diff options
Diffstat (limited to 'drivers/net/ethernet/intel/e1000e/nvm.c')
| -rw-r--r-- | drivers/net/ethernet/intel/e1000e/nvm.c | 643 | 
1 files changed, 643 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e1000e/nvm.c b/drivers/net/ethernet/intel/e1000e/nvm.c new file mode 100644 index 00000000000..a969f1af1b4 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/nvm.c @@ -0,0 +1,643 @@ +/******************************************************************************* + +  Intel PRO/1000 Linux driver +  Copyright(c) 1999 - 2012 Intel Corporation. + +  This program is free software; you can redistribute it and/or modify it +  under the terms and conditions of the GNU General Public License, +  version 2, as published by the Free Software Foundation. + +  This program is distributed in the hope it will be useful, but WITHOUT +  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for +  more details. + +  You should have received a copy of the GNU General Public License along with +  this program; if not, write to the Free Software Foundation, Inc., +  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. + +  The full GNU General Public License is included in this distribution in +  the file called "COPYING". + +  Contact Information: +  Linux NICS <linux.nics@intel.com> +  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> +  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 + +*******************************************************************************/ + +#include "e1000.h" + +/** + *  e1000_raise_eec_clk - Raise EEPROM clock + *  @hw: pointer to the HW structure + *  @eecd: pointer to the EEPROM + * + *  Enable/Raise the EEPROM clock bit. + **/ +static void e1000_raise_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ +	*eecd = *eecd | E1000_EECD_SK; +	ew32(EECD, *eecd); +	e1e_flush(); +	udelay(hw->nvm.delay_usec); +} + +/** + *  e1000_lower_eec_clk - Lower EEPROM clock + *  @hw: pointer to the HW structure + *  @eecd: pointer to the EEPROM + * + *  Clear/Lower the EEPROM clock bit. + **/ +static void e1000_lower_eec_clk(struct e1000_hw *hw, u32 *eecd) +{ +	*eecd = *eecd & ~E1000_EECD_SK; +	ew32(EECD, *eecd); +	e1e_flush(); +	udelay(hw->nvm.delay_usec); +} + +/** + *  e1000_shift_out_eec_bits - Shift data bits our to the EEPROM + *  @hw: pointer to the HW structure + *  @data: data to send to the EEPROM + *  @count: number of bits to shift out + * + *  We need to shift 'count' bits out to the EEPROM.  So, the value in the + *  "data" parameter will be shifted out to the EEPROM one bit at a time. + *  In order to do this, "data" must be broken down into bits. + **/ +static void e1000_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	u32 eecd = er32(EECD); +	u32 mask; + +	mask = 0x01 << (count - 1); +	if (nvm->type == e1000_nvm_eeprom_spi) +		eecd |= E1000_EECD_DO; + +	do { +		eecd &= ~E1000_EECD_DI; + +		if (data & mask) +			eecd |= E1000_EECD_DI; + +		ew32(EECD, eecd); +		e1e_flush(); + +		udelay(nvm->delay_usec); + +		e1000_raise_eec_clk(hw, &eecd); +		e1000_lower_eec_clk(hw, &eecd); + +		mask >>= 1; +	} while (mask); + +	eecd &= ~E1000_EECD_DI; +	ew32(EECD, eecd); +} + +/** + *  e1000_shift_in_eec_bits - Shift data bits in from the EEPROM + *  @hw: pointer to the HW structure + *  @count: number of bits to shift in + * + *  In order to read a register from the EEPROM, we need to shift 'count' bits + *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to + *  the EEPROM (setting the SK bit), and then reading the value of the data out + *  "DO" bit.  