diff options
Diffstat (limited to 'fs/btrfs/backref.c')
| -rw-r--r-- | fs/btrfs/backref.c | 776 | 
1 files changed, 776 insertions, 0 deletions
diff --git a/fs/btrfs/backref.c b/fs/btrfs/backref.c new file mode 100644 index 00000000000..8855aad3929 --- /dev/null +++ b/fs/btrfs/backref.c @@ -0,0 +1,776 @@ +/* + * Copyright (C) 2011 STRATO.  All rights reserved. + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public + * License v2 as published by the Free Software Foundation. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU + * General Public License for more details. + * + * You should have received a copy of the GNU General Public + * License along with this program; if not, write to the + * Free Software Foundation, Inc., 59 Temple Place - Suite 330, + * Boston, MA 021110-1307, USA. + */ + +#include "ctree.h" +#include "disk-io.h" +#include "backref.h" + +struct __data_ref { +	struct list_head list; +	u64 inum; +	u64 root; +	u64 extent_data_item_offset; +}; + +struct __shared_ref { +	struct list_head list; +	u64 disk_byte; +}; + +static int __inode_info(u64 inum, u64 ioff, u8 key_type, +			struct btrfs_root *fs_root, struct btrfs_path *path, +			struct btrfs_key *found_key) +{ +	int ret; +	struct btrfs_key key; +	struct extent_buffer *eb; + +	key.type = key_type; +	key.objectid = inum; +	key.offset = ioff; + +	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); +	if (ret < 0) +		return ret; + +	eb = path->nodes[0]; +	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { +		ret = btrfs_next_leaf(fs_root, path); +		if (ret) +			return ret; +		eb = path->nodes[0]; +	} + +	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); +	if (found_key->type != key.type || found_key->objectid != key.objectid) +		return 1; + +	return 0; +} + +/* + * this makes the path point to (inum INODE_ITEM ioff) + */ +int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, +			struct btrfs_path *path) +{ +	struct btrfs_key key; +	return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path, +				&key); +} + +static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root, +				struct btrfs_path *path, +				struct btrfs_key *found_key) +{ +	return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path, +				found_key); +} + +/* + * this iterates to turn a btrfs_inode_ref into a full filesystem path. elements + * of the path are separated by '/' and the path is guaranteed to be + * 0-terminated. the path is only given within the current file system. + * Therefore, it never starts with a '/'. the caller is responsible to provide + * "size" bytes in "dest". the dest buffer will be filled backwards. finally, + * the start point of the resulting string is returned. this pointer is within + * dest, normally. + * in case the path buffer would overflow, the pointer is decremented further + * as if output was written to the buffer, though no more output is actually + * generated. that way, the caller can determine how much space would be + * required for the path to fit into the buffer. in that case, the returned + * value will be smaller than dest. callers must check this! + */ +static char *iref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path, +				struct btrfs_inode_ref *iref, +				struct extent_buffer *eb_in, u64 parent, +				char *dest, u32 size) +{ +	u32 len; +	int slot; +	u64 next_inum; +	int ret; +	s64 bytes_left = size - 1; +	struct extent_buffer *eb = eb_in; +	struct btrfs_key found_key; + +	if (bytes_left >= 0) +		dest[bytes_left] = '\0'; + +	while (1) { +		len = btrfs_inode_ref_name_len(eb, iref); +		bytes_left -= len; +		if (bytes_left >= 0) +			read_extent_buffer(eb, dest + bytes_left, +						(unsigned long)(iref + 1), len); +		if (eb != eb_in) +			free_extent_buffer(eb); +		ret = inode_ref_info(parent, 0, fs_root, path, &found_key); +		if (ret) +			break; +		next_inum = found_key.offset; + +		/* regular exit ahead */ +		if (parent == next_inum) +			break; + +		slot = path->slots[0]; +		eb = path->nodes[0]; +		/* make sure we can use eb after releasing the path */ +		if (eb != eb_in) +			atomic_inc(&eb->refs); +		btrfs_release_path(path); + +		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); +		parent = next_inum; +		--bytes_left; +		if (bytes_left >= 0) +			