) { +		trace_sched_stat_wait(task_of(se), +			rq_of(cfs_rq)->clock - se->statistics.wait_start); +	} +#endif +	schedstat_set(se->statistics.wait_start, 0); +} + +static inline void +update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	/* +	 * Mark the end of the wait period if dequeueing a +	 * waiting task: +	 */ +	if (se != cfs_rq->curr) +		update_stats_wait_end(cfs_rq, se); +} + +/* + * We are picking a new current task - update its stats: + */ +static inline void +update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	/* +	 * We are starting a new run period: +	 */ +	se->exec_start = rq_of(cfs_rq)->clock_task; +} + +/************************************************** + * Scheduling class queueing methods: + */ + +#if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED +static void +add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) +{ +	cfs_rq->task_weight += weight; +} +#else +static inline void +add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight) +{ +} +#endif + +static void +account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	update_load_add(&cfs_rq->load, se->load.weight); +	if (!parent_entity(se)) +		update_load_add(&rq_of(cfs_rq)->load, se->load.weight); +	if (entity_is_task(se)) { +		add_cfs_task_weight(cfs_rq, se->load.weight); +		list_add(&se->group_node, &cfs_rq->tasks); +	} +	cfs_rq->nr_running++; +} + +static void +account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	update_load_sub(&cfs_rq->load, se->load.weight); +	if (!parent_entity(se)) +		update_load_sub(&rq_of(cfs_rq)->load, se->load.weight); +	if (entity_is_task(se)) { +		add_cfs_task_weight(cfs_rq, -se->load.weight); +		list_del_init(&se->group_node); +	} +	cfs_rq->nr_running--; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +/* we need this in update_cfs_load and load-balance functions below */ +static inline int throttled_hierarchy(struct cfs_rq *cfs_rq); +# ifdef CONFIG_SMP +static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq, +					    int global_update) +{ +	struct task_group *tg = cfs_rq->tg; +	long load_avg; + +	load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1); +	load_avg -= cfs_rq->load_contribution; + +	if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) { +		atomic_add(load_avg, &tg->load_weight); +		cfs_rq->load_contribution += load_avg; +	} +} + +static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) +{ +	u64 period = sysctl_sched_shares_window; +	u64 now, delta; +	unsigned long load = cfs_rq->load.weight; + +	if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq)) +		return; + +	now = rq_of(cfs_rq)->clock_task; +	delta = now - cfs_rq->load_stamp; + +	/* truncate load history at 4 idle periods */ +	if (cfs_rq->load_stamp > cfs_rq->load_last && +	    now - cfs_rq->load_last > 4 * period) { +		cfs_rq->load_period = 0; +		cfs_rq->load_avg = 0; +		delta = period - 1; +	} + +	cfs_rq->load_stamp = now; +	cfs_rq->load_unacc_exec_time = 0; +	cfs_rq->load_period += delta; +	if (load) { +		cfs_rq->load_last = now; +		cfs_rq->load_avg += delta * load; +	} + +	/* consider updating load contribution on each fold or truncate */ +	if (global_update || cfs_rq->load_period > period +	    || !cfs_rq->load_period) +		update_cfs_rq_load_contribution(cfs_rq, global_update); + +	while (cfs_rq->load_period > period) { +		/* +		 * Inline assembly required to prevent the compiler +		 * optimising this loop into a divmod call. +		 * See __iter_div_u64_rem() for another example of this. +		 */ +		asm("" : "+rm" (cfs_rq->load_period)); +		cfs_rq->load_period /= 2; +		cfs_rq->load_avg /= 2; +	} + +	if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg) +		list_del_leaf_cfs_rq(cfs_rq); +} + +static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq) +{ +	long tg_weight; + +	/* +	 * Use this CPU's actual weight instead of the last load_contribution +	 * to gain a more accurate current total weight. See +	 * update_cfs_rq_load_contribution(). +	 */ +	tg_weight = atomic_read(&tg->load_weight); +	tg_weight -= cfs_rq->load_contribution; +	tg_weight += cfs_rq->load.weight; + +	return tg_weight; +} + +static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) +{ +	long tg_weight, load, shares; + +	tg_weight = calc_tg_weight(tg, cfs_rq); +	load = cfs_rq->load.weight; + +	shares = (tg->shares * load); +	if (tg_weight) +		shares /= tg_weight; + +	if (shares < MIN_SHARES) +		shares = MIN_SHARES; +	if (shares > tg->shares) +		shares = tg->shares; + +	return shares; +} + +static void update_entity_shares_tick(struct cfs_rq *cfs_rq) +{ +	if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) { +		update_cfs_load(cfs_rq, 0); +		update_cfs_shares(cfs_rq); +	} +} +# else /* CONFIG_SMP */ +static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) +{ +} + +static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg) +{ +	return tg->shares; +} + +static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) +{ +} +# endif /* CONFIG_SMP */ +static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, +			    unsigned long weight) +{ +	if (se->on_rq) { +		/* commit outstanding execution time */ +		if (cfs_rq->curr == se) +			update_curr(cfs_rq); +		account_entity_dequeue(cfs_rq, se); +	} + +	update_load_set(&se->load, weight); + +	if (se->on_rq) +		account_entity_enqueue(cfs_rq, se); +} + +static void update_cfs_shares(struct cfs_rq *cfs_rq) +{ +	struct task_group *tg; +	struct sched_entity *se; +	long shares; + +	tg = cfs_rq->tg; +	se = tg->se[cpu_of(rq_of(cfs_rq))]; +	if (!se || throttled_hierarchy(cfs_rq)) +		return; +#ifndef CONFIG_SMP +	if (likely(se->load.weight == tg->shares)) +		return; +#endif +	shares = calc_cfs_shares(cfs_rq, tg); + +	reweight_entity(cfs_rq_of(se), se, shares); +} +#else /* CONFIG_FAIR_GROUP_SCHED */ +static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update) +{ +} + +static inline void update_cfs_shares(struct cfs_rq *cfs_rq) +{ +} + +static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq) +{ +} +#endif /* CONFIG_FAIR_GROUP_SCHED */ + +static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +#ifdef CONFIG_SCHEDSTATS +	struct task_struct *tsk = NULL; + +	if (entity_is_task(se)) +		tsk = task_of(se); + +	if (se->statistics.sleep_start) { +		u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start; + +		if ((s64)delta < 0) +			delta = 0; + +		if (unlikely(delta > se->statistics.sleep_max)) +			se->statistics.sleep_max = delta; + +		se->statistics.sum_sleep_runtime += delta; + +		if (tsk) { +			account_scheduler_latency(tsk, delta >> 10, 1); +			trace_sched_stat_sleep(tsk, delta); +		} +	} +	if (se->statistics.block_start) { +		u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start; + +		if ((s64)delta < 0) +			delta = 0; + +		if (unlikely(delta > se->statistics.block_max)) +			se->statistics.block_max = delta; + +		se->statistics.sum_sleep_runtime += delta; + +		if (tsk) { +			if (tsk->in_iowait) { +				se->statistics.iowait_sum += delta; +				se->statistics.iowait_count++; +				trace_sched_stat_iowait(tsk, delta); +			} + +			trace_sched_stat_blocked(tsk, delta); + +			/* +			 * Blocking time is in units of nanosecs, so shift by +			 * 20 to get a milliseconds-range estimation of the +			 * amount of time that the task spent sleeping: +			 */ +			if (unlikely(prof_on == SLEEP_PROFILING)) { +				profile_hits(SLEEP_PROFILING, +						(void *)get_wchan(tsk), +						delta >> 20); +			} +			account_scheduler_latency(tsk, delta >> 10, 0); +		} +	} +#endif +} + +static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +#ifdef CONFIG_SCHED_DEBUG +	s64 d = se->vruntime - cfs_rq->min_vruntime; + +	if (d < 0) +		d = -d; + +	if (d > 3*sysctl_sched_latency) +		schedstat_inc(cfs_rq, nr_spread_over); +#endif +} + +static void +place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial) +{ +	u64 vruntime = cfs_rq->min_vruntime; + +	/* +	 * The 'current' period is already promised to the current tasks, +	 * however the extra weight of the new task will slow them down a +	 * little, place the new task so that it fits in the slot that +	 * stays open at the end. +	 */ +	if (initial && sched_feat(START_DEBIT)) +		vruntime += sched_vslice(cfs_rq, se); + +	/* sleeps up to a single latency don't count. */ +	if (!initial) { +		unsigned long thresh = sysctl_sched_latency; + +		/* +		 * Halve their sleep time's effect, to allow +		 * for a gentler effect of sleepers: +		 */ +		if (sched_feat(GENTLE_FAIR_SLEEPERS)) +			thresh >>= 1; + +		vruntime -= thresh; +	} + +	/* ensure we never gain time by being placed backwards. */ +	vruntime = max_vruntime(se->vruntime, vruntime); + +	se->vruntime = vruntime; +} + +static void check_enqueue_throttle(struct cfs_rq *cfs_rq); + +static void +enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) +{ +	/* +	 * Update the normalized vruntime before updating min_vruntime +	 * through callig update_curr(). +	 */ +	if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING)) +		se->vruntime += cfs_rq->min_vruntime; + +	/* +	 * Update run-time statistics of the 'current'. +	 */ +	update_curr(cfs_rq); +	update_cfs_load(cfs_rq, 0); +	account_entity_enqueue(cfs_rq, se); +	update_cfs_shares(cfs_rq); + +	if (flags & ENQUEUE_WAKEUP) { +		place_entity(cfs_rq, se, 0); +		enqueue_sleeper(cfs_rq, se); +	} + +	update_stats_enqueue(cfs_rq, se); +	check_spread(cfs_rq, se); +	if (se != cfs_rq->curr) +		__enqueue_entity(cfs_rq, se); +	se->on_rq = 1; + +	if (cfs_rq->nr_running == 1) { +		list_add_leaf_cfs_rq(cfs_rq); +		check_enqueue_throttle(cfs_rq); +	} +} + +static void __clear_buddies_last(struct sched_entity *se) +{ +	for_each_sched_entity(se) { +		struct cfs_rq *cfs_rq = cfs_rq_of(se); +		if (cfs_rq->last == se) +			cfs_rq->last = NULL; +		else +			break; +	} +} + +static void __clear_buddies_next(struct sched_entity *se) +{ +	for_each_sched_entity(se) { +		struct cfs_rq *cfs_rq = cfs_rq_of(se); +		if (cfs_rq->next == se) +			cfs_rq->next = NULL; +		else +			break; +	} +} + +static void __clear_buddies_skip(struct sched_entity *se) +{ +	for_each_sched_entity(se) { +		struct cfs_rq *cfs_rq = cfs_rq_of(se); +		if (cfs_rq->skip == se) +			cfs_rq->skip = NULL; +		else +			break; +	} +} + +static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	if (cfs_rq->last == se) +		__clear_buddies_last(se); + +	if (cfs_rq->next == se) +		__clear_buddies_next(se); + +	if (cfs_rq->skip == se) +		__clear_buddies_skip(se); +} + +static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq); + +static void +dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) +{ +	/* +	 * Update run-time statistics of the 'current'. +	 */ +	update_curr(cfs_rq); + +	update_stats_dequeue(cfs_rq, se); +	if (flags & DEQUEUE_SLEEP) { +#ifdef CONFIG_SCHEDSTATS +		if (entity_is_task(se)) { +			struct task_struct *tsk = task_of(se); + +			if (tsk->state & TASK_INTERRUPTIBLE) +				se->statistics.sleep_start = rq_of(cfs_rq)->clock; +			if (tsk->state & TASK_UNINTERRUPTIBLE) +				se->statistics.block_start = rq_of(cfs_rq)->clock; +		} +#endif +	} + +	clear_buddies(cfs_rq, se); + +	if (se != cfs_rq->curr) +		__dequeue_entity(cfs_rq, se); +	se->on_rq = 0; +	update_cfs_load(cfs_rq, 0); +	account_entity_dequeue(cfs_rq, se); + +	/* +	 * Normalize the entity after updating the min_vruntime because the +	 * update can refer to the ->curr item and we need to reflect this +	 * movement in our normalized position. +	 */ +	if (!(flags & DEQUEUE_SLEEP)) +		se->vruntime -= cfs_rq->min_vruntime; + +	/* return excess runtime on last dequeue */ +	return_cfs_rq_runtime(cfs_rq); + +	update_min_vruntime(cfs_rq); +	update_cfs_shares(cfs_rq); +} + +/* + * Preempt the current task with a newly woken task if needed: + */ +static void +check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr) +{ +	unsigned long ideal_runtime, delta_exec; +	struct sched_entity *se; +	s64 delta; + +	ideal_runtime = sched_slice(cfs_rq, curr); +	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime; +	if (delta_exec > ideal_runtime) { +		resched_task(rq_of(cfs_rq)->curr); +		/* +		 * The current task ran long enough, ensure it doesn't get +		 * re-elected due to buddy favours. +		 */ +		clear_buddies(cfs_rq, curr); +		return; +	} + +	/* +	 * Ensure that a task that missed wakeup preemption by a +	 * narrow margin doesn't have to wait for a full slice. +	 * This also mitigates buddy induced latencies under load. +	 */ +	if (delta_exec < sysctl_sched_min_granularity) +		return; + +	se = __pick_first_entity(cfs_rq); +	delta = curr->vruntime - se->vruntime; + +	if (delta < 0) +		return; + +	if (delta > ideal_runtime) +		resched_task(rq_of(cfs_rq)->curr); +} + +static void +set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se) +{ +	/* 'current' is not kept within the tree. */ +	if (se->on_rq) { +		/* +		 * Any task has to be enqueued before it get to execute on +		 * a CPU. So account for the time it spent waiting on the +		 * runqueue. +		 */ +		update_stats_wait_end(cfs_rq, se); +		__dequeue_entity(cfs_rq, se); +	} + +	update_stats_curr_start(cfs_rq, se); +	cfs_rq->curr = se; +#ifdef CONFIG_SCHEDSTATS +	/* +	 * Track our maximum slice length, if the CPU's load is at +	 * least twice that of our own weight (i.e. dont track it +	 * when there are only lesser-weight tasks around): +	 */ +	if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) { +		se->statistics.slice_max = max(se->statistics.slice_max, +			se->sum_exec_runtime - se->prev_sum_exec_runtime); +	} +#endif +	se->prev_sum_exec_runtime = se->sum_exec_runtime; +} + +static int +wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se); + +/* + * Pick the next process, keeping these things in mind, in this order: + * 1) keep things fair between processes/task groups + * 2) pick the "next" process, since someone really wants that to run + * 3) pick the "last" process, for cache locality + * 4) do not run the "skip" process, if something else is available + */ +static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq) +{ +	struct sched_entity *se = __pick_first_entity(cfs_rq); +	struct sched_entity *left = se; + +	/* +	 * Avoid running the skip buddy, if running something else can +	 * be done without getting too unfair. +	 */ +	if (cfs_rq->skip == se) { +		struct sched_entity *second = __pick_next_entity(se); +		if (second && wakeup_preempt_entity(second, left) < 1) +			se = second; +	} + +	/* +	 * Prefer last buddy, try to return the CPU to a preempted task. +	 */ +	if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) +		se = cfs_rq->last; + +	/* +	 * Someone really wants this to run. If it's not unfair, run it. +	 */ +	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) +		se = cfs_rq->next; + +	clear_buddies(cfs_rq, se); + +	return se; +} + +static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq); + +static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev) +{ +	/* +	 * If still on the runqueue then deactivate_task() +	 * was not called and update_curr() has to be done: +	 */ +	if (prev->on_rq) +		update_curr(cfs_rq); + +	/* throttle cfs_rqs exceeding runtime */ +	check_cfs_rq_runtime(cfs_rq); + +	check_spread(cfs_rq, prev); +	if (prev->on_rq) { +		update_stats_wait_start(cfs_rq, prev); +		/* Put 'current' back into the tree. */ +		__enqueue_entity(cfs_rq, prev); +	} +	cfs_rq->curr = NULL; +} + +static void +entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued) +{ +	/* +	 * Update run-time statistics of the 'current'. +	 */ +	update_curr(cfs_rq); + +	/* +	 * Update share accounting for long-running entities. +	 */ +	update_entity_shares_tick(cfs_rq); + +#ifdef CONFIG_SCHED_HRTICK +	/* +	 * queued ticks are scheduled to match the slice, so don't bother +	 * validating it and just reschedule. +	 */ +	if (queued) { +		resched_task(rq_of(cfs_rq)->curr); +		return; +	} +	/* +	 * don't let the period tick interfere with the hrtick preemption +	 */ +	if (!sched_feat(DOUBLE_TICK) && +			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer)) +		return; +#endif + +	if (cfs_rq->nr_running > 1) +		check_preempt_tick(cfs_rq, curr); +} + + +/************************************************** + * CFS bandwidth control machinery + */ + +#ifdef CONFIG_CFS_BANDWIDTH + +#ifdef