diff options
Diffstat (limited to 'fs/btrfs/reada.c')
| -rw-r--r-- | fs/btrfs/reada.c | 951 | 
1 files changed, 951 insertions, 0 deletions
diff --git a/fs/btrfs/reada.c b/fs/btrfs/reada.c new file mode 100644 index 00000000000..2373b39a132 --- /dev/null +++ b/fs/btrfs/reada.c @@ -0,0 +1,951 @@ +/* + * Copyright (C) 2011 STRATO.  All rights reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public + * License v2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place - Suite 330, + * Boston, MA 021110-1307, USA. + */ + +#include <linux/sched.h> +#include <linux/pagemap.h> +#include <linux/writeback.h> +#include <linux/blkdev.h> +#include <linux/rbtree.h> +#include <linux/slab.h> +#include <linux/workqueue.h> +#include "ctree.h" +#include "volumes.h" +#include "disk-io.h" +#include "transaction.h" + +#undef DEBUG + +/* + * This is the implementation for the generic read ahead framework. + * + * To trigger a readahead, btrfs_reada_add must be called. It will start + * a read ahead for the given range [start, end) on tree root. The returned + * handle can either be used to wait on the readahead to finish + * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach). + * + * The read ahead works as follows: + * On btrfs_reada_add, the root of the tree is inserted into a radix_tree. + * reada_start_machine will then search for extents to prefetch and trigger + * some reads. When a read finishes for a node, all contained node/leaf + * pointers that lie in the given range will also be enqueued. The reads will + * be triggered in sequential order, thus giving a big win over a naive + * enumeration. It will also make use of multi-device layouts. Each disk + * will have its on read pointer and all disks will by utilized in parallel. + * Also will no two disks read both sides of a mirror simultaneously, as this + * would waste seeking capacity. Instead both disks will read different parts + * of the filesystem. + * Any number of readaheads can be started in parallel. The read order will be + * determined globally, i.e. 2 parallel readaheads will normally finish faster + * than the 2 started one after another. + */ + +#define MAX_MIRRORS 2 +#define MAX_IN_FLIGHT 6 + +struct reada_extctl { +	struct list_head	list; +	struct reada_control	*rc; +	u64			generation; +}; + +struct reada_extent { +	u64			logical; +	struct btrfs_key	top; +	u32			blocksize; +	int			err; +	struct list_head	extctl; +	struct kref		refcnt; +	spinlock_t		lock; +	struct reada_zone	*zones[MAX_MIRRORS]; +	int			nzones; +	struct btrfs_device	*scheduled_for; +}; + +struct reada_zone { +	u64			start; +	u64			end; +	u64			elems; +	struct list_head	list; +	spinlock_t		lock; +	int			locked; +	struct btrfs_device	*device; +	struct btrfs_device	*devs[MAX_MIRRORS]; /* full list, incl self */ +	int			ndevs; +	struct kref		refcnt; +}; + +struct reada_machine_work { +	struct btrfs_work	work; +	struct btrfs_fs_info	*fs_info; +}; + +static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *); +static void reada_control_release(struct kref *kref); +static void reada_zone_release(struct kref *kref); +static void reada_start_machine(struct btrfs_fs_info *fs_info); +static void __reada_start_machine(struct btrfs_fs_info *fs_info); + +static int reada_add_block(struct reada_control *rc, u64 logical, +			   struct btrfs_key *top, int level, u64 generation); + +/* recurses */ +/* in case of err, eb might be NULL */ +static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, +			    