dest[bytes_left] = '/'; +	} + +	btrfs_release_path(path); + +	if (ret) +		return ERR_PTR(ret); + +	return dest + bytes_left; +} + +/* + * this makes the path point to (logical EXTENT_ITEM *) + * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for + * tree blocks and <0 on error. + */ +int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical, +			struct btrfs_path *path, struct btrfs_key *found_key) +{ +	int ret; +	u64 flags; +	u32 item_size; +	struct extent_buffer *eb; +	struct btrfs_extent_item *ei; +	struct btrfs_key key; + +	key.type = BTRFS_EXTENT_ITEM_KEY; +	key.objectid = logical; +	key.offset = (u64)-1; + +	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0); +	if (ret < 0) +		return ret; +	ret = btrfs_previous_item(fs_info->extent_root, path, +					0, BTRFS_EXTENT_ITEM_KEY); +	if (ret < 0) +		return ret; + +	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]); +	if (found_key->type != BTRFS_EXTENT_ITEM_KEY || +	    found_key->objectid > logical || +	    found_key->objectid + found_key->offset <= logical) +		return -ENOENT; + +	eb = path->nodes[0]; +	item_size = btrfs_item_size_nr(eb, path->slots[0]); +	BUG_ON(item_size < sizeof(*ei)); + +	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); +	flags = btrfs_extent_flags(eb, ei); + +	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) +		return BTRFS_EXTENT_FLAG_TREE_BLOCK; +	if (flags & BTRFS_EXTENT_FLAG_DATA) +		return BTRFS_EXTENT_FLAG_DATA; + +	return -EIO; +} + +/* + * helper function to iterate extent inline refs. ptr must point to a 0 value + * for the first call and may be modified. it is used to track state. + * if more refs exist, 0 is returned and the next call to + * __get_extent_inline_ref must pass the modified ptr parameter to get the + * next ref. after the last ref was processed, 1 is returned. + * returns <0 on error + */ +static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb, +				struct btrfs_extent_item *ei, u32 item_size, +				struct btrfs_extent_inline_ref **out_eiref, +				int *out_type) +{ +	unsigned long end; +	u64 flags; +	struct btrfs_tree_block_info *info; + +	if (!*ptr) { +		/* first call */ +		flags = btrfs_extent_flags(eb, ei); +		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { +			info = (struct btrfs_tree_block_info *)(ei + 1); +			*out_eiref = +				(struct btrfs_extent_inline_ref *)(info + 1); +		} else { +			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1); +		} +		*ptr = (unsigned long)*out_eiref; +		if ((void *)*ptr >= (void *)ei + item_size) +			return -ENOENT; +	} + +	end = (unsigned long)ei + item_size; +	*out_eiref = (struct btrfs_extent_inline_ref *)*ptr; +	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref); + +	*ptr += btrfs_extent_inline_ref_size(*out_type); +	WARN_ON(*ptr > end); +	if (*ptr == end) +		return 1; /* last */ + +	return 0; +} + +/* + * reads the tree block backref for an extent. tree level and root are returned + * through out_level and out_root. ptr must point to a 0 value for the first + * call and may be modified (see __get_extent_inline_ref comment). + * returns 0 if data was provided, 1 if there was no more data to provide or + * <0 on error. + */ +int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb, +				struct btrfs_extent_item *ei, u32 item_size, +				u64 *out_root, u8 *out_level) +{ +	int ret; +	int type; +	struct btrfs_tree_block_info *info; +	struct btrfs_extent_inline_ref *eiref; + +	if (*ptr == (unsigned long)-1) +		return 1; + +	while (1) { +		ret = __get_extent_inline_ref(ptr, eb, ei, item_size, +						&eiref, &type); +		if (ret < 0) +			return ret; + +		if (type == BTRFS_TREE_BLOCK_REF_KEY || +		    type == BTRFS_SHARED_BLOCK_REF_KEY) +			break; + +		if (ret == 1) +			return 1; +	} + +	/* we can treat both ref types equally here */ +	info = (struct btrfs_tree_block_info *)(ei + 1); +	*out_root = btrfs_extent_inline_ref_offset(eb, eiref); +	*out_level = btrfs_tree_block_level(eb, info); + +	if (ret == 1) +		*ptr = (unsigned long)-1; + +	return 0; +} + +static int __data_list_add(struct list_head *head, u64 inum, +				u64 extent_data_item_offset, u64 root) +{ +	struct __data_ref *ref; + +	ref = kmalloc(sizeof(*ref), GFP_NOFS); +	if (!ref) +		return -ENOMEM; + +	ref->inum = inum; +	ref->extent_data_item_offset = extent_data_item_offset; +	ref->root = root; +	list_add_tail(&ref->list, head); + +	return 0; +} + +static int __data_list_add_eb(struct list_head *head, struct extent_buffer *eb, +				struct btrfs_extent_data_ref *dref) +{ +	return __data_list_add(head, btrfs_extent_data_ref_objectid(eb, dref), +				btrfs_extent_data_ref_offset(eb, dref), +				btrfs_extent_data_ref_root(eb, dref)); +} + +static int __shared_list_add(struct list_head *head, u64 disk_byte) +{ +	struct __shared_ref *ref; + +	ref = kmalloc(sizeof(*ref), GFP_NOFS); +	if (!ref) +		return -ENOMEM; + +	ref->disk_byte = disk_byte; +	list_add_tail(&ref->list, head); + +	return 0; +} + +static int __iter_shared_inline_ref_inodes(struct btrfs_fs_info *fs_info, +					   u64 logical, u64 inum, +					   u64 extent_data_item_offset, +					   u64 extent_offset, +					   struct btrfs_path *path, +					   struct list_head *data_refs, +					   iterate_extent_inodes_t *iterate, +					   void *ctx) +{ +	u64 ref_root; +	u32 item_size; +	struct btrfs_key key; +	struct extent_buffer *eb; +	struct btrfs_extent_item *ei; +	struct btrfs_extent_inline_ref *eiref; +	struct __data_ref *ref; +	int ret; +	int type; +	int last; +	unsigned long ptr = 0; + +	WARN_ON(!list_empty(data_refs)); +	ret = extent_from_logical(fs_info, logical, path, &key); +	if (ret & BTRFS_EXTENT_FLAG_DATA) +		ret = -EIO; +	if (ret < 0) +		goto out; + +	eb = path->nodes[0]; +	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); +	item_size = btrfs_item_size_nr(eb, path->slots[0]); + +	ret = 0; +	ref_root = 0; +	/* +	 * as done in iterate_extent_inodes, we first build a list of refs to +	 * iterate, then free the path and then iterate them to avoid deadlocks. +	 */ +	do { +		last = __get_extent_inline_ref(&ptr, eb, ei, item_size, +						&eiref, &type); +		if (last < 0) { +			ret = last; +			goto out; +		} +		if (type == BTRFS_TREE_BLOCK_REF_KEY || +		    type == BTRFS_SHARED_BLOCK_REF_KEY) { +			ref_root = btrfs_extent_inline_ref_offset(eb, eiref); +			ret = __data_list_add(data_refs, inum, +						extent_data_item_offset, +						ref_root); +		} +	} while (!ret && !last); + +	btrfs_release_path(path); + +	if (ref_root == 0) { +		printk(KERN_ERR "btrfs: failed to find tree block ref " +			"for shared data backref %llu\n", logical); +		WARN_ON(1); +		ret = -EIO; +	} + +out: +	while (!list_empty(data_refs)) { +		ref = list_first_entry(data_refs, struct __data_ref, list); +		list_del(&ref->list); +		if (!ret) +			ret = iterate(ref->inum, extent_offset + +					ref->extent_data_item_offset, +					ref->root, ctx); +		kfree(ref); +	} + +	return ret; +} + +static int __iter_shared_inline_ref(struct btrfs_fs_info *fs_info, +				    u64 logical, u64 orig_extent_item_objectid, +				    u64 extent_offset, struct btrfs_path *path, +				    struct list_head *data_refs, +				    iterate_extent_inodes_t *iterate, +				    void *ctx) +{ +	u64 disk_byte; +	struct btrfs_key key; +	struct btrfs_file_extent_item *fi; +	struct extent_buffer *eb; +	int slot; +	int nritems; +	int ret; +	int found = 0; + +	eb = read_tree_block(fs_info->tree_root, logical, +				fs_info->tree_root->leafsize, 0); +	if (!eb) +		return -EIO; + +	/* +	 * from the shared data ref, we only have the leaf but we need +	 * the key. thus, we must look into all items and see that we +	 * find one (some) with a reference to our extent item. +	 */ +	nritems = btrfs_header_nritems(eb); +	for (slot = 0; slot < nritems; ++slot) { +		btrfs_item_key_to_cpu(eb, &key, slot); +		if (key.type != BTRFS_EXTENT_DATA_KEY) +			continue; +		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item); +		if (!fi) { +			free_extent_buffer(eb); +			return -EIO; +		} +		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi); +		if (disk_byte != orig_extent_item_objectid) { +			if (found) +				break; +			else +				continue; +		} +		++found; +		ret = __iter_shared_inline_ref_inodes(fs_info, logical, +							key.objectid, +							key.offset, +							extent_offset, path, +							data_refs, +							iterate, ctx); +		if (ret) +			break; +	} + +	if (!found) { +		printk(KERN_ERR "btrfs: failed to follow shared data backref " +			"to parent %llu\n", logical); +		WARN_ON(1); +		ret = -EIO; +	} + +	free_extent_buffer(eb); +	return ret; +} + +/* + * calls