HAVE_JUMP_LABEL +static struct jump_label_key __cfs_bandwidth_used; + +static inline bool cfs_bandwidth_used(void) +{ +	return static_branch(&__cfs_bandwidth_used); +} + +void account_cfs_bandwidth_used(int enabled, int was_enabled) +{ +	/* only need to count groups transitioning between enabled/!enabled */ +	if (enabled && !was_enabled) +		jump_label_inc(&__cfs_bandwidth_used); +	else if (!enabled && was_enabled) +		jump_label_dec(&__cfs_bandwidth_used); +} +#else /* HAVE_JUMP_LABEL */ +static bool cfs_bandwidth_used(void) +{ +	return true; +} + +void account_cfs_bandwidth_used(int enabled, int was_enabled) {} +#endif /* HAVE_JUMP_LABEL */ + +/* + * default period for cfs group bandwidth. + * default: 0.1s, units: nanoseconds + */ +static inline u64 default_cfs_period(void) +{ +	return 100000000ULL; +} + +static inline u64 sched_cfs_bandwidth_slice(void) +{ +	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC; +} + +/* + * Replenish runtime according to assigned quota and update expiration time. + * We use sched_clock_cpu directly instead of rq->clock to avoid adding + * additional synchronization around rq->lock. + * + * requires cfs_b->lock + */ +void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b) +{ +	u64 now; + +	if (cfs_b->quota == RUNTIME_INF) +		return; + +	now = sched_clock_cpu(smp_processor_id()); +	cfs_b->runtime = cfs_b->quota; +	cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period); +} + +static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) +{ +	return &tg->cfs_bandwidth; +} + +/* returns 0 on failure to allocate runtime */ +static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	struct task_group *tg = cfs_rq->tg; +	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg); +	u64 amount = 0, min_amount, expires; + +	/* note: this is a positive sum as runtime_remaining <= 0 */ +	min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining; + +	raw_spin_lock(&cfs_b->lock); +	if (cfs_b->quota == RUNTIME_INF) +		amount = min_amount; +	else { +		/* +		 * If the bandwidth pool has become inactive, then at least one +		 * period must have elapsed since the last consumption. +		 * Refresh the global state and ensure bandwidth timer becomes +		 * active. +		 */ +		if (!cfs_b->timer_active) { +			__refill_cfs_bandwidth_runtime(cfs_b); +			__start_cfs_bandwidth(cfs_b); +		} + +		if (cfs_b->runtime > 0) { +			amount = min(cfs_b->runtime, min_amount); +			cfs_b->runtime -= amount; +			cfs_b->idle = 0; +		} +	} +	expires = cfs_b->runtime_expires; +	raw_spin_unlock(&cfs_b->lock); + +	cfs_rq->runtime_remaining += amount; +	/* +	 * we may have advanced our local expiration to account for allowed +	 * spread between our sched_clock and the one on which runtime was +	 * issued. +	 */ +	if ((s64)(expires - cfs_rq->runtime_expires) > 0) +		cfs_rq->runtime_expires = expires; + +	return cfs_rq->runtime_remaining > 0; +} + +/* + * Note: This depends on the synchronization provided by sched_clock and the + * fact that rq->clock snapshots this value. + */ +static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); +	struct rq *rq = rq_of(cfs_rq); + +	/* if the deadline is ahead of our clock, nothing to do */ +	if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0)) +		return; + +	if (cfs_rq->runtime_remaining < 0) +		return; + +	/* +	 * If the local deadline has passed we have to consider the +	 * possibility that our sched_clock is 'fast' and the global deadline +	 * has not truly expired. +	 * +	 * Fortunately we can check determine whether this the case by checking +	 * whether the global deadline has advanced. +	 */ + +	if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) { +		/* extend local deadline, drift is bounded above by 2 ticks */ +		cfs_rq->runtime_expires += TICK_NSEC; +	} else { +		/* global deadline is ahead, expiration has passed */ +		cfs_rq->runtime_remaining = 0; +	} +} + +static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, +				     unsigned long delta_exec) +{ +	/* dock delta_exec before expiring quota (as it could span periods) */ +	cfs_rq->runtime_remaining -= delta_exec; +	expire_cfs_rq_runtime(cfs_rq); + +	if (likely(cfs_rq->runtime_remaining > 0)) +		return; + +	/* +	 * if we're unable to extend our runtime we resched so that the active +	 * hierarchy can be throttled +	 */ +	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr)) +		resched_task(rq_of(cfs_rq)->curr); +} + +static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, +						   unsigned long delta_exec) +{ +	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled) +		return; + +	__account_cfs_rq_runtime(cfs_rq, delta_exec); +} + +static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) +{ +	return cfs_bandwidth_used() && cfs_rq->throttled; +} + +/* check whether cfs_rq, or any parent, is throttled */ +static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) +{ +	return cfs_bandwidth_used() && cfs_rq->throttle_count; +} + +/* + * Ensure that neither of the group entities corresponding to src_cpu or + * dest_cpu are members of a throttled hierarchy when performing group + * load-balance operations. + */ +static inline int throttled_lb_pair(struct task_group *tg, +				    int src_cpu, int dest_cpu) +{ +	struct cfs_rq *src_cfs_rq, *dest_cfs_rq; + +	src_cfs_rq = tg->cfs_rq[src_cpu]; +	dest_cfs_rq = tg->cfs_rq[dest_cpu]; + +	return throttled_hierarchy(src_cfs_rq) || +	       throttled_hierarchy(dest_cfs_rq); +} + +/* updated child weight may affect parent so we have to do this bottom up */ +static int tg_unthrottle_up(struct task_group *tg, void *data) +{ +	struct rq *rq = data; +	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; + +	cfs_rq->throttle_count--; +#ifdef CONFIG_SMP +	if (!cfs_rq->throttle_count) { +		u64 delta = rq->clock_task - cfs_rq->load_stamp; + +		/* leaving throttled state, advance shares averaging windows */ +		cfs_rq->load_stamp += delta; +		cfs_rq->load_last += delta; + +		/* update entity weight now that we are on_rq again */ +		update_cfs_shares(cfs_rq); +	} +#endif + +	return 0; +} + +static int tg_throttle_down(struct task_group *tg, void *data) +{ +	struct rq *rq = data; +	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)]; + +	/* group is entering throttled state, record last load */ +	if (!cfs_rq->throttle_count) +		update_cfs_load(cfs_rq, 0); +	cfs_rq->throttle_count++; + +	return 0; +} + +static void throttle_cfs_rq(struct cfs_rq *cfs_rq) +{ +	struct rq *rq = rq_of(cfs_rq); +	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); +	struct sched_entity *se; +	long task_delta, dequeue = 1; + +	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; + +	/* account load preceding throttle */ +	rcu_read_lock(); +	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq); +	rcu_read_unlock(); + +	task_delta = cfs_rq->h_nr_running; +	for_each_sched_entity(se) { +		struct cfs_rq *qcfs_rq = cfs_rq_of(se); +		/* throttled entity or throttle-on-deactivate */ +		if (!se->on_rq) +			break; + +		if (dequeue) +			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP); +		qcfs_rq->h_nr_running -= task_delta; + +		if (qcfs_rq->load.weight) +			dequeue = 0; +	} + +	if (!se) +		rq->nr_running -= task_delta; + +	cfs_rq->throttled = 1; +	cfs_rq->throttled_timestamp = rq->clock; +	raw_spin_lock(&cfs_b->lock); +	list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq); +	raw_spin_unlock(&cfs_b->lock); +} + +void unthrottle_cfs_rq(struct cfs_rq *cfs_rq) +{ +	struct rq *rq = rq_of(cfs_rq); +	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); +	struct sched_entity *se; +	int enqueue = 1; +	long task_delta; + +	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))]; + +	cfs_rq->throttled = 0; +	raw_spin_lock(&cfs_b->lock); +	cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp; +	list_del_rcu(&cfs_rq->throttled_list); +	raw_spin_unlock(&cfs_b->lock); +	cfs_rq->throttled_timestamp = 0; + +	update_rq_clock(rq); +	/* update hierarchical throttle state */ +	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq); + +	if (!cfs_rq->load.weight) +		return; + +	task_delta = cfs_rq->h_nr_running; +	for_each_sched_entity(se) { +		if (se->on_rq) +			enqueue = 0; + +		cfs_rq = cfs_rq_of(se); +		if (enqueue) +			enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP); +		cfs_rq->h_nr_running += task_delta; + +		if (cfs_rq_throttled(cfs_rq)) +			break; +	} + +	if (!se) +		rq->nr_running += task_delta; + +	/* determine whether we need to wake up potentially idle cpu */ +	if (rq->curr == rq->idle && rq->cfs.nr_running) +		resched_task(rq->curr); +} + +static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b, +		u64 remaining, u64 expires) +{ +	struct cfs_rq *cfs_rq; +	u64 runtime = remaining; + +	rcu_read_lock(); +	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq, +				throttled_list) { +		struct rq *rq = rq_of(cfs_rq); + +		raw_spin_lock(&rq->lock); +		if (!cfs_rq_throttled(cfs_rq)) +			goto next; + +		runtime = -cfs_rq->runtime_remaining + 1; +		if (runtime > remaining) +			runtime = remaining; +		remaining -= runtime; + +		cfs_rq->runtime_remaining += runtime; +		cfs_rq->runtime_expires = expires; + +		/* we check whether we're throttled above */ +		if (cfs_rq->runtime_remaining > 0) +			unthrottle_cfs_rq(cfs_rq); + +next: +		raw_spin_unlock(&rq->lock); + +		if (!remaining) +			break; +	} +	rcu_read_unlock(); + +	return remaining; +} + +/* + * Responsible for refilling a task_group's bandwidth and unthrottling its + * cfs_rqs as appropriate. If there has been no activity within the last + * period the timer is deactivated until scheduling resumes; cfs_b->idle is + * used to track this state. + */ +static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun) +{ +	u64 runtime, runtime_expires; +	int idle = 1, throttled; + +	raw_spin_lock(&cfs_b->lock); +	/* no need to continue the timer with no bandwidth constraint */ +	if (cfs_b->quota == RUNTIME_INF) +		goto out_unlock; + +	throttled = !list_empty(&cfs_b->throttled_cfs_rq); +	/* idle depends on !throttled (for the case of a large deficit) */ +	idle = cfs_b->idle && !throttled; +	cfs_b->nr_periods += overrun; + +	/* if we're going inactive then everything else can be deferred */ +	if (idle) +		goto out_unlock; + +	__refill_cfs_bandwidth_runtime(cfs_b); + +	if (!throttled) { +		/* mark as potentially idle for the upcoming period */ +		cfs_b->idle = 1; +		goto out_unlock; +	} + +	/* account preceding periods in which throttling occurred */ +	cfs_b->nr_throttled += overrun; + +	/* +	 * There are throttled entities so we must first use the new bandwidth +	 * to unthrottle them before making it generally available.  This +	 * ensures that all existing debts will be paid before a new cfs_rq is +	 * allowed to run. +	 */ +	runtime = cfs_b->runtime; +	runtime_expires = cfs_b->runtime_expires; +	cfs_b->runtime = 0; + +	/* +	 * This check is repeated as we are holding onto the new bandwidth +	 * while we unthrottle.  This can potentially race with an unthrottled +	 * group trying to acquire new bandwidth from the global pool. +	 */ +	while (throttled && runtime > 0) { +		raw_spin_unlock(&cfs_b->lock); +		/* we can't nest cfs_b->lock while distributing bandwidth */ +		runtime = distribute_cfs_runtime(cfs_b, runtime, +						 runtime_expires); +		raw_spin_lock(&cfs_b->lock); + +		throttled = !list_empty(&cfs_b->throttled_cfs_rq); +	} + +	/* return (any) remaining runtime */ +	cfs_b->runtime = runtime; +	/* +	 * While we are ensured activity in the period following an +	 * unthrottle, this also covers the case in which the new bandwidth is +	 * insufficient to cover the existing bandwidth deficit.  (Forcing the +	 * timer to remain active while there are any throttled entities.) +	 */ +	cfs_b->idle = 0; +out_unlock: +	if (idle) +		cfs_b->timer_active = 0; +	raw_spin_unlock(&cfs_b->lock); + +	return idle; +} + +/* a cfs_rq won't donate quota below this amount */ +static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC; +/* minimum remaining period time to redistribute slack quota */ +static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC; +/* how long we wait to gather additional slack before distributing */ +static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC; + +/* are we near the end of the current quota period? */ +static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire) +{ +	struct hrtimer *refresh_timer = &cfs_b->period_timer; +	u64 remaining; + +	/* if the call-back is running a quota refresh is already occurring */ +	if (hrtimer_callback_running(refresh_timer)) +		return 1; + +	/* is a quota refresh about to occur? */ +	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer)); +	if (remaining < min_expire) +		return 1; + +	return 0; +} + +static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b) +{ +	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration; + +	/* if there's a quota refresh soon don't bother with slack */ +	if (runtime_refresh_within(cfs_b, min_left)) +		return; + +	start_bandwidth_timer(&cfs_b->slack_timer, +				ns_to_ktime(cfs_bandwidth_slack_period)); +} + +/* we know any runtime found here is valid as update_curr() precedes return */ +static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); +	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime; + +	if (slack_runtime <= 0) +		return; + +	raw_spin_lock(&cfs_b->lock); +	if (cfs_b->quota != RUNTIME_INF && +	    cfs_rq->runtime_expires == cfs_b->runtime_expires) { +		cfs_b->runtime += slack_runtime; + +		/* we are under rq->lock, defer unthrottling using a timer */ +		if (cfs_b->runtime > sched_cfs_bandwidth_slice() && +		    !list_empty(&cfs_b->throttled_cfs_rq)) +			start_cfs_slack_bandwidth(cfs_b); +	} +	raw_spin_unlock(&cfs_b->lock); + +	/* even if it's not valid for return we don't want to try again */ +	cfs_rq->runtime_remaining -= slack_runtime; +} + +static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	if (!cfs_bandwidth_used()) +		return; + +	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running) +		return; + +	__return_cfs_rq_runtime(cfs_rq); +} + +/* + * This is done with a timer (instead of inline with bandwidth return) since + * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs. + */ +static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b) +{ +	u64 runtime = 0, slice = sched_cfs_bandwidth_slice(); +	u64 expires; + +	/* confirm we're still not at a refresh boundary */ +	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) +		return; + +	raw_spin_lock(&cfs_b->lock); +	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) { +		runtime = cfs_b->runtime; +		cfs_b->runtime = 0; +	} +	expires = cfs_b->runtime_expires; +	raw_spin_unlock(&cfs_b->lock); + +	if (!runtime) +		return; + +	runtime = distribute_cfs_runtime(cfs_b, runtime, expires); + +	raw_spin_lock(&cfs_b->lock); +	if (expires == cfs_b->runtime_expires) +		cfs_b->runtime = runtime; +	raw_spin_unlock(&cfs_b->lock); +} + +/* + * When a group wakes up we want to make sure that its quota is not already + * expired/exceeded, otherwise it may be allowed to steal additional ticks of + * runtime as update_curr() throttling can not not trigger until it's on-rq. + */ +static void check_enqueue_throttle(struct cfs_rq *cfs_rq) +{ +	if (!cfs_bandwidth_used()) +		return; + +	/* an active group must be handled by the update_curr()->put() path */ +	if (!cfs_rq->runtime_enabled || cfs_rq->curr) +		return; + +	/* ensure the group is not already throttled */ +	if (cfs_rq_throttled(cfs_rq)) +		return; + +	/* update runtime allocation */ +	account_cfs_rq_runtime(cfs_rq, 0); +	if (cfs_rq->runtime_remaining <= 0) +		throttle_cfs_rq(cfs_rq); +} + +/* conditionally throttle active cfs_rq's from put_prev_entity() */ +static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	if (!cfs_bandwidth_used()) +		return; + +	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0)) +		return; + +	/* +	 * it's possible for a throttled entity to be forced into a running +	 * state (e.g. set_curr_task), in this case we're finished. +	 */ +	if (cfs_rq_throttled(cfs_rq)) +		return; + +	throttle_cfs_rq(cfs_rq); +} + +static inline u64 default_cfs_period(void); +static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun); +static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b); + +static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer) +{ +	struct cfs_bandwidth *cfs_b = +		container_of(timer, struct cfs_bandwidth, slack_timer); +	do_sched_cfs_slack_timer(cfs_b); + +	return HRTIMER_NORESTART; +} + +static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer) +{ +	struct cfs_bandwidth *cfs_b = +		container_of(timer, struct cfs_bandwidth, period_timer); +	ktime_t now; +	int overrun; +	int idle = 0; + +	for (;;) { +		now = hrtimer_cb_get_time(timer); +		overrun = hrtimer_forward(timer, now, cfs_b->period); + +		if (!overrun) +			break; + +		idle = do_sched_cfs_period_timer(cfs_b, overrun); +	} + +	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; +} + +void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) +{ +	raw_spin_lock_init(&cfs_b->lock); +	cfs_b->runtime = 0; +	cfs_b->quota = RUNTIME_INF; +	cfs_b->period = ns_to_ktime(default_cfs_period()); + +	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq); +	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); +	cfs_b->period_timer.function = sched_cfs_period_timer; +	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); +	cfs_b->slack_timer.function = sched_cfs_slack_timer; +} + +static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) +{ +	cfs_rq->runtime_enabled = 0; +	INIT_LIST_HEAD(&cfs_rq->throttled_list); +} + +/* requires cfs_b->lock, may release to reprogram timer */ +void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b) +{ +	/* +	 * The timer may be active because we're trying to set a new bandwidth +	 * period or because we're racing with the tear-down path +	 * (timer_active==0 becomes visible before the hrtimer call-back +	 * terminates).  