u64 start, int err) +{ +	int level = 0; +	int nritems; +	int i; +	u64 bytenr; +	u64 generation; +	struct reada_extent *re; +	struct btrfs_fs_info *fs_info = root->fs_info; +	struct list_head list; +	unsigned long index = start >> PAGE_CACHE_SHIFT; +	struct btrfs_device *for_dev; + +	if (eb) +		level = btrfs_header_level(eb); + +	/* find extent */ +	spin_lock(&fs_info->reada_lock); +	re = radix_tree_lookup(&fs_info->reada_tree, index); +	if (re) +		kref_get(&re->refcnt); +	spin_unlock(&fs_info->reada_lock); + +	if (!re) +		return -1; + +	spin_lock(&re->lock); +	/* +	 * just take the full list from the extent. afterwards we +	 * don't need the lock anymore +	 */ +	list_replace_init(&re->extctl, &list); +	for_dev = re->scheduled_for; +	re->scheduled_for = NULL; +	spin_unlock(&re->lock); + +	if (err == 0) { +		nritems = level ? btrfs_header_nritems(eb) : 0; +		generation = btrfs_header_generation(eb); +		/* +		 * FIXME: currently we just set nritems to 0 if this is a leaf, +		 * effectively ignoring the content. In a next step we could +		 * trigger more readahead depending from the content, e.g. +		 * fetch the checksums for the extents in the leaf. +		 */ +	} else { +		/* +		 * this is the error case, the extent buffer has not been +		 * read correctly. We won't access anything from it and +		 * just cleanup our data structures. Effectively this will +		 * cut the branch below this node from read ahead. +		 */ +		nritems = 0; +		generation = 0; +	} + +	for (i = 0; i < nritems; i++) { +		struct reada_extctl *rec; +		u64 n_gen; +		struct btrfs_key key; +		struct btrfs_key next_key; + +		btrfs_node_key_to_cpu(eb, &key, i); +		if (i + 1 < nritems) +			btrfs_node_key_to_cpu(eb, &next_key, i + 1); +		else +			next_key = re->top; +		bytenr = btrfs_node_blockptr(eb, i); +		n_gen = btrfs_node_ptr_generation(eb, i); + +		list_for_each_entry(rec, &list, list) { +			struct reada_control *rc = rec->rc; + +			/* +			 * if the generation doesn't match, just ignore this +			 * extctl. This will probably cut off a branch from +			 * prefetch. Alternatively one could start a new (sub-) +			 * prefetch for this branch, starting again from root. +			 * FIXME: move the generation check out of this loop +			 */ +#ifdef DEBUG +			if (rec->generation != generation) { +				printk(KERN_DEBUG "generation mismatch for " +						"(%llu,%d,%llu) %llu != %llu\n", +				       key.objectid, key.type, key.offset, +				       rec->generation, generation); +			} +#endif +			if (rec->generation == generation && +			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 && +			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0) +				reada_add_block(rc, bytenr, &next_key, +						level - 1, n_gen); +		} +	} +	/* +	 * free extctl records +	 */ +	while (!list_empty(&list)) { +		struct reada_control *rc; +		struct reada_extctl *rec; + +		rec = list_first_entry(&list, struct reada_extctl, list); +		list_del(&rec->list); +		rc = rec->rc; +		kfree(rec); + +		kref_get(&rc->refcnt); +		if (atomic_dec_and_test(&rc->elems)) { +			kref_put(&rc->refcnt, reada_control_release); +			wake_up(&rc->wait); +		} +		kref_put(&rc->refcnt, reada_control_release); + +		reada_extent_put(fs_info, re);	/* one ref for each entry */ +	} +	reada_extent_put(fs_info, re);	/* our ref */ +	if (for_dev) +		atomic_dec(&for_dev->reada_in_flight); + +	return 0; +} + +/* + * start is passed separately in case eb in NULL, which may be the case