iterate() for every inode that references the extent identified by + * the given parameters. will use the path given as a parameter and return it + * released. + * when the iterator function returns a non-zero value, iteration stops. + */ +int iterate_extent_inodes(struct btrfs_fs_info *fs_info, +				struct btrfs_path *path, +				u64 extent_item_objectid, +				u64 extent_offset, +				iterate_extent_inodes_t *iterate, void *ctx) +{ +	unsigned long ptr = 0; +	int last; +	int ret; +	int type; +	u64 logical; +	u32 item_size; +	struct btrfs_extent_inline_ref *eiref; +	struct btrfs_extent_data_ref *dref; +	struct extent_buffer *eb; +	struct btrfs_extent_item *ei; +	struct btrfs_key key; +	struct list_head data_refs = LIST_HEAD_INIT(data_refs); +	struct list_head shared_refs = LIST_HEAD_INIT(shared_refs); +	struct __data_ref *ref_d; +	struct __shared_ref *ref_s; + +	eb = path->nodes[0]; +	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); +	item_size = btrfs_item_size_nr(eb, path->slots[0]); + +	/* first we iterate the inline refs, ... */ +	do { +		last = __get_extent_inline_ref(&ptr, eb, ei, item_size, +						&eiref, &type); +		if (last == -ENOENT) { +			ret = 0; +			break; +		} +		if (last < 0) { +			ret = last; +			break; +		} + +		if (type == BTRFS_EXTENT_DATA_REF_KEY) { +			dref = (struct btrfs_extent_data_ref *)(&eiref->offset); +			ret = __data_list_add_eb(&data_refs, eb, dref); +		} else if (type == BTRFS_SHARED_DATA_REF_KEY) { +			logical = btrfs_extent_inline_ref_offset(eb, eiref); +			ret = __shared_list_add(&shared_refs, logical); +		} +	} while (!ret && !last); + +	/* ... then we proceed to in-tree references and ... */ +	while (!ret) { +		++path->slots[0]; +		if (path->slots[0] > btrfs_header_nritems(eb)) { +			ret = btrfs_next_leaf(fs_info->extent_root, path); +			if (ret) { +				if (ret == 1) +					ret = 0; /* we're done */ +				break; +			} +			eb = path->nodes[0]; +		} +		btrfs_item_key_to_cpu(eb, &key, path->slots[0]); +		if (key.objectid != extent_item_objectid) +			break; +		if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { +			dref = btrfs_item_ptr(eb, path->slots[0], +						struct btrfs_extent_data_ref); +			ret = __data_list_add_eb(&data_refs, eb, dref); +		} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) { +			ret = __shared_list_add(&shared_refs, key.offset); +		} +	} + +	btrfs_release_path(path); + +	/* +	 * ... only at the very end we can process the refs we found. this is +	 * because the iterator function we call is allowed to make tree lookups +	 * and we have to avoid deadlocks. additionally, we need more tree +	 * lookups ourselves for shared data refs. +	 */ +	while (!list_empty(&data_refs)) { +		ref_d = list_first_entry(&data_refs, struct __data_ref, list); +		list_del(&ref_d->list); +		if (!ret) +			ret = iterate(ref_d->inum, extent_offset + +					ref_d->extent_data_item_offset, +					ref_d->root, ctx); +		kfree(ref_d); +	} + +	while (!list_empty(&shared_refs)) { +		ref_s = list_first_entry(&shared_refs, struct __shared_ref, +					list); +		list_del(&ref_s->list); +		if (!ret) +			ret = __iter_shared_inline_ref(fs_info, +							ref_s->disk_byte, +							extent_item_objectid, +							extent_offset, path, +							&data_refs, +							iterate, ctx); +		kfree(ref_s); +	} + +	return ret; +} + +int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info, +				struct btrfs_path *path, +				iterate_extent_inodes_t *iterate, void *ctx) +{ +	int ret; +	u64 offset; +	struct btrfs_key found_key; + +	ret = extent_from_logical(fs_info, logical, path, +					&found_key); +	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) +		ret = -EINVAL; +	if (ret < 0) +		return ret; + +	offset = logical - found_key.objectid; +	ret = iterate_extent_inodes(fs_info, path, found_key.objectid, +					offset, iterate, ctx); + +	return ret; +} + +static int iterate_irefs(u64 inum, struct btrfs_root *fs_root, +				struct btrfs_path *path, +				iterate_irefs_t *iterate, void *ctx) +{ +	int ret; +	int slot; +	u32 cur; +	u32 len; +	u32 name_len; +	u64 parent = 0; +	int found = 0; +	struct extent_buffer *eb; +	struct btrfs_item *item; +	struct btrfs_inode_ref *iref; +	struct btrfs_key found_key; + +	while (1) { +		ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path, +					&found_key); +		if (ret < 0) +			break; +		if (ret) { +			ret = found ? 