In either case we ensure that it's re-programmed +	 */ +	while (unlikely(hrtimer_active(&cfs_b->period_timer))) { +		raw_spin_unlock(&cfs_b->lock); +		/* ensure cfs_b->lock is available while we wait */ +		hrtimer_cancel(&cfs_b->period_timer); + +		raw_spin_lock(&cfs_b->lock); +		/* if someone else restarted the timer then we're done */ +		if (cfs_b->timer_active) +			return; +	} + +	cfs_b->timer_active = 1; +	start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period); +} + +static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) +{ +	hrtimer_cancel(&cfs_b->period_timer); +	hrtimer_cancel(&cfs_b->slack_timer); +} + +void unthrottle_offline_cfs_rqs(struct rq *rq) +{ +	struct cfs_rq *cfs_rq; + +	for_each_leaf_cfs_rq(rq, cfs_rq) { +		struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg); + +		if (!cfs_rq->runtime_enabled) +			continue; + +		/* +		 * clock_task is not advancing so we just need to make sure +		 * there's some valid quota amount +		 */ +		cfs_rq->runtime_remaining = cfs_b->quota; +		if (cfs_rq_throttled(cfs_rq)) +			unthrottle_cfs_rq(cfs_rq); +	} +} + +#else /* CONFIG_CFS_BANDWIDTH */ +static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, +				     unsigned long delta_exec) {} +static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} +static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {} +static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} + +static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq) +{ +	return 0; +} + +static inline int throttled_hierarchy(struct cfs_rq *cfs_rq) +{ +	return 0; +} + +static inline int throttled_lb_pair(struct task_group *tg, +				    int src_cpu, int dest_cpu) +{ +	return 0; +} + +void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {} +#endif + +static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg) +{ +	return NULL; +} +static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {} +void unthrottle_offline_cfs_rqs(struct rq *rq) {} + +#endif /* CONFIG_CFS_BANDWIDTH */ + +/************************************************** + * CFS operations on tasks: + */ + +#ifdef CONFIG_SCHED_HRTICK +static void hrtick_start_fair(struct rq *rq, struct task_struct *p) +{ +	struct sched_entity *se = &p->se; +	struct cfs_rq *cfs_rq = cfs_rq_of(se); + +	WARN_ON(task_rq(p) != rq); + +	if (cfs_rq->nr_running > 1) { +		u64 slice = sched_slice(cfs_rq, se); +		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime; +		s64 delta = slice - ran; + +		if (delta < 0) { +			if (rq->curr == p) +				resched_task(p); +			return; +		} + +		/* +		 * Don't schedule slices shorter than 10000ns, that just +		 * doesn't make sense. Rely on vruntime for fairness. +		 */ +		if (rq->curr != p) +			delta = max_t(s64, 10000LL, delta); + +		hrtick_start(rq, delta); +	} +} + +/* + * called from enqueue/dequeue and updates the hrtick when the + * current task is from our class and nr_running is low enough + * to matter. + */ +static void hrtick_update(struct rq *rq) +{ +	struct task_struct *curr = rq->curr; + +	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class) +		return; + +	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency) +		hrtick_start_fair(rq, curr); +} +#else /* !CONFIG_SCHED_HRTICK */ +static inline void +hrtick_start_fair(struct rq *rq, struct task_struct *p) +{ +} + +static inline void hrtick_update(struct rq *rq) +{ +} +#endif + +/* + * The enqueue_task method is called before nr_running is + * increased. Here we update the fair scheduling stats and + * then put the task into the rbtree: + */ +static void +enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags) +{ +	struct cfs_rq *cfs_rq; +	struct sched_entity *se = &p->se; + +	for_each_sched_entity(se) { +		if (se->on_rq) +			break; +		cfs_rq = cfs_rq_of(se); +		enqueue_entity(cfs_rq, se, flags); + +		/* +		 * end evaluation on encountering a throttled cfs_rq +		 * +		 * note: in the case of encountering a throttled cfs_rq we will +		 * post the final h_nr_running increment below. +		*/ +		if (cfs_rq_throttled(cfs_rq)) +			break; +		cfs_rq->h_nr_running++; + +		flags = ENQUEUE_WAKEUP; +	} + +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		cfs_rq->h_nr_running++; + +		if (cfs_rq_throttled(cfs_rq)) +			break; + +		update_cfs_load(cfs_rq, 0); +		update_cfs_shares(cfs_rq); +	} + +	if (!se) +		inc_nr_running(rq); +	hrtick_update(rq); +} + +static void set_next_buddy(struct sched_entity *se); + +/* + * The dequeue_task method is called before nr_running is + * decreased. We remove the task from the rbtree and + * update the fair scheduling stats: + */ +static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags) +{ +	struct cfs_rq *cfs_rq; +	struct sched_entity *se = &p->se; +	int task_sleep = flags & DEQUEUE_SLEEP; + +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		dequeue_entity(cfs_rq, se, flags); + +		/* +		 * end evaluation on encountering a throttled cfs_rq +		 * +		 * note: in the case of encountering a throttled cfs_rq we will +		 * post the final h_nr_running decrement below. +		*/ +		if (cfs_rq_throttled(cfs_rq)) +			break; +		cfs_rq->h_nr_running--; + +		/* Don't dequeue parent if it has other entities besides us */ +		if (cfs_rq->load.weight) { +			/* +			 * Bias pick_next to pick a task from this cfs_rq, as +			 * p is sleeping when it is within its sched_slice. +			 */ +			if (task_sleep && parent_entity(se)) +				set_next_buddy(parent_entity(se)); + +			/* avoid re-evaluating load for this entity */ +			se = parent_entity(se); +			break; +		} +		flags |= DEQUEUE_SLEEP; +	} + +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		cfs_rq->h_nr_running--; + +		if (cfs_rq_throttled(cfs_rq)) +			break; + +		update_cfs_load(cfs_rq, 0); +		update_cfs_shares(cfs_rq); +	} + +	if (!se) +		dec_nr_running(rq); +	hrtick_update(rq); +} + +#ifdef CONFIG_SMP +/* Used instead of source_load when we know the type == 0 */ +static unsigned long weighted_cpuload(const int cpu) +{ +	return cpu_rq(cpu)->load.weight; +} + +/* + * Return a low guess at the load of a migration-source cpu weighted + * according to the scheduling class and "nice" value. + * + * We want to under-estimate the load of migration sources, to + * balance conservatively. + */ +static unsigned long source_load(int cpu, int type) +{ +	struct rq *rq = cpu_rq(cpu); +	unsigned long total = weighted_cpuload(cpu); + +	if (type == 0 || !sched_feat(LB_BIAS)) +		return total; + +	return min(rq->cpu_load[type-1], total); +} + +/* + * Return a high guess at the load of a migration-target cpu weighted + * according to the scheduling class and "nice" value. + */ +static unsigned long target_load(int cpu, int type) +{ +	struct rq *rq = cpu_rq(cpu); +	unsigned long total = weighted_cpuload(cpu); + +	if (type == 0 || !sched_feat(LB_BIAS)) +		return total; + +	return max(rq->cpu_load[type-1], total); +} + +static unsigned long power_of(int cpu) +{ +	return cpu_rq(cpu)->cpu_power; +} + +static unsigned long cpu_avg_load_per_task(int cpu) +{ +	struct rq *rq = cpu_rq(cpu); +	unsigned long nr_running = ACCESS_ONCE(rq->nr_running); + +	if (nr_running) +		return rq->load.weight / nr_running; + +	return 0; +} + + +static void task_waking_fair(struct task_struct *p) +{ +	struct sched_entity *se = &p->se; +	struct cfs_rq *cfs_rq = cfs_rq_of(se); +	u64 min_vruntime; + +#ifndef CONFIG_64BIT +	u64 min_vruntime_copy; + +	do { +		min_vruntime_copy = cfs_rq->min_vruntime_copy; +		smp_rmb(); +		min_vruntime = cfs_rq->min_vruntime; +	} while (min_vruntime != min_vruntime_copy); +#else +	min_vruntime = cfs_rq->min_vruntime; +#endif + +	se->vruntime -= min_vruntime; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +/* + * effective_load() calculates the load change as seen from the root_task_group + * + * Adding load to a group doesn't make a group heavier, but can cause movement + * of group shares between cpus. Assuming the shares were perfectly aligned one + * can calculate the shift in shares. + * + * Calculate the effective load difference if @wl is added (subtracted) to @tg + * on this @cpu and results in a total addition (subtraction) of @wg to the + * total group weight. + * + * Given a runqueue weight distribution (rw_i) we can compute a shares + * distribution (s_i) using: + * + *   s_i = rw_i / \Sum rw_j						(1) + * + * Suppose we have 4 CPUs and our @tg is a direct child of the root group and + * has 7 equal weight tasks, distributed as below (rw_i), with the resulting + * shares distribution (s_i): + * + *   rw_i = {   2,   4,   1,   0 } + *   s_i  = { 2/7, 4/7, 1/7,   0 } + * + * As per wake_affine() we're interested in the load of two CPUs (the CPU the + * task used to run on and the CPU the waker is running on), we need to + * compute the effect of waking a task on either CPU and, in case of a sync + * wakeup, compute the effect of the current task going to sleep. + * + * So for a change of @wl to the local @cpu with an overall group weight change + * of @wl we can compute the new shares distribution (s'_i) using: + * + *   s'_i = (rw_i + @wl) / (@wg + \Sum rw_j)				(2) + * + * Suppose we're interested in CPUs 0 and 1, and want to compute the load + * differences in waking a task to CPU 0. The additional task changes the + * weight and shares distributions like: + * + *   rw'_i = {   3,   4,   1,   0 } + *   s'_i  = { 3/8, 4/8, 1/8,   0 } + * + * We can then compute the difference in effective weight by using: + * + *   dw_i = S * (s'_i - s_i)						(3) + * + * Where 'S' is the group weight as seen by its parent. + * + * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7) + * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 - + * 4/7) times the weight of the group. + */ +static long effective_load(struct task_group *tg, int cpu, long wl, long wg) +{ +	struct sched_entity *se = tg->se[cpu]; + +	if (!tg->parent)	/* the trivial, non-cgroup case */ +		return wl; + +	for_each_sched_entity(se) { +		long w, W; + +		tg = se->my_q->tg; + +		/* +		 * W = @wg + \Sum rw_j +		 */ +		W = wg + calc_tg_weight(tg, se->my_q); + +		/* +		 * w = rw_i + @wl +		 */ +		w = se->my_q->load.weight + wl; + +		/* +		 * wl = S * s'_i; see (2) +		 */ +		if (W > 0 && w < W) +			wl = (w * tg->shares) / W; +		else +			wl = tg->shares; + +		/* +		 * Per the above, wl is the new se->load.weight value; since +		 * those are clipped to [MIN_SHARES, ...) do so now. See +		 * calc_cfs_shares(). +		 */ +		if (wl < MIN_SHARES) +			wl = MIN_SHARES; + +		/* +		 * wl = dw_i = S * (s'_i - s_i); see (3) +		 */ +		wl -= se->load.weight; + +		/* +		 * Recursively apply this logic to all parent groups to compute +		 * the final effective load change on the root group. Since +		 * only the @tg group gets extra weight, all parent groups can +		 * only redistribute existing shares. @wl is the shift in shares +		 * resulting from this level per the above. +		 */ +		wg = 0; +	} + +	return wl; +} +#else + +static inline unsigned long effective_load(struct task_group *tg, int cpu, +		unsigned long wl, unsigned long wg) +{ +	return wl; +} + +#endif + +static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync) +{ +	s64 this_load, load; +	int idx, this_cpu, prev_cpu; +	unsigned long tl_per_task; +	struct task_group *tg; +	unsigned long weight; +	int balanced; + +	idx	  = sd->wake_idx; +	this_cpu  = smp_processor_id(); +	prev_cpu  = task_cpu(p); +	load	  = source_load(prev_cpu, idx); +	this_load = target_load(this_cpu, idx); + +	/* +	 * If sync wakeup then subtract the (maximum possible) +	 * effect of the currently running task from the load +	 * of the current CPU: +	 */ +	if (sync) { +		tg = task_group(current); +		weight = current->se.load.weight; + +		this_load += effective_load(tg, this_cpu, -weight, -weight); +		load += effective_load(tg, prev_cpu, 0, -weight); +	} + +	tg = task_group(p); +	weight = p->se.load.weight; + +	/* +	 * In low-load situations, where prev_cpu is idle and this_cpu is idle +	 * due to the sync cause above having dropped this_load to 0, we'll +	 * always have an imbalance, but there's really nothing you can do +	 * about that, so that's good too. +	 * +	 * Otherwise check if either cpus are near enough in load to allow this +	 * task to be woken on this_cpu. +	 */ +	if (this_load > 0) { +		s64 this_eff_load, prev_eff_load; + +		this_eff_load = 100; +		this_eff_load *= power_of(prev_cpu); +		this_eff_load *= this_load + +			effective_load(tg, this_cpu, weight, weight); + +		prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2; +		prev_eff_load *= power_of(this_cpu); +		prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight); + +		balanced = this_eff_load <= prev_eff_load; +	} else +		balanced = true; + +	/* +	 * If the currently running task will sleep within +	 * a reasonable amount of time then attract this newly +	 * woken task: +	 */ +	if (sync && balanced) +		return 1; + +	schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts); +	tl_per_task = cpu_avg_load_per_task(this_cpu); + +	if (balanced || +	    (this_load <= load && +	     this_load + target_load(prev_cpu, idx) <= tl_per_task)) { +		/* +		 * This domain has SD_WAKE_AFFINE and +		 * p is cache cold in this domain, and +		 * there is no bad imbalance. +		 */ +		schedstat_inc(sd, ttwu_move_affine); +		schedstat_inc(p, se.statistics.nr_wakeups_affine); + +		return 1; +	} +	return 0; +} + +/* + * find_idlest_group finds and returns the least busy CPU group within the + * domain. + */ +static struct sched_group * +find_idlest_group(struct sched_domain *sd, struct task_struct *p, +		  int this_cpu, int load_idx) +{ +	struct sched_group *idlest = NULL, *group = sd->groups; +	unsigned long min_load = ULONG_MAX, this_load = 0; +	int imbalance = 100 + (sd->imbalance_pct-100)/2; + +	do { +		unsigned long load, avg_load; +		int local_group; +		int i; + +		/* Skip over this group if it has no CPUs allowed */ +		if (!cpumask_intersects(sched_group_cpus(group), +					tsk_cpus_allowed(p))) +			continue; + +		local_group = cpumask_test_cpu(this_cpu, +					       sched_group_cpus(group)); + +		/* Tally up the load of all CPUs in the group */ +		avg_load = 0; + +		for_each_cpu(i, sched_group_cpus(group)) { +			/* Bias balancing toward cpus of our domain */ +			if (local_group) +				load = source_load(i, load_idx); +			else +				load = target_load(i, load_idx); + +			avg_load += load; +		} + +		/* Adjust by relative CPU power of the group */ +		avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power; + +		if (local_group) { +			this_load = avg_load; +		} else if (avg_load < min_load) { +			min_load = avg_load; +			idlest = group; +		} +	} while (group = group->next, group != sd->groups); + +	if (!idlest || 100*this_load < imbalance*min_load) +		return NULL; +	return idlest; +} + +/* + * find_idlest_cpu - find the idlest cpu among the cpus in group. + */ +static int +find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu) +{ +	unsigned long load, min_load = ULONG_MAX; +	int idlest = -1; +	int i; + +	/* Traverse only the allowed CPUs */ +	for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) { +		load = weighted_cpuload(i); + +		if (load < min_load || (load == min_load && i == this_cpu)) { +			min_load = load; +			idlest = i; +		} +	} + +	return idlest; +} + +/* + * Try and locate an idle CPU in the sched_domain. + */ +static int select_idle_sibling(struct task_struct *p, int target) +{ +	int cpu = smp_processor_id(); +	int prev_cpu = task_cpu(p); +	struct sched_domain *sd; +	struct sched_group *sg; +	int i; + +	/* +	 * If the task is going to be woken-up on this cpu and if it is +	 * already idle, then it is the right target. +	 */ +	if (target == cpu && idle_cpu(cpu)) +		return cpu; + +	/* +	 * If the task is going to be woken-up on the cpu where it previously +	 * ran and if it is currently idle, then it the right target. +	 */ +	if (target == prev_cpu && idle_cpu(prev_cpu)) +		return prev_cpu; + +	/* +	 * Otherwise, iterate the domains and find an elegible idle cpu. +	 */ +	rcu_read_lock(); + +	sd = rcu_dereference(per_cpu(sd_llc, target)); +	for_each_lower_domain(sd) { +		sg = sd->groups; +		do { +			if (!cpumask_intersects(sched_group_cpus(sg), +						tsk_cpus_allowed(p))) +				goto next; + +			for_each_cpu(i, sched_group_cpus(sg)) { +				if (!idle_cpu(i)) +					goto next; +			} + +			target = cpumask_first_and(sched_group_cpus(sg), +					tsk_cpus_allowed(p)); +			goto done; +next: +			sg = sg->next; +		} while (sg != sd->groups); +	} +done: +	rcu_read_unlock(); + +	return target; +} + +/* + * sched_balance_self: balance the current task (running on cpu) in domains + * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and + * SD_BALANCE_EXEC. + * + * Balance, ie. select the least loaded group. + * + * Returns the target CPU number, or the same CPU if no balancing is needed. + * + * preempt must be disabled. + */ +static int +select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags) +{ +	struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL; +	int cpu = smp_processor_id(); +	int prev_cpu = task_cpu(p); +	int new_cpu = cpu; +	int want_affine = 0; +	int want_sd = 1; +	int sync = wake_flags & WF_SYNC; + +	if (p->rt.nr_cpus_allowed == 1) +		return prev_cpu; + +	if (sd_flag & SD_BALANCE_WAKE) { +		if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) +			want_affine = 1; +		new_cpu = prev_cpu; +	} + +	rcu_read_lock(); +	for_each_domain(cpu, tmp) { +		if (!(tmp->flags & SD_LOAD_BALANCE)) +			continue; + +		/* +		 * If power savings logic is enabled for a domain, see if we +		 * are not overloaded, if so, don't balance wider. +		 */ +		if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) { +			unsigned long power = 0; +			unsigned long nr_running = 0; +			unsigned long capacity; +			int i; + +			for_each_cpu(i, sched_domain_span(tmp)) { +				power += power_of(i); +				nr_running += cpu_rq(i)->cfs.nr_running; +			} + +			capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE); + +			if (tmp->flags & SD_POWERSAVINGS_BALANCE) +				nr_running /= 2; + +			if (nr_running < capacity) +				want_sd = 0; +		} + +		/* +		 * If both cpu and prev_cpu are part of this domain, +		 * cpu is a valid SD_WAKE_AFFINE target. +		 */ +		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) && +		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) { +			affine_sd = tmp; +			want_affine = 0; +		} + +		if (!want_sd && !want_affine) +			break; + +		if (!(tmp->flags & sd_flag)) +			continue; + +		if (want_sd) +			sd = tmp; +	} + +	if (affine_sd) { +		if (cpu == prev_cpu || wake_affine(affine_sd, p, sync)) +			prev_cpu = cpu; + +		new_cpu = select_idle_sibling(p, prev_cpu); +		goto unlock; +	} + +	while (sd) { +		int load_idx = sd->forkexec_idx; +		struct sched_group *group; +		int weight; + +		if (!(sd->flags & sd_flag)) { +			sd = sd->child; +			continue; +		} + +		if (sd_flag & SD_BALANCE_WAKE) +			load_idx = sd->wake_idx; + +		group = find_idlest_group(sd, p, cpu, load_idx); +		if (!group) { +			sd = sd->child; +			continue; +		} + +		new_cpu = find_idlest_cpu(group, p, cpu); +		if (new_cpu == -1 || new_cpu == cpu) { +			/* Now try balancing at a lower domain level of cpu */ +			sd = sd->child; +			continue; +		} + +		/* Now try balancing at a lower domain level of new_cpu */ +		cpu = new_cpu; +		weight = sd->span_weight; +		sd = NULL; +		for_each_domain(cpu, tmp) { +			if (weight <= tmp->span_weight) +				break; +			if (tmp->flags & sd_flag) +				sd = tmp; +		} +		/* while loop will break here if sd == NULL */ +	} +unlock: +	rcu_read_unlock(); + +	return new_cpu; +} +#endif /* CONFIG_SMP */ + +static unsigned long +wakeup_gran(struct sched_entity *curr, struct sched_entity *se) +{ +	unsigned long gran = sysctl_sched_wakeup_granularity; + +	/* +	 * Since its curr running now, convert the gran from real-time +	 * to virtual-time in his units. +	 * +	 * By using 'se' instead of 'curr' we penalize light tasks, so +	 * they get preempted easier. That is, if 'se' < 'curr' then +	 * the resulting gran will be larger, therefore penalizing the +	 * lighter, if otoh 'se' > 'curr' then the resulting gran will +	 * be smaller, again penalizing the lighter task. +	 * +	 * This is especially important for buddies when the leftmost +	 * task is higher priority than the buddy. +	 */ +	return calc_delta_fair(gran, se); +} + +/* + * Should 'se' preempt 'curr'. + * + *             |s1 + *        |s2 + *   |s3 + *         g + *      |<--->|c + * + *  w(c, s1) = -1 + *  w(c, s2) =  0 + *  w(c, s3) =  1 + * + */ +static int +wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se) +{ +	s64 gran, vdiff = curr->vruntime - se->vruntime; + +	if (vdiff <= 0) +		return -1; + +	gran = wakeup_gran(curr, se); +	if (vdiff > gran) +		return 1; + +	return 0; +} + +static void set_last_buddy(struct sched_entity *se) +{ +	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) +		return; + +	for_each_sched_entity(se) +		cfs_rq_of(se)->last = se; +} + +static void set_next_buddy(struct sched_entity *se) +{ +	if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE)) +		return; + +	for_each_sched_entity(se) +		cfs_rq_of(se)->next = se; +} + +static void set_skip_buddy(struct sched_entity *se) +{ +	for_each_sched_entity(se) +		cfs_rq_of(se)->skip = se; +} + +/* + * Preempt the current task with a newly woken task if needed: + */ +static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags) +{ +	struct task_struct *curr = rq->curr; +	struct sched_entity *se = &curr->se, *pse = &p->se; +	struct cfs_rq *cfs_rq = task_cfs_rq(curr); +	int scale = cfs_rq->nr_running >= sched_nr_latency; +	int next_buddy_marked = 0; + +	if (unlikely(se == pse)) +		return; + +	/* +	 * This is possible from callers such as pull_task(), in which we +	 * unconditionally check_prempt_curr() after an enqueue (which may have +	 * lead to a throttle).  This both saves work and prevents false +	 * next-buddy nomination below. +	 */ +	if (unlikely(throttled_hierarchy(cfs_rq_of(pse)))) +		return; + +	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) { +		set_next_buddy(pse); +		next_buddy_marked = 1; +	} + +	/* +	 * We can come here with TIF_NEED_RESCHED already set from new task +	 * wake up path. +	 * +	 * Note: this also catches the edge-case of curr being in a throttled +	 * group (e.g. via set_curr_task), since update_curr() (in the +	 * enqueue of curr) will have resulted in resched being set.  This +	 * prevents us from potentially nominating it as a false LAST_BUDDY +	 * below. +	 */ +	if (test_tsk_need_resched(curr)) +		return; + +	/* Idle tasks are by definition preempted by non-idle tasks. */ +	if (unlikely(curr->policy == SCHED_IDLE) && +	    likely(p->policy != SCHED_IDLE)) +		goto preempt; + +	/* +	 * Batch and idle tasks do not preempt non-idle tasks (their preemption +	 * is driven by the tick): +	 */ +	if (unlikely(p->policy != SCHED_NORMAL)) +		return; + +	find_matching_se(&se, &pse); +	update_curr(cfs_rq_of(se)); +	BUG_ON(!pse); +	if (wakeup_preempt_entity(se, pse) == 1) { +		/* +		 * Bias pick_next to pick the sched entity that is +		 * triggering this preemption. +		 */ +		if (!next_buddy_marked) +			set_next_buddy(pse); +		goto preempt; +	} + +	return; + +preempt: +	resched_task(curr); +	/* +	 * Only set the backward buddy when the current task is still +	 * on the rq. This can happen when a wakeup gets interleaved +	 * with schedule on the ->pre_schedule() or idle_balance() +	 * point, either of which can * drop the rq lock. +	 * +	 * Also, during early boot the idle thread is in the fair class, +	 * for obvious reasons its a bad idea to schedule back to it. +	 */ +	if (unlikely(!se->on_rq || curr == rq->idle)) +		return; + +	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se)) +		set_last_buddy(se); +} + +static struct task_struct *pick_next_task_fair(struct rq *rq) +{ +	struct task_struct *p; +	struct cfs_rq *cfs_rq = &rq->cfs; +	struct sched_entity *se; + +	if (!cfs_rq->nr_running) +		return NULL; + +	do { +		se = pick_next_entity(cfs_rq); +		set_next_entity(cfs_rq, se); +		cfs_rq = group_cfs_rq(se); +	} while (cfs_rq); + +	p = task_of(se); +	if (hrtick_enabled(rq)) +		hrtick_start_fair(rq, p); + +	return p; +} + +/* + * Account for a descheduled task: + */ +static void put_prev_task_fair(struct rq *rq, struct task_struct *prev) +{ +	struct sched_entity *se = &prev->se; +	struct cfs_rq *cfs_rq; + +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		put_prev_entity(cfs_rq, se); +	} +} + +/* + * sched_yield() is very simple + * + * The magic of dealing with the ->skip buddy is in pick_next_entity. + */ +static void yield_task_fair(struct rq *rq) +{ +	struct task_struct *curr = rq->curr; +	struct cfs_rq *cfs_rq = task_cfs_rq(curr); +	struct sched_entity *se = &curr->se; + +	/* +	 * Are we the only task in the tree? +	 */ +	if (unlikely(rq->nr_running == 1)) +		return; + +	clear_buddies(cfs_rq, se); + +	if (curr->policy != SCHED_BATCH) { +		update_rq_clock(rq); +		/* +		 * Update run-time statistics of the 'current'. +		 */ +		update_curr(cfs_rq); +		/* +		 * Tell update_rq_clock() that we've just updated, +		 * so we don't do microscopic update in schedule() +		 * and double the fastpath cost. +		 */ +		 rq->skip_clock_update = 1; +	} + +	set_skip_buddy(se); +} + +static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt) +{ +	struct sched_entity *se = &p->se; + +	/* throttled hierarchies are not runnable */ +	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se))) +		return false; + +	/* Tell the scheduler that we'd really like pse to run next. */ +	set_next_buddy(se); + +	yield_task_fair(rq); + +	return true; +} + +#ifdef CONFIG_SMP +/************************************************** + * Fair scheduling class load-balancing methods: + */ + +/* + * pull_task - move a task from a remote runqueue to the local runqueue. + * Both runqueues must be locked. + */ +static void pull_task(struct rq *src_rq, struct task_struct *p, +		      struct rq *this_rq, int this_cpu) +{ +	deactivate_task(src_rq, p, 0); +	set_task_cpu(p, this_cpu); +	activate_task(this_rq, p, 0); +	check_preempt_curr(this_rq, p, 0); +} + +/* + * Is this task likely cache-hot: + */ +static int +task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) +{ +	s64 delta; + +	if (p->sched_class != &fair_sched_class) +		return 0; + +	if (unlikely(p->policy == SCHED_IDLE)) +		return 0; + +	/* +	 * Buddy candidates are cache hot: +	 */ +	if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running && +			(&p->se == cfs_rq_of(&p->se)->next || +			 &p->se == cfs_rq_of(&p->se)->last)) +		return 1; + +	if (sysctl_sched_migration_cost == -1) +		return 1; +	if (sysctl_sched_migration_cost == 0) +		return 0; + +	delta = now - p->se.exec_start; + +	return delta < (s64)sysctl_sched_migration_cost; +} + +#define LBF_ALL_PINNED	0x01 +#define LBF_NEED_BREAK	0x02 +#define LBF_ABORT	0x04 + +/* + * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? + */ +static +int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, +		     struct sched_domain *sd, enum cpu_idle_type idle, +		     int *lb_flags) +{ +	int tsk_cache_hot = 0; +	/* +	 * We do not migrate tasks that are: +	 * 1) running (obviously), or +	 * 2) cannot be migrated to this CPU due to cpus_allowed, or +	 * 3) are cache-hot on their current CPU. +	 */ +	if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) { +		schedstat_inc(p, se.statistics.nr_failed_migrations_affine); +		return 0; +	} +	*lb_flags &= ~LBF_ALL_PINNED; + +	if (task_running(rq, p)) { +		schedstat_inc(p, se.statistics.nr_failed_migrations_running); +		return 0; +	} + +	/* +	 * Aggressive migration if: +	 * 1) task is cache cold, or +	 * 2) too many balance attempts have failed. +	 */ + +	tsk_cache_hot = task_hot(p, rq->clock_task, sd); +	if (!tsk_cache_hot || +		sd->nr_balance_failed > sd->cache_nice_tries) { +#ifdef CONFIG_SCHEDSTATS +		if (tsk_cache_hot) { +			schedstat_inc(sd, lb_hot_gained[idle]); +			schedstat_inc(p, se.statistics.nr_forced_migrations); +		} +#endif +		return 1; +	} + +	if (tsk_cache_hot) { +		schedstat_inc(p, se.statistics.nr_failed_migrations_hot); +		return 0; +	} +	return 1; +} + +/* + * move_one_task tries to move exactly one task from busiest to this_rq, as + * part of active balancing operations within "domain". + * Returns 1 if successful and 0 otherwise. + * + * Called with both runqueues locked. + */ +static int +move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, +	      struct sched_domain *sd, enum cpu_idle_type idle) +{ +	struct task_struct *p, *n; +	struct cfs_rq *cfs_rq; +	int pinned = 0; + +	for_each_leaf_cfs_rq(busiest, cfs_rq) { +		list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) { +			if (throttled_lb_pair(task_group(p), +					      busiest->cpu, this_cpu)) +				break; + +			if (!can_migrate_task(p, busiest, this_cpu, +						sd, idle, &pinned)) +				continue; + +			pull_task(busiest, p, this_rq, this_cpu); +			/* +			 * Right now, this is only the second place pull_task() +			 * is called, so we can safely collect pull_task() +			 * stats here rather than inside pull_task(). +			 */ +			schedstat_inc(sd, lb_gained[idle]); +			return 1; +		} +	} + +	return 0; +} + +static unsigned long +balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, +	      unsigned long max_load_move, struct sched_domain *sd, +	      enum cpu_idle_type idle, int *lb_flags, +	      struct cfs_rq *busiest_cfs_rq) +{ +	int loops = 0, pulled = 0; +	long rem_load_move = max_load_move; +	struct task_struct *p, *n; + +	if (max_load_move == 0) +		goto out; + +	list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) { +		if (loops++ > sysctl_sched_nr_migrate) { +			*lb_flags |= LBF_NEED_BREAK; +			break; +		} + +		if ((p->se.load.weight >> 1) > rem_load_move || +		    !can_migrate_task(p, busiest, this_cpu, sd, idle, +				      lb_flags)) +			continue; + +		pull_task(busiest, p, this_rq, this_cpu); +		pulled++; +		rem_load_move -= p->se.load.weight; + +#ifdef CONFIG_PREEMPT +		/* +		 * NEWIDLE balancing is a source of latency, so preemptible +		 * kernels will stop after the first task is pulled to minimize +		 * the critical section. +		 */ +		if (idle == CPU_NEWLY_IDLE) { +			*lb_flags |= LBF_ABORT; +			break; +		} +#endif + +		/* +		 * We only want to steal up to the prescribed amount of +		 * weighted load. +		 */ +		if (rem_load_move <= 0) +			break; +	} +out: +	/* +	 * Right now, this is one of only two places pull_task() is called, +	 * so we can safely collect pull_task() stats here rather than +	 * inside pull_task(). +	 */ +	schedstat_add(sd, lb_gained[idle], pulled); + +	return max_load_move - rem_load_move; +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +/* + * update tg->load_weight by folding this cpu's load_avg + */ +static int update_shares_cpu(struct task_group *tg, int cpu) +{ +	struct cfs_rq *cfs_rq; +	unsigned long flags; +	struct rq *rq; + +	if (!tg->se[cpu]) +		return 0; + +	rq = cpu_rq(cpu); +	cfs_rq = tg->cfs_rq[cpu]; + +	raw_spin_lock_irqsave(&rq->lock, flags); + +	update_rq_clock(rq); +	update_cfs_load(cfs_rq, 1); + +	/* +	 * We need to update shares after updating tg->load_weight in +	 * order to adjust the weight of groups with long running tasks. +	 */ +	update_cfs_shares(cfs_rq); + +	raw_spin_unlock_irqrestore(&rq->lock, flags); + +	return 0; +} + +static void update_shares(int cpu) +{ +	struct cfs_rq *cfs_rq; +	struct rq *rq = cpu_rq(cpu); + +	rcu_read_lock(); +	/* +	 * Iterates the task_group tree in a bottom up fashion, see +	 * list_add_leaf_cfs_rq() for details. +	 */ +	for_each_leaf_cfs_rq(rq, cfs_rq) { +		/* throttled entities do not contribute to load */ +		if (throttled_hierarchy(cfs_rq)) +			continue; + +		update_shares_cpu(cfs_rq->tg, cpu); +	} +	rcu_read_unlock(); +} + +/* + * Compute the cpu's hierarchical load factor for each task group. + * This needs to be done in a top-down fashion because the load of a child + * group is a fraction of its parents load. + */ +static int tg_load_down(struct task_group *tg, void *data) +{ +	unsigned long load; +	long cpu = (long)data; + +	if (!tg->parent) { +		load = cpu_rq(cpu)->load.weight; +	} else { +		load = tg->parent->cfs_rq[cpu]->h_load; +		load *= tg->se[cpu]->load.weight; +		load /= tg->parent->cfs_rq[cpu]->load.weight + 1; +	} + +	tg->cfs_rq[cpu]->h_load = load; + +	return 0; +} + +static void update_h_load(long cpu) +{ +	walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); +} + +static unsigned long +load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, +		  unsigned long max_load_move, +		  struct sched_domain *sd, enum cpu_idle_type idle, +		  int *lb_flags) +{ +	long rem_load_move = max_load_move; +	struct cfs_rq *busiest_cfs_rq; + +	rcu_read_lock(); +	update_h_load(cpu_of(busiest)); + +	for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) { +		unsigned long busiest_h_load = busiest_cfs_rq->h_load; +		unsigned long busiest_weight = busiest_cfs_rq->load.weight; +		u64 rem_load, moved_load; + +		if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) +			break; + +		/* +		 * empty group or part of a throttled hierarchy +		 */ +		if (!busiest_cfs_rq->task_weight || +		    throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu)) +			continue; + +		rem_load = (u64)rem_load_move * busiest_weight; +		rem_load = div_u64(rem_load, busiest_h_load + 1); + +		moved_load = balance_tasks(this_rq, this_cpu, busiest, +				rem_load, sd, idle, lb_flags, +				busiest_cfs_rq); + +		if (!moved_load) +			continue; + +		moved_load *= busiest_h_load; +		moved_load = div_u64(moved_load, busiest_weight + 1); + +		rem_load_move -= moved_load; +		if (rem_load_move < 0) +			break; +	} +	rcu_read_unlock(); + +	return max_load_move - rem_load_move; +} +#else +static inline void update_shares(int cpu) +{ +} + +static unsigned long +load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest, +		  unsigned long max_load_move, +		  struct sched_domain *sd, enum cpu_idle_type idle, +		  int *lb_flags) +{ +	return balance_tasks(this_rq, this_cpu, busiest, +			max_load_move, sd, idle, lb_flags, +			&busiest->cfs); +} +#endif + +/* + * move_tasks tries to move up to max_load_move weighted load from busiest to + * this_rq, as part of a balancing operation within domain "sd". + * Returns 1 if successful and 0 otherwise. + * + * Called with both runqueues locked. + */ +static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, +		      unsigned long max_load_move, +		      struct sched_domain *sd, enum cpu_idle_type idle, +		      int *lb_flags) +{ +	unsigned long total_load_moved = 0, load_moved; + +	do { +		load_moved = load_balance_fair(this_rq, this_cpu, busiest, +				max_load_move - total_load_moved, +				sd, idle, lb_flags); + +		total_load_moved += load_moved; + +		if (*lb_flags & (LBF_NEED_BREAK|LBF_ABORT)) +			break; + +#ifdef CONFIG_PREEMPT +		/* +		 * NEWIDLE balancing is a source of latency, so preemptible +		 * kernels will stop after the first task is pulled to minimize +		 * the critical section. +		 */ +		if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) { +			*lb_flags |= LBF_ABORT; +			break; +		} +#endif +	} while (load_moved && max_load_move > total_load_moved); + +	return total_load_moved > 0; +} + +/********** Helpers for find_busiest_group ************************/ +/* + * sd_lb_stats - Structure to store the statistics of a sched_domain + * 		during load balancing. + */ +struct sd_lb_stats { +	struct sched_group *busiest; /* Busiest group in this sd */ +	struct sched_group *this;  /* Local group in this sd */ +	unsigned long total_load;  /* Total load of all groups in sd */ +	unsigned long total_pwr;   /*	Total power of all groups in sd */ +	unsigned long avg_load;	   /* Average load across all groups in sd */ + +	/** Statistics of this group */ +	unsigned long this_load; +	unsigned long this_load_per_task; +	unsigned long this_nr_running; +	unsigned long this_has_capacity; +	unsigned int  this_idle_cpus; + +	/* Statistics of the busiest group */ +	unsigned int  busiest_idle_cpus; +	unsigned long max_load; +	unsigned long busiest_load_per_task; +	unsigned long busiest_nr_running; +	unsigned long busiest_group_capacity; +	unsigned long busiest_has_capacity; +	unsigned int  busiest_group_weight; + +	int group_imb; /* Is there imbalance in this sd */ +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +	int power_savings_balance; /* Is powersave balance needed for this sd */ +	struct sched_group *group_min; /* Least loaded group in sd */ +	struct sched_group *group_leader; /* Group which relieves group_min */ +	unsigned long min_load_per_task; /* load_per_task in group_min */ +	unsigned long leader_nr_running; /* Nr running of group_leader */ +	unsigned long min_nr_running; /* Nr running of group_min */ +#endif +}; + +/* + * sg_lb_stats - stats of a sched_group required for load_balancing + */ +struct sg_lb_stats { +	unsigned long avg_load; /*Avg load across the CPUs of the group */ +	unsigned long group_load; /* Total load over the CPUs of the group */ +	unsigned long sum_nr_running; /* Nr tasks running in the group */ +	unsigned long sum_weighted_load; /* Weighted load of group's tasks */ +	unsigned long group_capacity; +	unsigned long idle_cpus; +	unsigned long group_weight; +	int group_imb; /* Is there an imbalance in the group ? */ +	int group_has_capacity; /* Is there extra capacity in the group? */ +}; + +/** + * get_sd_load_idx - Obtain the load index for a given sched domain. + * @sd: The sched_domain whose load_idx is to be obtained. + * @idle: The Idle status of the CPU for whose sd load_icx is obtained. + */ +static inline int get_sd_load_idx(struct sched_domain *sd, +					enum cpu_idle_type idle) +{ +	int load_idx; + +	switch (idle) { +	case CPU_NOT_IDLE: +		load_idx = sd->busy_idx; +		break; + +	case CPU_NEWLY_IDLE: +		load_idx = sd->newidle_idx; +		break; +	default: +		load_idx = sd->idle_idx; +		break; +	} + +	return load_idx; +} + + +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +/** + * init_sd_power_savings_stats - Initialize power savings statistics for + * the given sched_domain, during load balancing. + * + * @sd: Sched domain whose power-savings statistics are to be initialized. + * @sds: Variable containing the statistics for sd. + * @idle: Idle status of the CPU at which we're performing load-balancing. + */ +static inline void init_sd_power_savings_stats(struct sched_domain *sd, +	struct sd_lb_stats *sds, enum cpu_idle_type idle) +{ +	/* +	 * Busy processors will not participate in power savings +	 * balance. +	 */ +	if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) +		sds->power_savings_balance = 0; +	else { +		sds->power_savings_balance = 1; +		sds->min_nr_running = ULONG_MAX; +		sds->leader_nr_running = 0; +	} +} + +/** + * update_sd_power_savings_stats - Update the power saving stats for a + * sched_domain while performing load balancing. + * + * @group: sched_group belonging to the sched_domain under consideration. + * @sds: Variable containing the statistics of the sched_domain + * @local_group: Does group contain the CPU for which we're performing + * 		load balancing ? + * @sgs: Variable containing the statistics of the group. + */ +static inline void update_sd_power_savings_stats(struct sched_group *group, +	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) +{ + +	if (!sds->power_savings_balance) +		return; + +	/* +	 * If the local group is idle or completely loaded +	 * no need to do power savings balance at this domain +	 */ +	if (local_group && (sds->this_nr_running >= sgs->group_capacity || +				!sds->this_nr_running)) +		sds->power_savings_balance = 0; + +	/* +	 * If a group is already running at full capacity or idle, +	 * don't include that group in power savings calculations +	 */ +	if (!sds->power_savings_balance || +		sgs->sum_nr_running >= sgs->group_capacity || +		!sgs->sum_nr_running) +		return; + +	/* +	 * Calculate the group which has the least non-idle load. +	 * This is the group from where we need to pick up the load +	 * for saving power +	 */ +	if ((sgs->sum_nr_running < sds->min_nr_running) || +	    (sgs->sum_nr_running == sds->min_nr_running && +	     group_first_cpu(group) > group_first_cpu(sds->group_min))) { +		sds->group_min = group; +		sds->min_nr_running = sgs->sum_nr_running; +		sds->min_load_per_task = sgs->sum_weighted_load / +						sgs->sum_nr_running; +	} + +	/* +	 * Calculate the group which is almost near its +	 * capacity but still has some space to pick up some load +	 * from other group and save more power +	 */ +	if (sgs->sum_nr_running + 1 > sgs->group_capacity) +		return; + +	if (sgs->sum_nr_running > sds->leader_nr_running || +	    (sgs->sum_nr_running == sds->leader_nr_running && +	     group_first_cpu(group) < group_first_cpu(sds->group_leader))) { +		sds->group_leader = group; +		sds->leader_nr_running = sgs->sum_nr_running; +	} +} + +/** + * check_power_save_busiest_group - see if there is potential for some power-savings balance + * @sds: Variable containing the statistics of the sched_domain + *	under consideration. + * @this_cpu: Cpu at which we're currently performing load-balancing. + * @imbalance: Variable to store the imbalance. + * + * Description: + * Check if we have potential to perform some power-savings balance. + * If yes, set the busiest group to be the least loaded group in the + * sched_domain, so that it's CPUs can be put to idle. + * + * Returns 1 if there is potential to perform power-savings balance. + * Else returns 0. + */ +static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, +					int this_cpu, unsigned long *imbalance) +{ +	if (!sds->power_savings_balance) +		return 0; + +	if (sds->this != sds->group_leader || +			sds->group_leader == sds->group_min) +		return 0; + +	*imbalance = sds->min_load_per_task; +	sds->busiest = sds->group_min; + +	return 1; + +} +#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ +static inline void init_sd_power_savings_stats(struct sched_domain *sd, +	struct sd_lb_stats *sds, enum cpu_idle_type idle) +{ +	return; +} + +static inline void update_sd_power_savings_stats(struct sched_group *group, +	struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs) +{ +	return; +} + +static inline int check_power_save_busiest_group(struct sd_lb_stats *sds, +					int this_cpu, unsigned long *imbalance) +{ +	return 0; +} +#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ + + +unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu) +{ +	return SCHED_POWER_SCALE; +} + +unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu) +{ +	return default_scale_freq_power(sd, cpu); +} + +unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu) +{ +	unsigned long weight = sd->span_weight; +	unsigned long smt_gain = sd->smt_gain; + +	smt_gain /= weight; + +	return smt_gain; +} + +unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu) +{ +	return default_scale_smt_power(sd, cpu); +} + +unsigned long scale_rt_power(int cpu) +{ +	struct rq *rq = cpu_rq(cpu); +	u64 total, available; + +	total = sched_avg_period() + (rq->clock - rq->age_stamp); + +	if (unlikely(total < rq->rt_avg)) { +		/* Ensures that power won't end up being negative */ +		available = 0; +	} else { +		available = total - rq->rt_avg; +	} + +	if (unlikely((s64)total < SCHED_POWER_SCALE)) +		total = SCHED_POWER_SCALE; + +	total >>= SCHED_POWER_SHIFT; + +	return div_u64(available, total); +} + +static void update_cpu_power(struct sched_domain *sd, int cpu) +{ +	unsigned long weight = sd->span_weight; +	unsigned long power = SCHED_POWER_SCALE; +	struct sched_group *sdg = sd->groups; + +	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) { +		if (sched_feat(ARCH_POWER)) +			power *= arch_scale_smt_power(sd, cpu); +		else +			power *= default_scale_smt_power(sd, cpu); + +		power >>= SCHED_POWER_SHIFT; +	} + +	sdg->sgp->power_orig = power; + +	if (sched_feat(ARCH_POWER)) +		power *= arch_scale_freq_power(sd, cpu); +	else +		power *= default_scale_freq_power(sd, cpu); + +	power >>= SCHED_POWER_SHIFT; + +	power *= scale_rt_power(cpu); +	power >>= SCHED_POWER_SHIFT; + +	if (!power) +		power = 1; + +	cpu_rq(cpu)->cpu_power = power; +	sdg->sgp->power = power; +} + +void update_group_power(struct sched_domain *sd, int cpu) +{ +	struct sched_domain *child = sd->child; +	struct sched_group *group, *sdg = sd->groups; +	unsigned long power; + +	if (!child) { +		update_cpu_power(sd, cpu); +		return; +	} + +	power = 0; + +	group = child->groups; +	do { +		power += group->sgp->power; +		group = group->next; +	} while (group != child->groups); + +	sdg->sgp->power = power; +} + +/* + * Try and fix up capacity for tiny siblings, this is needed when + * things like SD_ASYM_PACKING need f_b_g to select another sibling + * which on its own isn't powerful enough. + * + * See update_sd_pick_busiest() and check_asym_packing(). + */ +static inline int +fix_small_capacity(struct sched_domain *sd, struct sched_group *group) +{ +	/* +	 * Only siblings can have significantly less than SCHED_POWER_SCALE +	 */ +	if (!