with + * failed I/O + */ +int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb, +			 u64 start, int err) +{ +	int ret; + +	ret = __readahead_hook(root, eb, start, err); + +	reada_start_machine(root->fs_info); + +	return ret; +} + +static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info, +					  struct btrfs_device *dev, u64 logical, +					  struct btrfs_bio *bbio) +{ +	int ret; +	int looped = 0; +	struct reada_zone *zone; +	struct btrfs_block_group_cache *cache = NULL; +	u64 start; +	u64 end; +	int i; + +again: +	zone = NULL; +	spin_lock(&fs_info->reada_lock); +	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone, +				     logical >> PAGE_CACHE_SHIFT, 1); +	if (ret == 1) +		kref_get(&zone->refcnt); +	spin_unlock(&fs_info->reada_lock); + +	if (ret == 1) { +		if (logical >= zone->start && logical < zone->end) +			return zone; +		spin_lock(&fs_info->reada_lock); +		kref_put(&zone->refcnt, reada_zone_release); +		spin_unlock(&fs_info->reada_lock); +	} + +	if (looped) +		return NULL; + +	cache = btrfs_lookup_block_group(fs_info, logical); +	if (!cache) +		return NULL; + +	start = cache->key.objectid; +	end = start + cache->key.offset - 1; +	btrfs_put_block_group(cache); + +	zone = kzalloc(sizeof(*zone), GFP_NOFS); +	if (!zone) +		return NULL; + +	zone->start = start; +	zone->end = end; +	INIT_LIST_HEAD(&zone->list); +	spin_lock_init(&zone->lock); +	zone->locked = 0; +	kref_init(&zone->refcnt); +	zone->elems = 0; +	zone->device = dev; /* our device always sits at index 0 */ +	for (i = 0; i < bbio->num_stripes; ++i) { +		/* bounds have already been checked */ +		zone->devs[i] = bbio->stripes[i].dev; +	} +	zone->ndevs = bbio->num_stripes; + +	spin_lock(&fs_info->reada_lock); +	ret = radix_tree_insert(&dev->reada_zones, +				(unsigned long)zone->end >> PAGE_CACHE_SHIFT, +				zone); +	spin_unlock(&fs_info->reada_lock); + +	if (ret) { +		kfree(zone); +		looped = 1; +		goto again; +	} + +	return zone; +} + +static struct reada_extent *reada_find_extent(struct btrfs_root *root, +					      u64 logical, +					      struct btrfs_key *top, int level) +{ +	int ret; +	int looped = 0; +	struct reada_extent *re = NULL; +	struct btrfs_fs_info *fs_info = root->fs_info; +	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; +	struct btrfs_bio *bbio = NULL; +	struct btrfs_device *dev; +	u32 blocksize; +	u64 length; +	int nzones = 0; +	int i; +	unsigned long index = logical >> PAGE_CACHE_SHIFT; + +again: +	spin_lock(&fs_info->reada_lock); +	re = radix_tree_lookup(&fs_info->reada_tree, index); +	if (re) +		kref_get(&re->refcnt); +	spin_unlock(&fs_info->reada_lock); + +	if (re || looped) +		return re; + +	re = kzalloc(sizeof(*re), GFP_NOFS); +	if (!re) +		return NULL; + +	blocksize = btrfs_level_size(root, level); +	re->logical = logical; +	re->blocksize = blocksize; +	re->top = *top; +	INIT_LIST_HEAD(&re->extctl); +	spin_lock_init(&re->lock); +	kref_init(&re->refcnt); + +	/* +	 * map block +	 */ +	length = blocksize; +	ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0); +	if (ret || !bbio || length < blocksize) +		goto error; + +	if (bbio->num_stripes > MAX_MIRRORS) { +		printk(KERN_ERR "btrfs readahead: more than %d copies not " +				"supported", MAX_MIRRORS); +		goto error; +	} + +	for (nzones = 0; nzones < bbio->num_stripes; ++nzones) { +		struct reada_zone *zone; + +		dev = bbio->stripes[nzones].dev; +		zone = reada_find_zone(fs_info, dev, logical, bbio); +		if (!zone) +			break; + +		