During this "shifting in" process the data in "DI" bit should + *  always be clear. + **/ +static u16 e1000_shift_in_eec_bits(struct e1000_hw *hw, u16 count) +{ +	u32 eecd; +	u32 i; +	u16 data; + +	eecd = er32(EECD); + +	eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); +	data = 0; + +	for (i = 0; i < count; i++) { +		data <<= 1; +		e1000_raise_eec_clk(hw, &eecd); + +		eecd = er32(EECD); + +		eecd &= ~E1000_EECD_DI; +		if (eecd & E1000_EECD_DO) +			data |= 1; + +		e1000_lower_eec_clk(hw, &eecd); +	} + +	return data; +} + +/** + *  e1000e_poll_eerd_eewr_done - Poll for EEPROM read/write completion + *  @hw: pointer to the HW structure + *  @ee_reg: EEPROM flag for polling + * + *  Polls the EEPROM status bit for either read or write completion based + *  upon the value of 'ee_reg'. + **/ +s32 e1000e_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg) +{ +	u32 attempts = 100000; +	u32 i, reg = 0; + +	for (i = 0; i < attempts; i++) { +		if (ee_reg == E1000_NVM_POLL_READ) +			reg = er32(EERD); +		else +			reg = er32(EEWR); + +		if (reg & E1000_NVM_RW_REG_DONE) +			return 0; + +		udelay(5); +	} + +	return -E1000_ERR_NVM; +} + +/** + *  e1000e_acquire_nvm - Generic request for access to EEPROM + *  @hw: pointer to the HW structure + * + *  Set the EEPROM access request bit and wait for EEPROM access grant bit. + *  Return successful if access grant bit set, else clear the request for + *  EEPROM access and return -E1000_ERR_NVM (-1). + **/ +s32 e1000e_acquire_nvm(struct e1000_hw *hw) +{ +	u32 eecd = er32(EECD); +	s32 timeout = E1000_NVM_GRANT_ATTEMPTS; + +	ew32(EECD, eecd | E1000_EECD_REQ); +	eecd = er32(EECD); + +	while (timeout) { +		if (eecd & E1000_EECD_GNT) +			break; +		udelay(5); +		eecd = er32(EECD); +		timeout--; +	} + +	if (!timeout) { +		eecd &= ~E1000_EECD_REQ; +		ew32(EECD, eecd); +		e_dbg("Could not acquire NVM grant\n"); +		return -E1000_ERR_NVM; +	} + +	return 0; +} + +/** + *  e1000_standby_nvm - Return EEPROM to standby state + *  @hw: pointer to the HW structure + * + *  Return the EEPROM to a standby state. + **/ +static void e1000_standby_nvm(struct e1000_hw *hw) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	u32 eecd = er32(EECD); + +	if (nvm->type == e1000_nvm_eeprom_spi) { +		/* Toggle CS to flush commands */ +		eecd |= E1000_EECD_CS; +		ew32(EECD, eecd); +		e1e_flush(); +		udelay(nvm->delay_usec); +		eecd &= ~E1000_EECD_CS; +		ew32(EECD, eecd); +		e1e_flush(); +		udelay(nvm->delay_usec); +	} +} + +/** + *  e1000_stop_nvm - Terminate EEPROM command + *  @hw: pointer to the HW structure + * + *  Terminates the current command by inverting the EEPROM's chip select pin. + **/ +static void e1000_stop_nvm(struct e1000_hw *hw) +{ +	u32 eecd; + +	eecd = er32(EECD); +	if (hw->nvm.type == e1000_nvm_eeprom_spi) { +		/* Pull CS high */ +		eecd |= E1000_EECD_CS; +		e1000_lower_eec_clk(hw, &eecd); +	} +} + +/** + *  e1000e_release_nvm - Release exclusive access to EEPROM + *  @hw: pointer to the HW structure + * + *  Stop any current commands to the EEPROM and clear the EEPROM request bit. + **/ +void e1000e_release_nvm(struct e1000_hw *hw) +{ +	u32 eecd; + +	e1000_stop_nvm(hw); + +	