(sd->flags & SD_SHARE_CPUPOWER)) +		return 0; + +	/* +	 * If ~90% of the cpu_power is still there, we're good. +	 */ +	if (group->sgp->power * 32 > group->sgp->power_orig * 29) +		return 1; + +	return 0; +} + +/** + * update_sg_lb_stats - Update sched_group's statistics for load balancing. + * @sd: The sched_domain whose statistics are to be updated. + * @group: sched_group whose statistics are to be updated. + * @this_cpu: Cpu for which load balance is currently performed. + * @idle: Idle status of this_cpu + * @load_idx: Load index of sched_domain of this_cpu for load calc. + * @local_group: Does group contain this_cpu. + * @cpus: Set of cpus considered for load balancing. + * @balance: Should we balance. + * @sgs: variable to hold the statistics for this group. + */ +static inline void update_sg_lb_stats(struct sched_domain *sd, +			struct sched_group *group, int this_cpu, +			enum cpu_idle_type idle, int load_idx, +			int local_group, const struct cpumask *cpus, +			int *balance, struct sg_lb_stats *sgs) +{ +	unsigned long load, max_cpu_load, min_cpu_load, max_nr_running; +	int i; +	unsigned int balance_cpu = -1, first_idle_cpu = 0; +	unsigned long avg_load_per_task = 0; + +	if (local_group) +		balance_cpu = group_first_cpu(group); + +	/* Tally up the load of all CPUs in the group */ +	max_cpu_load = 0; +	min_cpu_load = ~0UL; +	max_nr_running = 0; + +	for_each_cpu_and(i, sched_group_cpus(group), cpus) { +		struct rq *rq = cpu_rq(i); + +		/* Bias balancing toward cpus of our domain */ +		if (local_group) { +			if (idle_cpu(i) && !first_idle_cpu) { +				first_idle_cpu = 1; +				balance_cpu = i; +			} + +			load = target_load(i, load_idx); +		} else { +			load = source_load(i, load_idx); +			if (load > max_cpu_load) { +				max_cpu_load = load; +				max_nr_running = rq->nr_running; +			} +			if (min_cpu_load > load) +				min_cpu_load = load; +		} + +		sgs->group_load += load; +		sgs->sum_nr_running += rq->nr_running; +		sgs->sum_weighted_load += weighted_cpuload(i); +		if (idle_cpu(i)) +			sgs->idle_cpus++; +	} + +	/* +	 * First idle cpu or the first cpu(busiest) in this sched group +	 * is eligible for doing load balancing at this and above +	 * domains. In the newly idle case, we will allow all the cpu's +	 * to do the newly idle load balance. +	 */ +	if (idle != CPU_NEWLY_IDLE && local_group) { +		if (balance_cpu != this_cpu) { +			*balance = 0; +			return; +		} +		update_group_power(sd, this_cpu); +	} + +	/* Adjust by relative CPU power of the group */ +	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power; + +	/* +	 * Consider the group unbalanced when the imbalance is larger +	 * than the average weight of a task. +	 * +	 * APZ: with cgroup the avg task weight can vary wildly and +	 *      might not be a suitable number - should we keep a +	 *      normalized nr_running number somewhere that negates +	 *      the hierarchy? +	 */ +	if (sgs->sum_nr_running) +		avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running; + +	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1) +		sgs->group_imb = 1; + +	sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power, +						SCHED_POWER_SCALE); +	if (!sgs->group_capacity) +		sgs->group_capacity = fix_small_capacity(sd, group); +	sgs->group_weight = group->group_weight; + +	if (sgs->group_capacity > sgs->sum_nr_running) +		sgs->group_has_capacity = 1; +} + +/** + * update_sd_pick_busiest - return 1 on busiest group + * @sd: sched_domain whose statistics are to be checked + * @sds: sched_domain statistics + * @sg: sched_group candidate to be checked for being the busiest + * @sgs: sched_group statistics + * @this_cpu: the current cpu + * + * Determine if @sg is a busier group than the previously selected + * busiest group. + */ +static bool update_sd_pick_busiest(struct sched_domain *sd, +				   struct sd_lb_stats *sds, +				   struct sched_group *sg, +				   struct sg_lb_stats *sgs, +				   int this_cpu) +{ +	if (sgs->avg_load <= sds->max_load) +		return false; + +	if (sgs->sum_nr_running > sgs->group_capacity) +		return true; + +	if (sgs->group_imb) +		return true; + +	/* +	 * ASYM_PACKING needs to move all the work to the lowest +	 * numbered CPUs in the group, therefore mark all groups +	 * higher than ourself as busy. +	 */ +	if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running && +	    this_cpu < group_first_cpu(sg)) { +		if (!sds->busiest) +			return true; + +		if (group_first_cpu(sds->busiest) > group_first_cpu(sg)) +			return true; +	} + +	return false; +} + +/** + * update_sd_lb_stats - Update sched_domain's statistics for load balancing. + * @sd: sched_domain whose statistics are to be updated. + * @this_cpu: Cpu for which load balance is currently performed. + * @idle: Idle status of this_cpu + * @cpus: Set of cpus considered for load balancing. + * @balance: Should we balance. + * @sds: variable to hold the statistics for this sched_domain. + */ +static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu, +			enum cpu_idle_type idle, const struct cpumask *cpus, +			int *balance, struct sd_lb_stats *sds) +{ +	struct sched_domain *child = sd->child; +	struct sched_group *sg = sd->groups; +	struct sg_lb_stats sgs; +	int load_idx, prefer_sibling = 0; + +	if (child && child->flags & SD_PREFER_SIBLING) +		prefer_sibling = 1; + +	init_sd_power_savings_stats(sd, sds, idle); +	load_idx = get_sd_load_idx(sd, idle); + +	do { +		int local_group; + +		local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg)); +		memset(&sgs, 0, sizeof(sgs)); +		update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, +				local_group, cpus, balance, &sgs); + +		if (local_group && !(*balance)) +			return; + +		sds->total_load += sgs.group_load; +		sds->total_pwr += sg->sgp->power; + +		/* +		 * In case the child domain prefers tasks go to siblings +		 * first, lower the sg capacity to one so that we'll try +		 * and move all the excess tasks away. We lower the capacity +		 * of a group only if the local group has the capacity to fit +		 * these excess tasks, i.e. nr_running < group_capacity. The +		 * extra check prevents the case where you always pull from the +		 * heaviest group when it is already under-utilized (possible +		 * with a large weight task outweighs the tasks on the system). +		 */ +		if (prefer_sibling && !local_group && sds->this_has_capacity) +			sgs.group_capacity = min(sgs.group_capacity, 1UL); + +		if (local_group) { +			sds->this_load = sgs.avg_load; +			sds->this = sg; +			sds->this_nr_running = sgs.sum_nr_running; +			sds->this_load_per_task = sgs.sum_weighted_load; +			sds->this_has_capacity = sgs.group_has_capacity; +			sds->this_idle_cpus = sgs.idle_cpus; +		} else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) { +			sds->max_load = sgs.avg_load; +			sds->busiest = sg; +			sds->busiest_nr_running = sgs.sum_nr_running; +			sds->busiest_idle_cpus = sgs.idle_cpus; +			sds->busiest_group_capacity = sgs.group_capacity; +			sds->busiest_load_per_task = sgs.sum_weighted_load; +			sds->busiest_has_capacity = sgs.group_has_capacity; +			sds->busiest_group_weight = sgs.group_weight; +			sds->group_imb = sgs.group_imb; +		} + +		update_sd_power_savings_stats(sg, sds, local_group, &sgs); +		sg = sg->next; +	} while (sg != sd->groups); +} + +/** + * check_asym_packing - Check to see if the group is packed into the + *			sched doman. + * + * This is primarily intended to used at the sibling level.  Some + * cores like POWER7 prefer to use lower numbered SMT threads.  In the + * case of POWER7, it can move to lower SMT modes only when higher + * threads are idle.  When in lower SMT modes, the threads will + * perform better since they share less core resources.  Hence when we + * have idle threads, we want them to be the higher ones. + * + * This packing function is run on idle threads.  It checks to see if + * the busiest CPU in this domain (core in the P7 case) has a higher + * CPU number than the packing function is being run on.  Here we are + * assuming lower CPU number will be equivalent to lower a SMT thread + * number. + * + * Returns 1 when packing is required and a task should be moved to + * this CPU.  The amount of the imbalance is returned in *imbalance. + * + * @sd: The sched_domain whose packing is to be checked. + * @sds: Statistics of the sched_domain which is to be packed + * @this_cpu: The cpu at whose sched_domain we're performing load-balance. + * @imbalance: returns amount of imbalanced due to packing. + */ +static int check_asym_packing(struct sched_domain *sd, +			      struct sd_lb_stats *sds, +			      int this_cpu, unsigned long *imbalance) +{ +	int busiest_cpu; + +	if (!(sd->flags & SD_ASYM_PACKING)) +		return 0; + +	if (!sds->busiest) +		return 0; + +	busiest_cpu = group_first_cpu(sds->busiest); +	if (this_cpu > busiest_cpu) +		return 0; + +	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power, +				       SCHED_POWER_SCALE); +	return 1; +} + +/** + * fix_small_imbalance - Calculate the minor imbalance that exists + *			amongst the groups of a sched_domain, during + *			load balancing. + * @sds: Statistics of the sched_domain whose imbalance is to be calculated. + * @this_cpu: The cpu at whose sched_domain we're performing load-balance. + * @imbalance: Variable to store the imbalance. + */ +static inline void fix_small_imbalance(struct sd_lb_stats *sds, +				int this_cpu, unsigned long *imbalance) +{ +	unsigned long tmp, pwr_now = 0, pwr_move = 0; +	unsigned int imbn = 2; +	unsigned long scaled_busy_load_per_task; + +	if (sds->this_nr_running) { +		sds->this_load_per_task /= sds->this_nr_running; +		if (sds->busiest_load_per_task > +				sds->this_load_per_task) +			imbn = 1; +	} else +		sds->this_load_per_task = +			cpu_avg_load_per_task(this_cpu); + +	scaled_busy_load_per_task = sds->busiest_load_per_task +					 * SCHED_POWER_SCALE; +	scaled_busy_load_per_task /= sds->busiest->sgp->power; + +	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >= +			(scaled_busy_load_per_task * imbn)) { +		*imbalance = sds->busiest_load_per_task; +		return; +	} + +	/* +	 * OK, we don't have enough imbalance to justify moving tasks, +	 * however we may be able to increase total CPU power used by +	 * moving them. +	 */ + +	pwr_now += sds->busiest->sgp->power * +			min(sds->busiest_load_per_task, sds->max_load); +	pwr_now += sds->this->sgp->power * +			min(sds->this_load_per_task, sds->this_load); +	pwr_now /= SCHED_POWER_SCALE; + +	/* Amount of load we'd subtract */ +	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / +		sds->busiest->sgp->power; +	if (sds->max_load > tmp) +		pwr_move += sds->busiest->sgp->power * +			min(sds->busiest_load_per_task, sds->max_load - tmp); + +	/* Amount of load we'd add */ +	if (sds->max_load * sds->busiest->sgp->power < +		sds->busiest_load_per_task * SCHED_POWER_SCALE) +		tmp = (sds->max_load * sds->busiest->sgp->power) / +			sds->this->sgp->power; +	else +		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) / +			sds->this->sgp->power; +	pwr_move += sds->this->sgp->power * +			min(sds->this_load_per_task, sds->this_load + tmp); +	pwr_move /= SCHED_POWER_SCALE; + +	/* Move if we gain throughput */ +	if (pwr_move > pwr_now) +		*imbalance = sds->busiest_load_per_task; +} + +/** + * calculate_imbalance - Calculate the amount of imbalance present within the + *			 groups of a given sched_domain during load balance. + * @sds: statistics of the sched_domain whose imbalance is to be calculated. + * @this_cpu: Cpu for which currently load balance is being performed. + * @imbalance: The variable to store the imbalance. + */ +static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu, +		unsigned long *imbalance) +{ +	unsigned long max_pull, load_above_capacity = ~0UL; + +	sds->busiest_load_per_task /= sds->busiest_nr_running; +	if (sds->group_imb) { +		sds->busiest_load_per_task = +			min(sds->busiest_load_per_task, sds->avg_load); +	} + +	/* +	 * In the presence of smp nice balancing, certain scenarios can have +	 * max load less than avg load(as we skip the groups at or below +	 * its cpu_power, while calculating max_load..) +	 */ +	if (sds->max_load < sds->avg_load) { +		*imbalance = 0; +		return fix_small_imbalance(sds, this_cpu, imbalance); +	} + +	if (!sds->group_imb) { +		/* +		 * Don't want to pull so many tasks that a group would go idle. +		 */ +		load_above_capacity = (sds->busiest_nr_running - +						sds->busiest_group_capacity); + +		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE); + +		load_above_capacity /= sds->busiest->sgp->power; +	} + +	/* +	 * We're trying to get all the cpus to the average_load, so we don't +	 * want to push ourselves above the average load, nor do we wish to +	 * reduce the max loaded cpu below the average load. At the same time, +	 * we also don't want to reduce the group load below the group capacity +	 * (so that we can implement power-savings policies etc). Thus we look +	 * for the minimum possible imbalance. +	 * Be careful of negative numbers as they'll appear as very large values +	 * with unsigned longs. +	 */ +	max_pull = min(sds->max_load - sds->avg_load, load_above_capacity); + +	/* How much load to actually move to equalise the imbalance */ +	*imbalance = min(max_pull * sds->busiest->sgp->power, +		(sds->avg_load - sds->this_load) * sds->this->sgp->power) +			/ SCHED_POWER_SCALE; + +	/* +	 * if *imbalance is less than the average load per runnable task +	 * there is no guarantee that any tasks will be moved so we'll have +	 * a think about bumping its value to force at least one task to be +	 * moved +	 */ +	if (*imbalance < sds->busiest_load_per_task) +		return fix_small_imbalance(sds, this_cpu, imbalance); + +} + +/******* find_busiest_group() helpers end here *********************/ + +/** + * find_busiest_group - Returns the busiest group within the sched_domain + * if there is an imbalance. If there isn't an imbalance, and + * the user has opted for power-savings, it returns a group whose + * CPUs can be put to idle by rebalancing those tasks elsewhere, if + * such a group exists. + * + * Also calculates the amount of weighted load which should be moved + * to restore balance. + * + * @sd: The sched_domain whose busiest group is to be returned. + * @this_cpu: The cpu for which load balancing is currently being performed. + * @imbalance: Variable which stores amount of weighted load which should + *		be moved to restore balance/put a group to idle. + * @idle: The idle status of this_cpu. + * @cpus: The set of CPUs under consideration for load-balancing. + * @balance: Pointer to a variable indicating if this_cpu + *	is the appropriate cpu to perform load balancing at this_level. + * + * Returns:	- the busiest group if imbalance exists. + *		- If no imbalance and user has opted for power-savings balance, + *		   return the least loaded group whose CPUs can be + *		   put to idle by rebalancing its tasks onto our group. + */ +static struct sched_group * +find_busiest_group(struct sched_domain *sd, int this_cpu, +		   unsigned long *imbalance, enum cpu_idle_type idle, +		   const struct cpumask *cpus, int *balance) +{ +	struct sd_lb_stats sds; + +	memset(&sds, 0, sizeof(sds)); + +	/* +	 * Compute the various statistics relavent for load balancing at +	 * this level. +	 */ +	update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds); + +	/* +	 * this_cpu is not the appropriate cpu to perform load balancing at +	 * this level. +	 */ +	if (!(*balance)) +		goto ret; + +	if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) && +	    check_asym_packing(sd, &sds, this_cpu, imbalance)) +		return sds.busiest; + +	/* There is no busy sibling group to pull tasks from */ +	if (!sds.busiest || sds.busiest_nr_running == 0) +		goto out_balanced; + +	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr; + +	/* +	 * If the busiest group is imbalanced the below checks don't +	 * work because they assumes all things are equal, which typically +	 * isn't true due to cpus_allowed constraints and the like. +	 */ +	if (sds.group_imb) +		goto force_balance; + +	/* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */ +	if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity && +			!sds.busiest_has_capacity) +		goto force_balance; + +	/* +	 * If the local group is more busy than the selected busiest group +	 * don't try and pull any tasks. +	 */ +	if (sds.this_load >= sds.max_load) +		goto out_balanced; + +	/* +	 * Don't pull any tasks if this group is already above the domain +	 * average load. +	 */ +	if (sds.this_load >= sds.avg_load) +		goto out_balanced; + +	if (idle == CPU_IDLE) { +		/* +		 * This cpu is idle. If the busiest group load doesn't +		 * have more tasks than the number of available cpu's and +		 * there is no imbalance between this and busiest group +		 * wrt to idle cpu's, it is balanced. +		 */ +		if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) && +		    sds.busiest_nr_running <= sds.busiest_group_weight) +			goto out_balanced; +	} else { +		/* +		 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use +		 * imbalance_pct to be conservative. +		 */ +		if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load) +			goto out_balanced; +	} + +force_balance: +	/* Looks like there is an imbalance. Compute it */ +	calculate_imbalance(&sds, this_cpu, imbalance); +	return sds.busiest; + +out_balanced: +	/* +	 * There is no obvious imbalance. But check if we can do some balancing +	 * to save power. +	 */ +	if (check_power_save_busiest_group(&sds, this_cpu, imbalance)) +		return sds.busiest; +ret: +	*imbalance = 0; +	return NULL; +} + +/* + * find_busiest_queue - find the busiest runqueue among the cpus in group. + */ +static struct rq * +find_busiest_queue(struct sched_domain *sd, struct sched_group *group, +		   enum cpu_idle_type idle, unsigned long imbalance, +		   const struct cpumask *cpus) +{ +	struct rq *busiest = NULL, *rq; +	unsigned long max_load = 0; +	int i; + +	for_each_cpu(i, sched_group_cpus(group)) { +		unsigned long power = power_of(i); +		unsigned long capacity = DIV_ROUND_CLOSEST(power, +							   SCHED_POWER_SCALE); +		unsigned long wl; + +		if (!capacity) +			capacity = fix_small_capacity(sd, group); + +		if (!cpumask_test_cpu(i, cpus)) +			continue; + +		rq = cpu_rq(i); +		wl = weighted_cpuload(i); + +		/* +		 * When comparing with imbalance, use weighted_cpuload() +		 * which is not scaled with the cpu power. +		 */ +		if (capacity && rq->nr_running == 1 && wl > imbalance) +			continue; + +		/* +		 * For the load comparisons with the other cpu's, consider +		 * the weighted_cpuload() scaled with the cpu power, so that +		 * the load can be moved away from the cpu that is potentially +		 * running at a lower capacity. +		 */ +		wl = (wl * SCHED_POWER_SCALE) / power; + +		if (wl > max_load) { +			max_load = wl; +			busiest = rq; +		} +	} + +	return busiest; +} + +/* + * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but + * so long as it is large enough. + */ +#define MAX_PINNED_INTERVAL	512 + +/* Working cpumask for load_balance and load_balance_newidle. */ +DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask); + +static int need_active_balance(struct sched_domain *sd, int idle, +			       int busiest_cpu, int this_cpu) +{ +	if (idle == CPU_NEWLY_IDLE) { + +		/* +		 * ASYM_PACKING needs to force migrate tasks from busy but +		 * higher numbered CPUs in order to pack all tasks in the +		 * lowest numbered CPUs. +		 */ +		if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu) +			return 1; + +		/* +		 * The only task running in a non-idle cpu can be moved to this +		 * cpu in an attempt to completely freeup the other CPU +		 * package. +		 * +		 * The package power saving logic comes from +		 * find_busiest_group(). If there are no imbalance, then +		 * f_b_g() will return NULL. However when sched_mc={1,2} then +		 * f_b_g() will select a group from which a running task may be +		 * pulled to this cpu in order to make the other package idle. +		 * If there is no opportunity to make a package idle and if +		 * there are no imbalance, then f_b_g() will return NULL and no +		 * action will be taken in load_balance_newidle(). +		 * +		 * Under normal task pull operation due to imbalance, there +		 * will be more than one task in the source run queue and +		 * move_tasks() will succeed.  