re->zones[nzones] = zone; +		spin_lock(&zone->lock); +		if (!zone->elems) +			kref_get(&zone->refcnt); +		++zone->elems; +		spin_unlock(&zone->lock); +		spin_lock(&fs_info->reada_lock); +		kref_put(&zone->refcnt, reada_zone_release); +		spin_unlock(&fs_info->reada_lock); +	} +	re->nzones = nzones; +	if (nzones == 0) { +		/* not a single zone found, error and out */ +		goto error; +	} + +	/* insert extent in reada_tree + all per-device trees, all or nothing */ +	spin_lock(&fs_info->reada_lock); +	ret = radix_tree_insert(&fs_info->reada_tree, index, re); +	if (ret) { +		spin_unlock(&fs_info->reada_lock); +		if (ret != -ENOMEM) { +			/* someone inserted the extent in the meantime */ +			looped = 1; +		} +		goto error; +	} +	for (i = 0; i < nzones; ++i) { +		dev = bbio->stripes[i].dev; +		ret = radix_tree_insert(&dev->reada_extents, index, re); +		if (ret) { +			while (--i >= 0) { +				dev = bbio->stripes[i].dev; +				BUG_ON(dev == NULL); +				radix_tree_delete(&dev->reada_extents, index); +			} +			BUG_ON(fs_info == NULL); +			radix_tree_delete(&fs_info->reada_tree, index); +			spin_unlock(&fs_info->reada_lock); +			goto error; +		} +	} +	spin_unlock(&fs_info->reada_lock); + +	kfree(bbio); +	return re; + +error: +	while (nzones) { +		struct reada_zone *zone; + +		--nzones; +		zone = re->zones[nzones]; +		kref_get(&zone->refcnt); +		spin_lock(&zone->lock); +		--zone->elems; +		if (zone->elems == 0) { +			/* +			 * no fs_info->reada_lock needed, as this can't be +			 * the last ref +			 */ +			kref_put(&zone->refcnt, reada_zone_release); +		} +		spin_unlock(&zone->lock); + +		spin_lock(&fs_info->reada_lock); +		kref_put(&zone->refcnt, reada_zone_release); +		spin_unlock(&fs_info->reada_lock); +	} +	kfree(bbio); +	kfree(re); +	if (looped) +		goto again; +	return NULL; +} + +static void reada_kref_dummy(struct kref *kr) +{ +} + +static void reada_extent_put(struct btrfs_fs_info *fs_info, +			     struct reada_extent *re) +{ +	int i; +	unsigned long index = re->logical >> PAGE_CACHE_SHIFT; + +	spin_lock(&fs_info->reada_lock); +	if (!kref_put(&re->refcnt, reada_kref_dummy)) { +		spin_unlock(&fs_info->reada_lock); +		return; +	} + +	radix_tree_delete(&fs_info->reada_tree, index); +	for (i = 0; i < re->nzones; ++i) { +		struct reada_zone *zone = re->zones[i]; + +		radix_tree_delete(&zone->device->reada_extents, index); +	} + +	spin_unlock(&fs_info->reada_lock); + +	for (i = 0; i < re->nzones; ++i) { +		struct reada_zone *zone = re->zones[i]; + +		kref_get(&zone->refcnt); +		spin_lock(&zone->lock); +		--zone->elems; +		if (zone->elems == 0) { +			/* no fs_info->reada_lock needed, as this can't be +			 * the last ref */ +			kref_put(&zone->refcnt, reada_zone_release); +		} +		spin_unlock(&zone->lock); + +		spin_lock(&fs_info->reada_lock); +		kref_put(&zone->refcnt, reada_zone_release); +		spin_unlock(&fs_info->reada_lock); +	} +	if (re->scheduled_for) +		atomic_dec(&re->scheduled_for->reada_in_flight); + +	kfree(re); +} + +static void reada_zone_release(struct kref *kref) +{ +	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt); + +	radix_tree_delete(&zone->device->reada_zones, +			  zone->end >> PAGE_CACHE_SHIFT); + +	kfree(zone); +} + +static void reada_control_release(struct kref *kref) +{ +	struct reada_control *rc = container_of(kref, struct reada_control, +						refcnt); + +	kfree(rc); +} + +static int reada_add_block(struct reada_control *rc, u64 logical, +			   struct btrfs_key *top, int level, u64 