eecd = er32(EECD); +	eecd &= ~E1000_EECD_REQ; +	ew32(EECD, eecd); +} + +/** + *  e1000_ready_nvm_eeprom - Prepares EEPROM for read/write + *  @hw: pointer to the HW structure + * + *  Setups the EEPROM for reading and writing. + **/ +static s32 e1000_ready_nvm_eeprom(struct e1000_hw *hw) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	u32 eecd = er32(EECD); +	u8 spi_stat_reg; + +	if (nvm->type == e1000_nvm_eeprom_spi) { +		u16 timeout = NVM_MAX_RETRY_SPI; + +		/* Clear SK and CS */ +		eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); +		ew32(EECD, eecd); +		e1e_flush(); +		udelay(1); + +		/* +		 * Read "Status Register" repeatedly until the LSB is cleared. +		 * The EEPROM will signal that the command has been completed +		 * by clearing bit 0 of the internal status register.  If it's +		 * not cleared within 'timeout', then error out. +		 */ +		while (timeout) { +			e1000_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI, +						 hw->nvm.opcode_bits); +			spi_stat_reg = (u8)e1000_shift_in_eec_bits(hw, 8); +			if (!(spi_stat_reg & NVM_STATUS_RDY_SPI)) +				break; + +			udelay(5); +			e1000_standby_nvm(hw); +			timeout--; +		} + +		if (!timeout) { +			e_dbg("SPI NVM Status error\n"); +			return -E1000_ERR_NVM; +		} +	} + +	return 0; +} + +/** + *  e1000e_read_nvm_eerd - Reads EEPROM using EERD register + *  @hw: pointer to the HW structure + *  @offset: offset of word in the EEPROM to read + *  @words: number of words to read + *  @data: word read from the EEPROM + * + *  Reads a 16 bit word from the EEPROM using the EERD register. + **/ +s32 e1000e_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	u32 i, eerd = 0; +	s32 ret_val = 0; + +	/* +	 * A check for invalid values:  offset too large, too many words, +	 * too many words for the offset, and not enough words. +	 */ +	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || +	    (words == 0)) { +		e_dbg("nvm parameter(s) out of bounds\n"); +		return -E1000_ERR_NVM; +	} + +	for (i = 0; i < words; i++) { +		eerd = ((offset + i) << E1000_NVM_RW_ADDR_SHIFT) + +		    E1000_NVM_RW_REG_START; + +		ew32(EERD, eerd); +		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ); +		if (ret_val) +			break; + +		data[i] = (er32(EERD) >> E1000_NVM_RW_REG_DATA); +	} + +	return ret_val; +} + +/** + *  e1000e_write_nvm_spi - Write to EEPROM using SPI + *  @hw: pointer to the HW structure + *  @offset: offset within the EEPROM to be written to + *  @words: number of words to write + *  @data: 16 bit word(s) to be written to the EEPROM + * + *  Writes data to EEPROM at offset using SPI interface. + * + *  If e1000e_update_nvm_checksum is not called after this function , the + *  EEPROM will most likely contain an invalid checksum. + **/ +s32 e1000e_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) +{ +	struct e1000_nvm_info *nvm = &hw->nvm; +	s32 ret_val; +	u16 widx = 0; + +	/* +	 * A check for invalid values:  offset too large, too many words, +	 * and not enough words. +	 */ +	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || +	    (words == 0)) { +		e_dbg("nvm parameter(s) out of bounds\n"); +		return -E1000_ERR_NVM; +	} + +	ret_val = nvm->ops.acquire(hw); +	if (ret_val) +		return ret_val; + +	while (widx < words) { +		u8 write_opcode = NVM_WRITE_OPCODE_SPI; + +		ret_val = e1000_ready_nvm_eeprom(hw); +		if (ret_val) +			goto