ld_moved will be true and this +		 * active balance code will not be triggered. +		 */ +		if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP) +			return 0; +	} + +	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2); +} + +static int active_load_balance_cpu_stop(void *data); + +/* + * Check this_cpu to ensure it is balanced within domain. Attempt to move + * tasks if there is an imbalance. + */ +static int load_balance(int this_cpu, struct rq *this_rq, +			struct sched_domain *sd, enum cpu_idle_type idle, +			int *balance) +{ +	int ld_moved, lb_flags = 0, active_balance = 0; +	struct sched_group *group; +	unsigned long imbalance; +	struct rq *busiest; +	unsigned long flags; +	struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask); + +	cpumask_copy(cpus, cpu_active_mask); + +	schedstat_inc(sd, lb_count[idle]); + +redo: +	group = find_busiest_group(sd, this_cpu, &imbalance, idle, +				   cpus, balance); + +	if (*balance == 0) +		goto out_balanced; + +	if (!group) { +		schedstat_inc(sd, lb_nobusyg[idle]); +		goto out_balanced; +	} + +	busiest = find_busiest_queue(sd, group, idle, imbalance, cpus); +	if (!busiest) { +		schedstat_inc(sd, lb_nobusyq[idle]); +		goto out_balanced; +	} + +	BUG_ON(busiest == this_rq); + +	schedstat_add(sd, lb_imbalance[idle], imbalance); + +	ld_moved = 0; +	if (busiest->nr_running > 1) { +		/* +		 * Attempt to move tasks. If find_busiest_group has found +		 * an imbalance but busiest->nr_running <= 1, the group is +		 * still unbalanced. ld_moved simply stays zero, so it is +		 * correctly treated as an imbalance. +		 */ +		lb_flags |= LBF_ALL_PINNED; +		local_irq_save(flags); +		double_rq_lock(this_rq, busiest); +		ld_moved = move_tasks(this_rq, this_cpu, busiest, +				      imbalance, sd, idle, &lb_flags); +		double_rq_unlock(this_rq, busiest); +		local_irq_restore(flags); + +		/* +		 * some other cpu did the load balance for us. +		 */ +		if (ld_moved && this_cpu != smp_processor_id()) +			resched_cpu(this_cpu); + +		if (lb_flags & LBF_ABORT) +			goto out_balanced; + +		if (lb_flags & LBF_NEED_BREAK) { +			lb_flags &= ~LBF_NEED_BREAK; +			goto redo; +		} + +		/* All tasks on this runqueue were pinned by CPU affinity */ +		if (unlikely(lb_flags & LBF_ALL_PINNED)) { +			cpumask_clear_cpu(cpu_of(busiest), cpus); +			if (!cpumask_empty(cpus)) +				goto redo; +			goto out_balanced; +		} +	} + +	if (!ld_moved) { +		schedstat_inc(sd, lb_failed[idle]); +		/* +		 * Increment the failure counter only on periodic balance. +		 * We do not want newidle balance, which can be very +		 * frequent, pollute the failure counter causing +		 * excessive cache_hot migrations and active balances. +		 */ +		if (idle != CPU_NEWLY_IDLE) +			sd->nr_balance_failed++; + +		if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) { +			raw_spin_lock_irqsave(&busiest->lock, flags); + +			/* don't kick the active_load_balance_cpu_stop, +			 * if the curr task on busiest cpu can't be +			 * moved to this_cpu +			 */ +			if (!cpumask_test_cpu(this_cpu, +					tsk_cpus_allowed(busiest->curr))) { +				raw_spin_unlock_irqrestore(&busiest->lock, +							    flags); +				lb_flags |= LBF_ALL_PINNED; +				goto out_one_pinned; +			} + +			/* +			 * ->active_balance synchronizes accesses to +			 * ->active_balance_work.  Once set, it's cleared +			 * only after active load balance is finished. +			 */ +			if (!busiest->active_balance) { +				busiest->active_balance = 1; +				busiest->push_cpu = this_cpu; +				active_balance = 1; +			} +			raw_spin_unlock_irqrestore(&busiest->lock, flags); + +			if (active_balance) +				stop_one_cpu_nowait(cpu_of(busiest), +					active_load_balance_cpu_stop, busiest, +					&busiest->active_balance_work); + +			/* +			 * We've kicked active balancing, reset the failure +			 * counter. +			 */ +			sd->nr_balance_failed = sd->cache_nice_tries+1; +		} +	} else +		sd->nr_balance_failed = 0; + +	if (likely(!active_balance)) { +		/* We were unbalanced, so reset the balancing interval */ +		sd->balance_interval = sd->min_interval; +	} else { +		/* +		 * If we've begun active balancing, start to back off. This +		 * case may not be covered by the all_pinned logic if there +		 * is only 1 task on the busy runqueue (because we don't call +		 * move_tasks). +		 */ +		if (sd->balance_interval < sd->max_interval) +			sd->balance_interval *= 2; +	} + +	goto out; + +out_balanced: +	schedstat_inc(sd, lb_balanced[idle]); + +	sd->nr_balance_failed = 0; + +out_one_pinned: +	/* tune up the balancing interval */ +	if (((lb_flags & LBF_ALL_PINNED) && +			sd->balance_interval < MAX_PINNED_INTERVAL) || +			(sd->balance_interval < sd->max_interval)) +		sd->balance_interval *= 2; + +	ld_moved = 0; +out: +	return ld_moved; +} + +/* + * idle_balance is called by schedule() if this_cpu is about to become + * idle. Attempts to pull tasks from other CPUs. + */ +void idle_balance(int this_cpu, struct rq *this_rq) +{ +	struct sched_domain *sd; +	int pulled_task = 0; +	unsigned long next_balance = jiffies + HZ; + +	this_rq->idle_stamp = this_rq->clock; + +	if (this_rq->avg_idle < sysctl_sched_migration_cost) +		return; + +	/* +	 * Drop the rq->lock, but keep IRQ/preempt disabled. +	 */ +	raw_spin_unlock(&this_rq->lock); + +	update_shares(this_cpu); +	rcu_read_lock(); +	for_each_domain(this_cpu, sd) { +		unsigned long interval; +		int balance = 1; + +		if (!(sd->flags & SD_LOAD_BALANCE)) +			continue; + +		if (sd->flags & SD_BALANCE_NEWIDLE) { +			/* If we've pulled tasks over stop searching: */ +			pulled_task = load_balance(this_cpu, this_rq, +						   sd, CPU_NEWLY_IDLE, &balance); +		} + +		interval = msecs_to_jiffies(sd->balance_interval); +		if (time_after(next_balance, sd->last_balance + interval)) +			next_balance = sd->last_balance + interval; +		if (pulled_task) { +			this_rq->idle_stamp = 0; +			break; +		} +	} +	rcu_read_unlock(); + +	raw_spin_lock(&this_rq->lock); + +	if (pulled_task || time_after(jiffies, this_rq->next_balance)) { +		/* +		 * We are going idle. next_balance may be set based on +		 * a busy processor. So reset next_balance. +		 */ +		this_rq->next_balance = next_balance; +	} +} + +/* + * active_load_balance_cpu_stop is run by cpu stopper. It pushes + * running tasks off the busiest CPU onto idle CPUs. It requires at + * least 1 task to be running on each physical CPU where possible, and + * avoids physical / logical imbalances. + */ +static int active_load_balance_cpu_stop(void *data) +{ +	struct rq *busiest_rq = data; +	int busiest_cpu = cpu_of(busiest_rq); +	int target_cpu = busiest_rq->push_cpu; +	struct rq *target_rq = cpu_rq(target_cpu); +	struct sched_domain *sd; + +	raw_spin_lock_irq(&busiest_rq->lock); + +	/* make sure the requested cpu hasn't gone down in the meantime */ +	if (unlikely(busiest_cpu != smp_processor_id() || +		     !busiest_rq->active_balance)) +		goto out_unlock; + +	/* Is there any task to move? */ +	if (busiest_rq->nr_running <= 1) +		goto out_unlock; + +	/* +	 * This condition is "impossible", if it occurs +	 * we need to fix it. Originally reported by +	 * Bjorn Helgaas on a 128-cpu setup. +	 */ +	BUG_ON(busiest_rq == target_rq); + +	/* move a task from busiest_rq to target_rq */ +	double_lock_balance(busiest_rq, target_rq); + +	/* Search for an sd spanning us and the target CPU. */ +	rcu_read_lock(); +	for_each_domain(target_cpu, sd) { +		if ((sd->flags & SD_LOAD_BALANCE) && +		    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd))) +				break; +	} + +	if (likely(sd)) { +		schedstat_inc(sd, alb_count); + +		if (move_one_task(target_rq, target_cpu, busiest_rq, +				  sd, CPU_IDLE)) +			schedstat_inc(sd, alb_pushed); +		else +			schedstat_inc(sd, alb_failed); +	} +	rcu_read_unlock(); +	double_unlock_balance(busiest_rq, target_rq); +out_unlock: +	busiest_rq->active_balance = 0; +	raw_spin_unlock_irq(&busiest_rq->lock); +	return 0; +} + +#ifdef CONFIG_NO_HZ +/* + * idle load balancing details + * - When one of the busy CPUs notice that there may be an idle rebalancing + *   needed, they will kick the idle load balancer, which then does idle + *   load balancing for all the idle CPUs. + */ +static struct { +	cpumask_var_t idle_cpus_mask; +	atomic_t nr_cpus; +	unsigned long next_balance;     /* in jiffy units */ +} nohz ____cacheline_aligned; + +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +/** + * lowest_flag_domain - Return lowest sched_domain containing flag. + * @cpu:	The cpu whose lowest level of sched domain is to + *		be returned. + * @flag:	The flag to check for the lowest sched_domain + *		for the given cpu. + * + * Returns the lowest sched_domain of a cpu which contains the given flag. + */ +static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) +{ +	struct sched_domain *sd; + +	for_each_domain(cpu, sd) +		if (sd->flags & flag) +			break; + +	return sd; +} + +/** + * for_each_flag_domain - Iterates over sched_domains containing the flag. + * @cpu:	The cpu whose domains we're iterating over. + * @sd:		variable holding the value of the power_savings_sd + *		for cpu. + * @flag:	The flag to filter the sched_domains to be iterated. + * + * Iterates over all the scheduler domains for a given cpu that has the 'flag' + * set, starting from the lowest sched_domain to the highest. + */ +#define for_each_flag_domain(cpu, sd, flag) \ +	for (sd = lowest_flag_domain(cpu, flag); \ +		(sd && (sd->flags & flag)); sd = sd->parent) + +/** + * find_new_ilb - Finds the optimum idle load balancer for nomination. + * @cpu:	The cpu which is nominating a new idle_load_balancer. + * + * Returns:	Returns the id of the idle load balancer if it exists, + *		Else, returns >= nr_cpu_ids. + * + * This algorithm picks the idle load balancer such that it belongs to a + * semi-idle powersavings sched_domain. The idea is to try and avoid + * completely idle packages/cores just for the purpose of idle load balancing + * when there are other idle cpu's which are better suited for that job. + */ +static int find_new_ilb(int cpu) +{ +	int ilb = cpumask_first(nohz.idle_cpus_mask); +	struct sched_group *ilbg; +	struct sched_domain *sd; + +	/* +	 * Have idle load balancer selection from semi-idle packages only +	 * when power-aware load balancing is enabled +	 */ +	if (!(sched_smt_power_savings || sched_mc_power_savings)) +		goto out_done; + +	/* +	 * Optimize for the case when we have no idle CPUs or only one +	 * idle CPU. Don't walk the sched_domain hierarchy in such cases +	 */ +	if (cpumask_weight(nohz.idle_cpus_mask) < 2) +		goto out_done; + +	rcu_read_lock(); +	for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) { +		ilbg = sd->groups; + +		do { +			if (ilbg->group_weight != +				atomic_read(&ilbg->sgp->nr_busy_cpus)) { +				ilb = cpumask_first_and(nohz.idle_cpus_mask, +							sched_group_cpus(ilbg)); +				goto unlock; +			} + +			ilbg = ilbg->next; + +		} while (ilbg != sd->groups); +	} +unlock: +	rcu_read_unlock(); + +out_done: +	if (ilb < nr_cpu_ids && idle_cpu(ilb)) +		return ilb; + +	return nr_cpu_ids; +} +#else /*  (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */ +static inline int find_new_ilb(int call_cpu) +{ +	return nr_cpu_ids; +} +#endif + +/* + * Kick a CPU to do the nohz balancing, if it is time for it. We pick the + * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle + * CPU (if there is one). + */ +static void nohz_balancer_kick(int cpu) +{ +	int ilb_cpu; + +	nohz.next_balance++; + +	ilb_cpu = find_new_ilb(cpu); + +	if (ilb_cpu >= nr_cpu_ids) +		return; + +	if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu))) +		return; +	/* +	 * Use smp_send_reschedule() instead of resched_cpu(). +	 * This way we generate a sched IPI on the target cpu which +	 * is idle. And the softirq performing nohz idle load balance +	 * will be run before returning from the IPI. +	 */ +	smp_send_reschedule(ilb_cpu); +	return; +} + +static inline void set_cpu_sd_state_busy(void) +{ +	struct sched_domain *sd; +	int cpu = smp_processor_id(); + +	if (!test_bit(NOHZ_IDLE, nohz_flags(cpu))) +		return; +	clear_bit(NOHZ_IDLE, nohz_flags(cpu)); + +	rcu_read_lock(); +	for_each_domain(cpu, sd) +		atomic_inc(&sd->groups->sgp->nr_busy_cpus); +	rcu_read_unlock(); +} + +void set_cpu_sd_state_idle(void) +{ +	struct sched_domain *sd; +	int cpu = smp_processor_id(); + +	if (test_bit(NOHZ_IDLE, nohz_flags(cpu))) +		return; +	set_bit(NOHZ_IDLE, nohz_flags(cpu)); + +	rcu_read_lock(); +	for_each_domain(cpu, sd) +		atomic_dec(&sd->groups->sgp->nr_busy_cpus); +	rcu_read_unlock(); +} + +/* + * This routine will record that this cpu is going idle with tick stopped. + * This info will be used in performing idle load balancing in the future. + */ +void select_nohz_load_balancer(int stop_tick) +{ +	int cpu = smp_processor_id(); + +	if (stop_tick) { +		if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu))) +			return; + +		cpumask_set_cpu(cpu, nohz.idle_cpus_mask); +		atomic_inc(&nohz.nr_cpus); +		set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); +	} +	return; +} +#endif + +static DEFINE_SPINLOCK(balancing); + +static unsigned long __read_mostly max_load_balance_interval = HZ/10; + +/* + * Scale the max load_balance interval with the number of CPUs in the system. + * This trades load-balance latency on larger machines for less cross talk. + */ +void update_max_interval(void) +{ +	max_load_balance_interval = HZ*num_online_cpus()/10; +} + +/* + * It checks each scheduling domain to see if it is due to be balanced, + * and initiates a balancing operation if so. + * + * Balancing parameters are set up in arch_init_sched_domains. + */ +static void rebalance_domains(int cpu, enum cpu_idle_type idle) +{ +	int balance = 1; +	struct rq *rq = cpu_rq(cpu); +	unsigned long interval; +	struct sched_domain *sd; +	/* Earliest time when we have to do rebalance again */ +	unsigned long next_balance = jiffies + 60*HZ; +	int update_next_balance = 0; +	int need_serialize; + +	update_shares(cpu); + +	rcu_read_lock(); +	for_each_domain(cpu, sd) { +		if (!