generation) +{ +	struct btrfs_root *root = rc->root; +	struct reada_extent *re; +	struct reada_extctl *rec; + +	re = reada_find_extent(root, logical, top, level); /* takes one ref */ +	if (!re) +		return -1; + +	rec = kzalloc(sizeof(*rec), GFP_NOFS); +	if (!rec) { +		reada_extent_put(root->fs_info, re); +		return -1; +	} + +	rec->rc = rc; +	rec->generation = generation; +	atomic_inc(&rc->elems); + +	spin_lock(&re->lock); +	list_add_tail(&rec->list, &re->extctl); +	spin_unlock(&re->lock); + +	/* leave the ref on the extent */ + +	return 0; +} + +/* + * called with fs_info->reada_lock held + */ +static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock) +{ +	int i; +	unsigned long index = zone->end >> PAGE_CACHE_SHIFT; + +	for (i = 0; i < zone->ndevs; ++i) { +		struct reada_zone *peer; +		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index); +		if (peer && peer->device != zone->device) +			peer->locked = lock; +	} +} + +/* + * called with fs_info->reada_lock held + */ +static int reada_pick_zone(struct btrfs_device *dev) +{ +	struct reada_zone *top_zone = NULL; +	struct reada_zone *top_locked_zone = NULL; +	u64 top_elems = 0; +	u64 top_locked_elems = 0; +	unsigned long index = 0; +	int ret; + +	if (dev->reada_curr_zone) { +		reada_peer_zones_set_lock(dev->reada_curr_zone, 0); +		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release); +		dev->reada_curr_zone = NULL; +	} +	/* pick the zone with the most elements */ +	while (1) { +		struct reada_zone *zone; + +		ret = radix_tree_gang_lookup(&dev->reada_zones, +					     (void **)&zone, index, 1); +		if (ret == 0) +			break; +		index = (zone->end >> PAGE_CACHE_SHIFT) + 1; +		if (zone->locked) { +			if (zone->elems > top_locked_elems) { +				top_locked_elems = zone->elems; +				top_locked_zone = zone; +			} +		} else { +			if (zone->elems > top_elems) { +				top_elems = zone->elems; +				top_zone = zone; +			} +		} +	} +	if (top_zone) +		dev->reada_curr_zone = top_zone; +	else if (top_locked_zone) +		dev->reada_curr_zone = top_locked_zone; +	else +		return 0; + +	dev->reada_next = dev->reada_curr_zone->start; +	kref_get(&dev->reada_curr_zone->refcnt); +	reada_peer_zones_set_lock(dev->reada_curr_zone, 1); + +	return 1; +} + +static int reada_start_machine_dev(struct btrfs_fs_info *fs_info, +				   struct btrfs_device *dev) +{ +	struct reada_extent *re = NULL; +	int mirror_num = 0; +	struct extent_buffer *eb = NULL; +	u64 logical; +	u32 blocksize; +	int ret; +	int i; +	int need_kick = 0; + +	spin_lock(&fs_info->reada_lock); +	if (dev->reada_curr_zone == NULL) { +		ret = reada_pick_zone(dev); +		if (!ret) { +			spin_unlock(&fs_info->reada_lock); +			return 0; +		} +	} +	/* +	 * FIXME currently we issue the reads one extent at a time. If we have +	 * a contiguous block of extents, we could also coagulate them or use +	 * plugging to speed things up +	 */ +	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, +				     dev->reada_next >> PAGE_CACHE_SHIFT, 1); +	if (ret == 0 || re->logical >= dev->reada_curr_zone->end) { +		ret = reada_pick_zone(dev); +		if (!ret) { +			spin_unlock(&fs_info->reada_lock); +			return 0; +		} +		re = NULL; +		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re, +					dev->reada_next >> PAGE_CACHE_SHIFT, 1); +	} +	if (ret == 0) { +		spin_unlock(&fs_info->reada_lock); +		return 0; +	} +	dev->reada_next = re->logical + re->blocksize; +	kref_get(&re->refcnt); + +	spin_unlock(&fs_info->reada_lock); + +	/* +	 * find