0 : -ENOENT; +			break; +		} +		++found; + +		parent = found_key.offset; +		slot = path->slots[0]; +		eb = path->nodes[0]; +		/* make sure we can use eb after releasing the path */ +		atomic_inc(&eb->refs); +		btrfs_release_path(path); + +		item = btrfs_item_nr(eb, slot); +		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref); + +		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) { +			name_len = btrfs_inode_ref_name_len(eb, iref); +			/* path must be released before calling iterate()! */ +			ret = iterate(parent, iref, eb, ctx); +			if (ret) { +				free_extent_buffer(eb); +				break; +			} +			len = sizeof(*iref) + name_len; +			iref = (struct btrfs_inode_ref *)((char *)iref + len); +		} +		free_extent_buffer(eb); +	} + +	btrfs_release_path(path); + +	return ret; +} + +/* + * returns 0 if the path could be dumped (probably truncated) + * returns <0 in case of an error + */ +static int inode_to_path(u64 inum, struct btrfs_inode_ref *iref, +				struct extent_buffer *eb, void *ctx) +{ +	struct inode_fs_paths *ipath = ctx; +	char *fspath; +	char *fspath_min; +	int i = ipath->fspath->elem_cnt; +	const int s_ptr = sizeof(char *); +	u32 bytes_left; + +	bytes_left = ipath->fspath->bytes_left > s_ptr ? +					ipath->fspath->bytes_left - s_ptr : 0; + +	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr; +	fspath = iref_to_path(ipath->fs_root, ipath->btrfs_path, iref, eb, +				inum, fspath_min, bytes_left); +	if (IS_ERR(fspath)) +		return PTR_ERR(fspath); + +	if (fspath > fspath_min) { +		ipath->fspath->val[i] = (u64)fspath; +		++ipath->fspath->elem_cnt; +		ipath->fspath->bytes_left = fspath - fspath_min; +	} else { +		++ipath->fspath->elem_missed; +		ipath->fspath->bytes_missing += fspath_min - fspath; +		ipath->fspath->bytes_left = 0; +	} + +	return 0; +} + +/* + * this dumps all file system paths to the inode into the ipath struct, provided + * is has been created large enough. each path is zero-terminated and accessed + * from ipath->fspath->val[i]. + * when it returns, there are ipath->fspath->elem_cnt number of paths available + * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the + * number of missed paths in recored in ipath->fspath->elem_missed, otherwise, + * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would + * have been needed to return all paths. + */ +int paths_from_inode(u64 inum, struct inode_fs_paths *ipath) +{ +	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path, +				inode_to_path, ipath); +} + +/* + * allocates space to return multiple file system paths for an inode. + * total_bytes to allocate are passed, note that space usable for actual path + * information will be total_bytes - sizeof(struct inode_fs_paths). + * the returned pointer must be freed with free_ipath() in the end. + */ +struct btrfs_data_container *init_data_container(u32 total_bytes) +{ +	struct btrfs_data_container *data; +	size_t alloc_bytes; + +	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data)); +	data = kmalloc(alloc_bytes, GFP_NOFS); +	if (!data) +		return ERR_PTR(-ENOMEM); + +	if (total_bytes >= sizeof(*data)) { +		data->bytes_left = total_bytes - sizeof(*data); +		data->bytes_missing = 0; +	} else { +		data->bytes_missing = sizeof(*data) - total_bytes; +		data->bytes_left = 0; +	} + +	data->elem_cnt = 0; +	data->elem_missed = 0; + +	return data; +} + +/* + * allocates space to return multiple file system paths for an inode. + * total_bytes to allocate are passed, note that space usable for actual path + * information will be total_bytes - sizeof(struct inode_fs_paths). + * the returned pointer must be freed with free_ipath() in the end. + */ +struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root, +					struct btrfs_path *path) +{ +	struct inode_fs_paths *ifp; +	struct btrfs_data_container *fspath; + +	fspath = init_data_container(total_bytes); +	if (IS_ERR(fspath)) +		return (void *)fspath; + +	ifp = kmalloc(sizeof(*ifp), GFP_NOFS); +	if (!ifp) { +		kfree(fspath); +		return ERR_PTR(-ENOMEM); +	} + +	ifp->btrfs_path = path; +	ifp->fspath = fspath; +	ifp->fs_root = fs_root; + +	return ifp; +} + +void free_ipath(struct inode_fs_paths *ipath) +{ +	kfree(ipath); +}  |