release; + +		e1000_standby_nvm(hw); + +		/* Send the WRITE ENABLE command (8 bit opcode) */ +		e1000_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI, +					 nvm->opcode_bits); + +		e1000_standby_nvm(hw); + +		/* +		 * Some SPI eeproms use the 8th address bit embedded in the +		 * opcode +		 */ +		if ((nvm->address_bits == 8) && (offset >= 128)) +			write_opcode |= NVM_A8_OPCODE_SPI; + +		/* Send the Write command (8-bit opcode + addr) */ +		e1000_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits); +		e1000_shift_out_eec_bits(hw, (u16)((offset + widx) * 2), +					 nvm->address_bits); + +		/* Loop to allow for up to whole page write of eeprom */ +		while (widx < words) { +			u16 word_out = data[widx]; +			word_out = (word_out >> 8) | (word_out << 8); +			e1000_shift_out_eec_bits(hw, word_out, 16); +			widx++; + +			if ((((offset + widx) * 2) % nvm->page_size) == 0) { +				e1000_standby_nvm(hw); +				break; +			} +		} +	} + +	usleep_range(10000, 20000); +release: +	nvm->ops.release(hw); + +	return ret_val; +} + +/** + *  e1000_read_pba_string_generic - Read device part number + *  @hw: pointer to the HW structure + *  @pba_num: pointer to device part number + *  @pba_num_size: size of part number buffer + * + *  Reads the product board assembly (PBA) number from the EEPROM and stores + *  the value in pba_num. + **/ +s32 e1000_read_pba_string_generic(struct e1000_hw *hw, u8 *pba_num, +				  u32 pba_num_size) +{ +	s32 ret_val; +	u16 nvm_data; +	u16 pba_ptr; +	u16 offset; +	u16 length; + +	if (pba_num == NULL) { +		e_dbg("PBA string buffer was null\n"); +		return -E1000_ERR_INVALID_ARGUMENT; +	} + +	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_0, 1, &nvm_data); +	if (ret_val) { +		e_dbg("NVM Read Error\n"); +		return ret_val; +	} + +	ret_val = e1000_read_nvm(hw, NVM_PBA_OFFSET_1, 1, &pba_ptr); +	if (ret_val) { +		e_dbg("NVM Read Error\n"); +		return ret_val; +	} + +	/* +	 * if nvm_data is not ptr guard the PBA must be in legacy format which +	 * means pba_ptr is actually our second data word for the PBA number +	 * and we can decode it into an ascii string +	 */ +	if (nvm_data != NVM_PBA_PTR_GUARD) { +		e_dbg("NVM PBA number is not stored as string\n"); + +		/* we will need 11 characters to store the PBA */ +		if (pba_num_size < 11) { +			e_dbg("PBA string buffer too small\n"); +			return E1000_ERR_NO_SPACE; +		} + +		/* extract hex string from data and pba_ptr */ +		pba_num[0] = (nvm_data >> 12) & 0xF; +		pba_num[1] = (nvm_data >> 8) & 0xF; +		pba_num[2] = (nvm_data >> 4) & 0xF; +		pba_num[3] = nvm_data & 0xF; +		pba_num[4] = (pba_ptr >> 12) & 0xF; +		pba_num[5] = (pba_ptr >> 8) & 0xF; +		pba_num[6] = '-'; +		pba_num[7] = 0; +		pba_num[8] = (pba_ptr >> 4) & 0xF; +		pba_num[9] = pba_ptr & 0xF; + +		/* put a null character on the end of our string */ +		pba_num[10] = '\0'; + +		/* switch all the data but the '-' to hex char */ +		for (offset = 0; offset < 10; offset++) { +			if (pba_num[offset] < 0xA) +				pba_num[offset] += '0'; +			else if (pba_num[offset] < 0x10) +				pba_num[offset] += 'A' - 0xA; +		} + +		return 0; +	} + +	ret_val = e1000_read_nvm(hw, pba_ptr, 1, &length); +	if (ret_val) { +		e_dbg("NVM Read Error\n"); +		return ret_val; +	} + +	if (length == 0xFFFF || length == 0) { +		e_dbg("NVM PBA number section invalid length\n"); +		return -E1000_ERR_NVM_PBA_SECTION; +	} +	