(sd->flags & SD_LOAD_BALANCE)) +			continue; + +		interval = sd->balance_interval; +		if (idle != CPU_IDLE) +			interval *= sd->busy_factor; + +		/* scale ms to jiffies */ +		interval = msecs_to_jiffies(interval); +		interval = clamp(interval, 1UL, max_load_balance_interval); + +		need_serialize = sd->flags & SD_SERIALIZE; + +		if (need_serialize) { +			if (!spin_trylock(&balancing)) +				goto out; +		} + +		if (time_after_eq(jiffies, sd->last_balance + interval)) { +			if (load_balance(cpu, rq, sd, idle, &balance)) { +				/* +				 * We've pulled tasks over so either we're no +				 * longer idle. +				 */ +				idle = CPU_NOT_IDLE; +			} +			sd->last_balance = jiffies; +		} +		if (need_serialize) +			spin_unlock(&balancing); +out: +		if (time_after(next_balance, sd->last_balance + interval)) { +			next_balance = sd->last_balance + interval; +			update_next_balance = 1; +		} + +		/* +		 * Stop the load balance at this level. There is another +		 * CPU in our sched group which is doing load balancing more +		 * actively. +		 */ +		if (!balance) +			break; +	} +	rcu_read_unlock(); + +	/* +	 * next_balance will be updated only when there is a need. +	 * When the cpu is attached to null domain for ex, it will not be +	 * updated. +	 */ +	if (likely(update_next_balance)) +		rq->next_balance = next_balance; +} + +#ifdef CONFIG_NO_HZ +/* + * In CONFIG_NO_HZ case, the idle balance kickee will do the + * rebalancing for all the cpus for whom scheduler ticks are stopped. + */ +static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) +{ +	struct rq *this_rq = cpu_rq(this_cpu); +	struct rq *rq; +	int balance_cpu; + +	if (idle != CPU_IDLE || +	    !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu))) +		goto end; + +	for_each_cpu(balance_cpu, nohz.idle_cpus_mask) { +		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu)) +			continue; + +		/* +		 * If this cpu gets work to do, stop the load balancing +		 * work being done for other cpus. Next load +		 * balancing owner will pick it up. +		 */ +		if (need_resched()) +			break; + +		raw_spin_lock_irq(&this_rq->lock); +		update_rq_clock(this_rq); +		update_cpu_load(this_rq); +		raw_spin_unlock_irq(&this_rq->lock); + +		rebalance_domains(balance_cpu, CPU_IDLE); + +		rq = cpu_rq(balance_cpu); +		if (time_after(this_rq->next_balance, rq->next_balance)) +			this_rq->next_balance = rq->next_balance; +	} +	nohz.next_balance = this_rq->next_balance; +end: +	clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)); +} + +/* + * Current heuristic for kicking the idle load balancer in the presence + * of an idle cpu is the system. + *   - This rq has more than one task. + *   - At any scheduler domain level, this cpu's scheduler group has multiple + *     busy cpu's exceeding the group's power. + *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler + *     domain span are idle. + */ +static inline int nohz_kick_needed(struct rq *rq, int cpu) +{ +	unsigned long now = jiffies; +	struct sched_domain *sd; + +	if (unlikely(idle_cpu(cpu))) +		return 0; + +       /* +	* We may be recently in ticked or tickless idle mode. At the first +	* busy tick after returning from idle, we will update the busy stats. +	*/ +	set_cpu_sd_state_busy(); +	if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) { +		clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)); +		cpumask_clear_cpu(cpu, nohz.idle_cpus_mask); +		atomic_dec(&nohz.nr_cpus); +	} + +	/* +	 * None are in tickless mode and hence no need for NOHZ idle load +	 * balancing. +	 */ +	if (likely(!atomic_read(&nohz.nr_cpus))) +		return 0; + +	if (time_before(now, nohz.next_balance)) +		return 0; + +	if (rq->nr_running >= 2) +		goto need_kick; + +	rcu_read_lock(); +	for_each_domain(cpu, sd) { +		struct sched_group *sg = sd->groups; +		struct sched_group_power *sgp = sg->sgp; +		int nr_busy = atomic_read(&sgp->nr_busy_cpus); + +		if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1) +			goto need_kick_unlock; + +		if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight +		    && (cpumask_first_and(nohz.idle_cpus_mask, +					  sched_domain_span(sd)) < cpu)) +			goto need_kick_unlock; + +		if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING))) +			break; +	} +	rcu_read_unlock(); +	return 0; + +need_kick_unlock: +	rcu_read_unlock(); +need_kick: +	return 1; +} +#else +static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { } +#endif + +/* + * run_rebalance_domains is triggered when needed from the scheduler tick. + * Also triggered for nohz idle balancing (with nohz_balancing_kick set). + */ +static void run_rebalance_domains(struct softirq_action *h) +{ +	int this_cpu = smp_processor_id(); +	struct rq *this_rq = cpu_rq(this_cpu); +	enum cpu_idle_type idle = this_rq->idle_balance ? +						CPU_IDLE : CPU_NOT_IDLE; + +	rebalance_domains(this_cpu, idle); + +	/* +	 * If this cpu has a pending nohz_balance_kick, then do the +	 * balancing on behalf of the other idle cpus whose ticks are +	 * stopped. +	 */ +	nohz_idle_balance(this_cpu, idle); +} + +static inline int on_null_domain(int cpu) +{ +	return !rcu_dereference_sched(cpu_rq(cpu)->sd); +} + +/* + * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. + */ +void trigger_load_balance(struct rq *rq, int cpu) +{ +	/* Don't need to rebalance while attached to NULL domain */ +	if (time_after_eq(jiffies, rq->next_balance) && +	    likely(!on_null_domain(cpu))) +		raise_softirq(SCHED_SOFTIRQ); +#ifdef CONFIG_NO_HZ +	if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu))) +		nohz_balancer_kick(cpu); +#endif +} + +static void rq_online_fair(struct rq *rq) +{ +	update_sysctl(); +} + +static void rq_offline_fair(struct rq *rq) +{ +	update_sysctl(); +} + +#endif /* CONFIG_SMP */ + +/* + * scheduler tick hitting a task of our scheduling class: + */ +static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued) +{ +	struct cfs_rq *cfs_rq; +	struct sched_entity *se = &curr->se; + +	for_each_sched_entity(se) { +		cfs_rq = cfs_rq_of(se); +		entity_tick(cfs_rq, se, queued); +	} +} + +/* + * called on fork with the child task as argument from the parent's context + *  - child not yet on the tasklist + *  - preemption disabled + */ +static void task_fork_fair(struct task_struct *p) +{ +	struct cfs_rq *cfs_rq; +	struct sched_entity *se = &p->se, *curr; +	int this_cpu = smp_processor_id(); +	struct rq *rq = this_rq(); +	unsigned long flags; + +	raw_spin_lock_irqsave(&rq->lock, flags); + +	update_rq_clock(rq); + +	cfs_rq = task_cfs_rq(current); +	curr = cfs_rq->curr; + +	if (unlikely(task_cpu(p) != this_cpu)) { +		rcu_read_lock(); +		__set_task_cpu(p, this_cpu); +		rcu_read_unlock(); +	} + +	update_curr(cfs_rq); + +	if (curr) +		se->vruntime = curr->vruntime; +	place_entity(cfs_rq, se, 1); + +	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) { +		/* +		 * Upon rescheduling, sched_class::put_prev_task() will place +		 * 'current' within the tree based on its new key value. +		 */ +		swap(curr->vruntime, se->vruntime); +		resched_task(rq->curr); +	} + +	se->vruntime -= cfs_rq->min_vruntime; + +	raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +/* + * Priority of the task has changed. Check to see if we preempt + * the current task. + */ +static void +prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio) +{ +	if (!p->se.on_rq) +		return; + +	/* +	 * Reschedule if we are currently running on this runqueue and +	 * our priority decreased, or if we are not currently running on +	 * this runqueue and our priority is higher than the current's +	 */ +	if (rq->curr == p) { +		if (p->prio > oldprio) +			resched_task(rq->curr); +	} else +		check_preempt_curr(rq, p, 0); +} + +static void switched_from_fair(struct rq *rq, struct task_struct *p) +{ +	struct sched_entity *se = &p->se; +	struct cfs_rq *cfs_rq = cfs_rq_of(se); + +	/* +	 * Ensure the task's vruntime is normalized, so that when its +	 * switched back to the fair class the enqueue_entity(.flags=0) will +	 * do the right thing. +	 * +	 * If it was on_rq, then the dequeue_entity(.flags=0) will already +	 * have normalized the vruntime, if it was !on_rq, then only when +	 * the task is sleeping will it still have non-normalized vruntime. +	 */ +	if (!se->on_rq && p->state != TASK_RUNNING) { +		/* +		 * Fix up our vruntime so that the current sleep doesn't +		 * cause 'unlimited' sleep bonus. +		 */ +		place_entity(cfs_rq, se, 0); +		se->vruntime -= cfs_rq->min_vruntime; +	} +} + +/* + * We switched to the sched_fair class. + */ +static void switched_to_fair(struct rq *rq, struct task_struct *p) +{ +	if (!p->se.on_rq) +		return; + +	/* +	 * We were most likely switched from sched_rt, so +	 * kick off the schedule if running, otherwise just see +	 * if we can still preempt the current task. +	 */ +	if (rq->curr == p) +		resched_task(rq->curr); +	else +		check_preempt_curr(rq, p, 0); +} + +/* Account for a task changing its policy or group. + * + * This routine is mostly called to set cfs_rq->curr field when a task + * migrates between groups/classes. + */ +static void set_curr_task_fair(struct rq *rq) +{ +	struct sched_entity *se = &rq->curr->se; + +	for_each_sched_entity(se) { +		struct cfs_rq *cfs_rq = cfs_rq_of(se); + +		set_next_entity(cfs_rq, se); +		/* ensure bandwidth has been allocated on our new cfs_rq */ +		account_cfs_rq_runtime(cfs_rq, 0); +	} +} + +void init_cfs_rq(struct cfs_rq *cfs_rq) +{ +	cfs_rq->tasks_timeline = RB_ROOT; +	INIT_LIST_HEAD(&cfs_rq->tasks); +	cfs_rq->min_vruntime = (u64)(-(1LL << 20)); +#ifndef CONFIG_64BIT +	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime; +#endif +} + +#ifdef CONFIG_FAIR_GROUP_SCHED +static void task_move_group_fair(struct task_struct *p, int on_rq) +{ +	/* +	 * If the task was not on the rq at the time of this cgroup movement +	 * it must have been asleep, sleeping tasks keep their ->vruntime +	 * absolute on their old rq until wakeup (needed for the fair sleeper +	 * bonus in place_entity()). +	 * +	 * If it was on the rq, we've just 'preempted' it, which does convert +	 * ->vruntime to a relative base. +	 * +	 * Make sure both cases convert their relative position when migrating +	 * to another cgroup's rq. This does somewhat interfere with the +	 * fair sleeper stuff for the first placement, but who cares. +	 */ +	/* +	 * When !on_rq, vruntime of the task has usually NOT been normalized. +	 * But there are some cases where it has already been normalized: +	 * +	 * - Moving a forked child which is waiting for being woken up by +	 *   wake_up_new_task(). +	 * - Moving a task which has been woken up by try_to_wake_up() and +	 *   waiting for actually being woken up by sched_ttwu_pending(). +	 * +	 * To prevent boost or penalty in the new cfs_rq caused by delta +	 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment. +	 */ +	if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING)) +		on_rq = 1; + +	if (!on_rq) +		p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime; +	set_task_rq(p, task_cpu(p)); +	if (!on_rq) +		p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime; +} + +void free_fair_sched_group(struct task_group *tg) +{ +	int i; + +	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg)); + +	for_each_possible_cpu(i) { +		if (tg->cfs_rq) +			kfree(tg->cfs_rq[i]); +		if (tg->se) +			kfree(tg->se[i]); +	} + +	kfree(tg->cfs_rq); +	kfree(tg->se); +} + +int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) +{ +	struct cfs_rq *cfs_rq; +	struct sched_entity *se; +	int i; + +	tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); +	if (!tg->cfs_rq) +		goto err; +	tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); +	if (!tg->se) +		goto err; + +	tg->shares = NICE_0_LOAD; + +	init_cfs_bandwidth(tg_cfs_bandwidth(tg)); + +	for_each_possible_cpu(i) { +		cfs_rq = kzalloc_node(sizeof(struct cfs_rq), +				      GFP_KERNEL, cpu_to_node(i)); +		if (!cfs_rq) +			goto err; + +		se = kzalloc_node(sizeof(struct sched_entity), +				  GFP_KERNEL, cpu_to_node(i)); +		if (!se) +			goto err_free_rq; + +		init_cfs_rq(cfs_rq); +		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]); +	} + +	return 1; + +err_free_rq: +	kfree(cfs_rq); +err: +	return 0; +} + +void unregister_fair_sched_group(struct task_group *tg, int cpu) +{ +	struct rq *rq = cpu_rq(cpu); +	unsigned long flags; + +	/* +	* Only empty task groups can be destroyed; so we can speculatively +	* check on_list without danger of it being re-added. +	*/ +	if (!tg->cfs_rq[cpu]->on_list) +		return; + +	raw_spin_lock_irqsave(&rq->lock, flags); +	list_del_leaf_cfs_rq(tg->cfs_rq[cpu]); +	raw_spin_unlock_irqrestore(&rq->lock, flags); +} + +void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, +			struct sched_entity *se, int cpu, +			struct sched_entity *parent) +{ +	struct rq *rq = cpu_rq(cpu); + +	cfs_rq->tg = tg; +	cfs_rq->rq = rq; +#ifdef CONFIG_SMP +	/* allow initial update_cfs_load() to truncate */ +	cfs_rq->load_stamp = 1; +#endif +	init_cfs_rq_runtime(cfs_rq); + +	tg->cfs_rq[cpu] = cfs_rq; +	tg->se[cpu] = se; + +	/* se could be NULL for root_task_group */ +	if (!se) +		return; + +	if (!parent) +		se->cfs_rq = &rq->cfs; +	else +		se->cfs_rq = parent->my_q; + +	se->my_q = cfs_rq; +	update_load_set(&se->load, 0); +	se->parent = parent; +} + +static DEFINE_MUTEX(shares_mutex); + +int sched_group_set_shares(struct task_group *tg, unsigned long shares) +{ +	int i; +	unsigned long flags; + +	/* +	 * We can't change the weight of the root cgroup. +	 */ +	if (!tg->se[0]) +		return -EINVAL; + +	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES)); + +	mutex_lock(&shares_mutex); +	if (tg->shares == shares) +		goto done; + +	tg->shares = shares; +	for_each_possible_cpu(i) { +		struct rq *rq = cpu_rq(i); +		struct sched_entity *se; + +		se = tg->se[i]; +		/* Propagate contribution to hierarchy */ +		raw_spin_lock_irqsave(&rq->lock, flags); +		for_each_sched_entity(se) +			update_cfs_shares(group_cfs_rq(se)); +		raw_spin_unlock_irqrestore(&rq->lock, flags); +	} + +done: +	mutex_unlock(&shares_mutex); +	return 0; +} +#else /* CONFIG_FAIR_GROUP_SCHED */ + +void free_fair_sched_group(struct task_group *tg) { } + +int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) +{ +	return 1; +} + +void unregister_fair_sched_group(struct task_group *tg, int cpu) { } + +#endif /* CONFIG_FAIR_GROUP_SCHED */ + + +static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task) +{ +	struct sched_entity *se = &task->se; +	unsigned int rr_interval = 0; + +	/* +	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise +	 * idle runqueue: +	 */ +	if (rq->cfs.load.weight) +		rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); + +	return rr_interval; +} + +/* + * All the scheduling class methods: + */ +const struct sched_class fair_sched_class = { +	.next			= &idle_sched_class, +	.enqueue_task		= enqueue_task_fair, +	.dequeue_task		= dequeue_task_fair, +	.yield_task		= yield_task_fair, +	.yield_to_task		= yield_to_task_fair, + +	.check_preempt_curr	= check_preempt_wakeup, + +	.pick_next_task		= pick_next_task_fair, +	.put_prev_task		= put_prev_task_fair, + +#ifdef CONFIG_SMP +	.select_task_rq		= select_task_rq_fair, + +	.rq_online		= rq_online_fair, +	.rq_offline		= rq_offline_fair, + +	.task_waking		= task_waking_fair, +#endif + +	.set_curr_task          = set_curr_task_fair, +	.task_tick		= task_tick_fair, +	.task_fork		= task_fork_fair, + +	.prio_changed		= prio_changed_fair, +	.switched_from		= switched_from_fair, +	.switched_to		= switched_to_fair, + +	.get_rr_interval	= get_rr_interval_fair, + +#ifdef CONFIG_FAIR_GROUP_SCHED +	.task_move_group	= task_move_group_fair, +#endif +}; + +#ifdef CONFIG_SCHED_DEBUG +void print_cfs_stats(struct seq_file *m, int cpu) +{ +	struct cfs_rq *cfs_rq; + +	rcu_read_lock(); +	for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq) +		print_cfs_rq(m, cpu, cfs_rq); +	rcu_read_unlock(); +} +#endif + +__init void init_sched_fair_class(void) +{ +#ifdef CONFIG_SMP +	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); + +#ifdef CONFIG_NO_HZ +	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT); +#endif +#endif /* SMP */ + +}  |