mirror num +	 */ +	for (i = 0; i < re->nzones; ++i) { +		if (re->zones[i]->device == dev) { +			mirror_num = i + 1; +			break; +		} +	} +	logical = re->logical; +	blocksize = re->blocksize; + +	spin_lock(&re->lock); +	if (re->scheduled_for == NULL) { +		re->scheduled_for = dev; +		need_kick = 1; +	} +	spin_unlock(&re->lock); + +	reada_extent_put(fs_info, re); + +	if (!need_kick) +		return 0; + +	atomic_inc(&dev->reada_in_flight); +	ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize, +			 mirror_num, &eb); +	if (ret) +		__readahead_hook(fs_info->extent_root, NULL, logical, ret); +	else if (eb) +		__readahead_hook(fs_info->extent_root, eb, eb->start, ret); + +	if (eb) +		free_extent_buffer(eb); + +	return 1; + +} + +static void reada_start_machine_worker(struct btrfs_work *work) +{ +	struct reada_machine_work *rmw; +	struct btrfs_fs_info *fs_info; + +	rmw = container_of(work, struct reada_machine_work, work); +	fs_info = rmw->fs_info; + +	kfree(rmw); + +	__reada_start_machine(fs_info); +} + +static void __reada_start_machine(struct btrfs_fs_info *fs_info) +{ +	struct btrfs_device *device; +	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; +	u64 enqueued; +	u64 total = 0; +	int i; + +	do { +		enqueued = 0; +		list_for_each_entry(device, &fs_devices->devices, dev_list) { +			if (atomic_read(&device->reada_in_flight) < +			    MAX_IN_FLIGHT) +				enqueued += reada_start_machine_dev(fs_info, +								    device); +		} +		total += enqueued; +	} while (enqueued && total < 10000); + +	if (enqueued == 0) +		return; + +	/* +	 * If everything is already in the cache, this is effectively single +	 * threaded. To a) not hold the caller for too long and b) to utilize +	 * more cores, we broke the loop above after 10000 iterations and now +	 * enqueue to workers to finish it. This will distribute the load to +	 * the cores. +	 */ +	for (i = 0; i < 2; ++i) +		reada_start_machine(fs_info); +} + +static void reada_start_machine(struct btrfs_fs_info *fs_info) +{ +	struct reada_machine_work *rmw; + +	rmw = kzalloc(sizeof(*rmw), GFP_NOFS); +	if (!rmw) { +		/* FIXME we cannot handle this properly right now */ +		BUG(); +	} +	rmw->work.func = reada_start_machine_worker; +	rmw->fs_info = fs_info; + +	btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work); +} + +#ifdef DEBUG +static void dump_devs(struct btrfs_fs_info *fs_info, int all) +{ +	struct btrfs_device *device; +	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; +	unsigned long index; +	int ret; +	int i; +	int j; +	int cnt; + +	spin_lock(&fs_info->reada_lock); +	list_for_each_entry(device, &fs_devices->devices, dev_list) { +		printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid, +			atomic_read(&device->reada_in_flight)); +		index = 0; +		while (1) { +			struct reada_zone *zone; +			ret = radix_tree_gang_lookup(&device->reada_zones, +						     (void **)&zone, index, 1); +			if (ret == 0) +				break; +			printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked " +				"%d devs", zone->start, zone->end, zone->elems, +				zone->locked); +			for (j = 0; j < zone->ndevs; ++j) { +				printk(KERN_CONT " %lld", +					zone->devs[j]->devid); +			} +			if (device->reada_curr_zone == zone) +				printk(KERN_CONT " curr off %llu", +					device->reada_next - zone->start); +			printk(KERN_CONT "\n"); +			index = (zone->end >> PAGE_CACHE_SHIFT) + 1; +		} +		cnt = 0; +		index = 0; +		while (all) { +			struct reada_extent *re = NULL; + +			ret = radix_tree_gang_lookup(&device->reada_extents, +						     (void **)&re, index, 1); +			if (ret == 0) +				break; +			printk(KERN_DEBUG +				"  re: logical %llu size %u empty %d for %lld", +				re->logical, re->blocksize, +				list_empty(&re->extctl), re->scheduled_for ? +				re->scheduled_for->devid : -1); + +			for (i = 0; i < re->nzones; ++i) { +				printk(KERN_CONT " zone %llu-%llu devs", +					re->zones[i]->start, +					re->zones[i]->end); +				for (j = 0; j < re->zones[i]->ndevs; ++j) { +					printk(KERN_CONT " %lld", +						re->zones[i]->devs[j]->devid); +				} +			} +			printk(KERN_CONT "\n"); +			index = (re->logical >> PAGE_CACHE_SHIFT) + 1; +			if (++cnt > 15) +				break; +		} +	} + +	index = 0; +	cnt = 0; +	while (all) { +		struct reada_extent *re = NULL; + +		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re, +					     index, 1); +		if (ret == 0) +			break; +		if (!re->scheduled_for) { +			index = (re->logical >> PAGE_CACHE_SHIFT) + 1; +			continue; +		} +		printk(KERN_DEBUG +			"re: logical %llu size %u list empty %d for %lld", +			re->logical, re->blocksize, list_empty(&re->extctl), +			re->scheduled_for ? re->scheduled_for->devid : -1); +		for (i = 0; i < re->nzones; ++i) { +			printk(KERN_CONT " zone %llu-%llu devs", +				re->zones[i]->start, +				re->zones[i]->end); +			for (i = 0; i < re->nzones; ++i) { +				printk(KERN_CONT " zone %llu-%llu devs", +					re->zones[i]->start, +					re->zones[i]->end); +				for (j = 0; j < re->zones[i]->ndevs; ++j) { +					printk(KERN_CONT " %lld", +						re->zones[i]->devs[j]->devid); +				} +			} +		} +		printk(KERN_CONT "\n"); +		index = (re->logical >> PAGE_CACHE_SHIFT) + 1; +	} +	spin_unlock(&fs_info->reada_lock); +} +#endif + +/* + * interface + */ +struct reada_control *btrfs_reada_add(struct btrfs_root *root, +			struct btrfs_key *key_start, struct btrfs_key *key_end) +{ +	struct reada_control *rc; +	u64 start; +	u64 generation; +	int level; +	struct extent_buffer *node; +	static struct btrfs_key max_key = { +		.objectid = (u64)-1, +		.type = (u8)-1, +		.offset = (u64)-1 +	}; + +	rc = kzalloc(sizeof(*rc), GFP_NOFS); +	if (!rc) +		return ERR_PTR(-ENOMEM); + +	rc->root = root; +	rc->key_start = *key_start; +	rc->key_end = *key_end; +	atomic_set(&rc->elems, 0); +	init_waitqueue_head(&rc->wait); +	kref_init(&rc->refcnt); +	kref_get(&rc->refcnt); /* one ref for having elements */ + +	node = btrfs_root_node(root); +	start = node->start; +	level = btrfs_header_level(node); +	generation = btrfs_header_generation(node); +	free_extent_buffer(node); + +	reada_add_block(rc, start, &max_key, level, generation); + +	reada_start_machine(root->fs_info); + +	return rc; +} + +#ifdef DEBUG +int btrfs_reada_wait(void *handle) +{ +	struct reada_control *rc = handle; + +	while (atomic_read(&rc->elems)) { +		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0, +				   5 * HZ); +		dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0); +	} + +	dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0); + +	kref_put(&rc->refcnt, reada_control_release); + +	return 0; +} +#else +int btrfs_reada_wait(void *handle) +{ +	struct reada_control *rc = handle; + +	while (atomic_read(&rc->elems)) { +		wait_event(rc->wait, atomic_read(&rc->elems) == 0); +	} + +	kref_put(&rc->refcnt, reada_control_release); + +	return 0; +} +#endif + +void btrfs_reada_detach(void *handle) +{ +	struct reada_control *rc = handle; + +	kref_put(&rc->refcnt, reada_control_release); +}  |