/* check if pba_num buffer is big enough */ +	if (pba_num_size < (((u32)length * 2) - 1)) { +		e_dbg("PBA string buffer too small\n"); +		return -E1000_ERR_NO_SPACE; +	} + +	/* trim pba length from start of string */ +	pba_ptr++; +	length--; + +	for (offset = 0; offset < length; offset++) { +		ret_val = e1000_read_nvm(hw, pba_ptr + offset, 1, &nvm_data); +		if (ret_val) { +			e_dbg("NVM Read Error\n"); +			return ret_val; +		} +		pba_num[offset * 2] = (u8)(nvm_data >> 8); +		pba_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF); +	} +	pba_num[offset * 2] = '\0'; + +	return 0; +} + +/** + *  e1000_read_mac_addr_generic - Read device MAC address + *  @hw: pointer to the HW structure + * + *  Reads the device MAC address from the EEPROM and stores the value. + *  Since devices with two ports use the same EEPROM, we increment the + *  last bit in the MAC address for the second port. + **/ +s32 e1000_read_mac_addr_generic(struct e1000_hw *hw) +{ +	u32 rar_high; +	u32 rar_low; +	u16 i; + +	rar_high = er32(RAH(0)); +	rar_low = er32(RAL(0)); + +	for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++) +		hw->mac.perm_addr[i] = (u8)(rar_low >> (i * 8)); + +	for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++) +		hw->mac.perm_addr[i + 4] = (u8)(rar_high >> (i * 8)); + +	for (i = 0; i < ETH_ALEN; i++) +		hw->mac.addr[i] = hw->mac.perm_addr[i]; + +	return 0; +} + +/** + *  e1000e_validate_nvm_checksum_generic - Validate EEPROM checksum + *  @hw: pointer to the HW structure + * + *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM + *  and then verifies that the sum of the EEPROM is equal to 0xBABA. + **/ +s32 e1000e_validate_nvm_checksum_generic(struct e1000_hw *hw) +{ +	s32 ret_val; +	u16 checksum = 0; +	u16 i, nvm_data; + +	for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) { +		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); +		if (ret_val) { +			e_dbg("NVM Read Error\n"); +			return ret_val; +		} +		checksum += nvm_data; +	} + +	if (checksum != (u16)NVM_SUM) { +		e_dbg("NVM Checksum Invalid\n"); +		return -E1000_ERR_NVM; +	} + +	return 0; +} + +/** + *  e1000e_update_nvm_checksum_generic - Update EEPROM checksum + *  @hw: pointer to the HW structure + * + *  Updates the EEPROM checksum by reading/adding each word of the EEPROM + *  up to the checksum.  Then calculates the EEPROM checksum and writes the + *  value to the EEPROM. + **/ +s32 e1000e_update_nvm_checksum_generic(struct e1000_hw *hw) +{ +	s32 ret_val; +	u16 checksum = 0; +	u16 i, nvm_data; + +	for (i = 0; i < NVM_CHECKSUM_REG; i++) { +		ret_val = e1000_read_nvm(hw, i, 1, &nvm_data); +		if (ret_val) { +			e_dbg("NVM Read Error while updating checksum.\n"); +			return ret_val; +		} +		checksum += nvm_data; +	} +	checksum = (u16)NVM_SUM - checksum; +	ret_val = e1000_write_nvm(hw, NVM_CHECKSUM_REG, 1, &checksum); +	if (ret_val) +		e_dbg("NVM Write Error while updating checksum.\n"); + +	return ret_val; +} + +/** + *  e1000e_reload_nvm_generic - Reloads EEPROM + *  @hw: pointer to the HW structure + * + *  Reloads the EEPROM by setting the "Reinitialize from EEPROM" bit in the + *  extended control register. + **/ +void e1000e_reload_nvm_generic(struct e1000_hw *hw) +{ +	u32 ctrl_ext; + +	udelay(10); +	ctrl_ext = er32(CTRL_EXT); +	ctrl_ext |= E1000_CTRL_EXT_EE_RST; +	ew32(CTRL_EXT, ctrl_ext); +	e1e_flush(); +}  |