diff options
Diffstat (limited to 'arch/x86/kernel/tlb_uv.c')
| -rw-r--r-- | arch/x86/kernel/tlb_uv.c | 1274 | 
1 files changed, 903 insertions, 371 deletions
diff --git a/arch/x86/kernel/tlb_uv.c b/arch/x86/kernel/tlb_uv.c index 17b03dd3a6b..7fea555929e 100644 --- a/arch/x86/kernel/tlb_uv.c +++ b/arch/x86/kernel/tlb_uv.c @@ -1,7 +1,7 @@  /*   *	SGI UltraViolet TLB flush routines.   * - *	(c) 2008 Cliff Wickman <cpw@sgi.com>, SGI. + *	(c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.   *   *	This code is released under the GNU General Public License version 2 or   *	later. @@ -20,42 +20,67 @@  #include <asm/idle.h>  #include <asm/tsc.h>  #include <asm/irq_vectors.h> +#include <asm/timer.h> -static struct bau_control	**uv_bau_table_bases __read_mostly; -static int			uv_bau_retry_limit __read_mostly; +struct msg_desc { +	struct bau_payload_queue_entry *msg; +	int msg_slot; +	int sw_ack_slot; +	struct bau_payload_queue_entry *va_queue_first; +	struct bau_payload_queue_entry *va_queue_last; +}; -/* base pnode in this partition */ -static int			uv_partition_base_pnode __read_mostly; +#define UV_INTD_SOFT_ACK_TIMEOUT_PERIOD	0x000000000bUL + +static int uv_bau_max_concurrent __read_mostly; + +static int nobau; +static int __init setup_nobau(char *arg) +{ +	nobau = 1; +	return 0; +} +early_param("nobau", setup_nobau); -static unsigned long		uv_mmask __read_mostly; +/* base pnode in this partition */ +static int uv_partition_base_pnode __read_mostly; +/* position of pnode (which is nasid>>1): */ +static int uv_nshift __read_mostly; +static unsigned long uv_mmask __read_mostly;  static DEFINE_PER_CPU(struct ptc_stats, ptcstats);  static DEFINE_PER_CPU(struct bau_control, bau_control); +static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); + +struct reset_args { +	int sender; +};  /* - * Determine the first node on a blade. + * Determine the first node on a uvhub. 'Nodes' are used for kernel + * memory allocation.   */ -static int __init blade_to_first_node(int blade) +static int __init uvhub_to_first_node(int uvhub)  {  	int node, b;  	for_each_online_node(node) {  		b = uv_node_to_blade_id(node); -		if (blade == b) +		if (uvhub == b)  			return node;  	} -	return -1; /* shouldn't happen */ +	return -1;  }  /* - * Determine the apicid of the first cpu on a blade. + * Determine the apicid of the first cpu on a uvhub.   */ -static int __init blade_to_first_apicid(int blade) +static int __init uvhub_to_first_apicid(int uvhub)  {  	int cpu;  	for_each_present_cpu(cpu) -		if (blade == uv_cpu_to_blade_id(cpu)) +		if (uvhub == uv_cpu_to_blade_id(cpu))  			return per_cpu(x86_cpu_to_apicid, cpu);  	return -1;  } @@ -68,195 +93,459 @@ static int __init blade_to_first_apicid(int blade)   * clear of the Timeout bit (as well) will free the resource. No reply will   * be sent (the hardware will only do one reply per message).   */ -static void uv_reply_to_message(int resource, -				struct bau_payload_queue_entry *msg, -				struct bau_msg_status *msp) +static inline void uv_reply_to_message(struct msg_desc *mdp, +				       struct bau_control *bcp)  {  	unsigned long dw; +	struct bau_payload_queue_entry *msg; -	dw = (1 << (resource + UV_SW_ACK_NPENDING)) | (1 << resource); +	msg = mdp->msg; +	if (!msg->canceled) { +		dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) | +						msg->sw_ack_vector; +		uv_write_local_mmr( +				UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw); +	}  	msg->replied_to = 1;  	msg->sw_ack_vector = 0; -	if (msp) -		msp->seen_by.bits = 0; -	uv_write_local_mmr(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);  }  /* - * Do all the things a cpu should do for a TLB shootdown message. - * Other cpu's may come here at the same time for this message. + * Process the receipt of a RETRY message   */ -static void uv_bau_process_message(struct bau_payload_queue_entry *msg, -				   int msg_slot, int sw_ack_slot) +static inline void uv_bau_process_retry_msg(struct msg_desc *mdp, +					    struct bau_control *bcp)  { -	unsigned long this_cpu_mask; -	struct bau_msg_status *msp; -	int cpu; +	int i; +	int cancel_count = 0; +	int slot2; +	unsigned long msg_res; +	unsigned long mmr = 0; +	struct bau_payload_queue_entry *msg; +	struct bau_payload_queue_entry *msg2; +	struct ptc_stats *stat; -	msp = __get_cpu_var(bau_control).msg_statuses + msg_slot; -	cpu = uv_blade_processor_id(); -	msg->number_of_cpus = -		uv_blade_nr_online_cpus(uv_node_to_blade_id(numa_node_id())); -	this_cpu_mask = 1UL << cpu; -	if (msp->seen_by.bits & this_cpu_mask) -		return; -	atomic_or_long(&msp->seen_by.bits, this_cpu_mask); +	msg = mdp->msg; +	stat = &per_cpu(ptcstats, bcp->cpu); +	stat->d_retries++; +	/* +	 * cancel any message from msg+1 to the retry itself +	 */ +	for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) { +		if (msg2 > mdp->va_queue_last) +			msg2 = mdp->va_queue_first; +		if (msg2 == msg) +			break; -	if (msg->replied_to == 1) -		return; +		/* same conditions for cancellation as uv_do_reset */ +		if ((msg2->replied_to == 0) && (msg2->canceled == 0) && +		    (msg2->sw_ack_vector) && ((msg2->sw_ack_vector & +			msg->sw_ack_vector) == 0) && +		    (msg2->sending_cpu == msg->sending_cpu) && +		    (msg2->msg_type != MSG_NOOP)) { +			slot2 = msg2 - mdp->va_queue_first; +			mmr = uv_read_local_mmr +				(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); +			msg_res = ((msg2->sw_ack_vector << 8) | +				   msg2->sw_ack_vector); +			/* +			 * This is a message retry; clear the resources held +			 * by the previous message only if they timed out. +			 * If it has not timed out we have an unexpected +			 * situation to report. +			 */ +			if (mmr & (msg_res << 8)) { +				/* +				 * is the resource timed out? +				 * make everyone ignore the cancelled message. +				 */ +				msg2->canceled = 1; +				stat->d_canceled++; +				cancel_count++; +				uv_write_local_mmr( +				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, +					(msg_res << 8) | msg_res); +			} else +				printk(KERN_INFO "note bau retry: no effect\n"); +		} +	} +	if (!cancel_count) +		stat->d_nocanceled++; +} +/* + * Do all the things a cpu should do for a TLB shootdown message. + * Other cpu's may come here at the same time for this message. + */ +static void uv_bau_process_message(struct msg_desc *mdp, +				   struct bau_control *bcp) +{ +	int msg_ack_count; +	short socket_ack_count = 0; +	struct ptc_stats *stat; +	struct bau_payload_queue_entry *msg; +	struct bau_control *smaster = bcp->socket_master; + +	/* +	 * This must be a normal message, or retry of a normal message +	 */ +	msg = mdp->msg; +	stat = &per_cpu(ptcstats, bcp->cpu);  	if (msg->address == TLB_FLUSH_ALL) {  		local_flush_tlb(); -		__get_cpu_var(ptcstats).alltlb++; +		stat->d_alltlb++;  	} else {  		__flush_tlb_one(msg->address); -		__get_cpu_var(ptcstats).onetlb++; +		stat->d_onetlb++;  	} +	stat->d_requestee++; + +	/* +	 * One cpu on each uvhub has the additional job on a RETRY +	 * of releasing the resource held by the message that is +	 * being retried.  That message is identified by sending +	 * cpu number. +	 */ +	if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master) +		uv_bau_process_retry_msg(mdp, bcp); -	__get_cpu_var(ptcstats).requestee++; +	/* +	 * This is a sw_ack message, so we have to reply to it. +	 * Count each responding cpu on the socket. This avoids +	 * pinging the count's cache line back and forth between +	 * the sockets. +	 */ +	socket_ack_count = atomic_add_short_return(1, (struct atomic_short *) +			&smaster->socket_acknowledge_count[mdp->msg_slot]); +	if (socket_ack_count == bcp->cpus_in_socket) { +		/* +		 * Both sockets dump their completed count total into +		 * the message's count. +		 */ +		smaster->socket_acknowledge_count[mdp->msg_slot] = 0; +		msg_ack_count = atomic_add_short_return(socket_ack_count, +				(struct atomic_short *)&msg->acknowledge_count); -	atomic_inc_short(&msg->acknowledge_count); -	if (msg->number_of_cpus == msg->acknowledge_count) -		uv_reply_to_message(sw_ack_slot, msg, msp); +		if (msg_ack_count == bcp->cpus_in_uvhub) { +			/* +			 * All cpus in uvhub saw it; reply +			 */ +			uv_reply_to_message(mdp, bcp); +		} +	} + +	return;  }  /* - * Examine the payload queue on one distribution node to see - * which messages have not been seen, and which cpu(s) have not seen them. + * Determine the first cpu on a uvhub. + */ +static int uvhub_to_first_cpu(int uvhub) +{ +	int cpu; +	for_each_present_cpu(cpu) +		if (uvhub == uv_cpu_to_blade_id(cpu)) +			return cpu; +	return -1; +} + +/* + * Last resort when we get a large number of destination timeouts is + * to clear resources held by a given cpu. + * Do this with IPI so that all messages in the BAU message queue + * can be identified by their nonzero sw_ack_vector field.   * - * Returns the number of cpu's that have not responded. + * This is entered for a single cpu on the uvhub. + * The sender want's this uvhub to free a specific message's + * sw_ack resources.   */ -static int uv_examine_destination(struct bau_control *bau_tablesp, int sender) +static void +uv_do_reset(void *ptr)  { -	struct bau_payload_queue_entry *msg; -	struct bau_msg_status *msp; -	int count = 0;  	int i; -	int j; +	int slot; +	int count = 0; +	unsigned long mmr; +	unsigned long msg_res; +	struct bau_control *bcp; +	struct reset_args *rap; +	struct bau_payload_queue_entry *msg; +	struct ptc_stats *stat; -	for (msg = bau_tablesp->va_queue_first, i = 0; i < DEST_Q_SIZE; -	     msg++, i++) { -		if ((msg->sending_cpu == sender) && (!msg->replied_to)) { -			msp = bau_tablesp->msg_statuses + i; -			printk(KERN_DEBUG -			       "blade %d: address:%#lx %d of %d, not cpu(s): ", -			       i, msg->address, msg->acknowledge_count, -			       msg->number_of_cpus); -			for (j = 0; j < msg->number_of_cpus; j++) { -				if (!((1L << j) & msp->seen_by.bits)) { -					count++; -					printk("%d ", j); -				} +	bcp = &per_cpu(bau_control, smp_processor_id()); +	rap = (struct reset_args *)ptr; +	stat = &per_cpu(ptcstats, bcp->cpu); +	stat->d_resets++; + +	/* +	 * We're looking for the given sender, and +	 * will free its sw_ack resource. +	 * If all cpu's finally responded after the timeout, its +	 * message 'replied_to' was set. +	 */ +	for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) { +		/* uv_do_reset: same conditions for cancellation as +		   uv_bau_process_retry_msg() */ +		if ((msg->replied_to == 0) && +		    (msg->canceled == 0) && +		    (msg->sending_cpu == rap->sender) && +		    (msg->sw_ack_vector) && +		    (msg->msg_type != MSG_NOOP)) { +			/* +			 * make everyone else ignore this message +			 */ +			msg->canceled = 1; +			slot = msg - bcp->va_queue_first; +			count++; +			/* +			 * only reset the resource if it is still pending +			 */ +			mmr = uv_read_local_mmr +					(UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE); +			msg_res = ((msg->sw_ack_vector << 8) | +						   msg->sw_ack_vector); +			if (mmr & msg_res) { +				stat->d_rcanceled++; +				uv_write_local_mmr( +				    UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, +							msg_res);  			} -			printk("\n");  		}  	} -	return count; +	return;  }  /* - * Examine the payload queue on all the distribution nodes to see - * which messages have not been seen, and which cpu(s) have not seen them. - * - * Returns the number of cpu's that have not responded. + * Use IPI to get all target uvhubs to release resources held by + * a given sending cpu number.   */ -static int uv_examine_destinations(struct bau_target_nodemask *distribution) +static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution, +			      int sender)  { -	int sender; -	int i; -	int count = 0; +	int uvhub; +	int cpu; +	cpumask_t mask; +	struct reset_args reset_args; -	sender = smp_processor_id(); -	for (i = 0; i < sizeof(struct bau_target_nodemask) * BITSPERBYTE; i++) { -		if (!bau_node_isset(i, distribution)) +	reset_args.sender = sender; + +	cpus_clear(mask); +	/* find a single cpu for each uvhub in this distribution mask */ +	for (uvhub = 0; +		    uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE; +		    uvhub++) { +		if (!bau_uvhub_isset(uvhub, distribution))  			continue; -		count += uv_examine_destination(uv_bau_table_bases[i], sender); +		/* find a cpu for this uvhub */ +		cpu = uvhub_to_first_cpu(uvhub); +		cpu_set(cpu, mask);  	} -	return count; +	/* IPI all cpus; Preemption is already disabled */ +	smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1); +	return; +} + +static inline unsigned long +cycles_2_us(unsigned long long cyc) +{ +	unsigned long long ns; +	unsigned long us; +	ns =  (cyc * per_cpu(cyc2ns, smp_processor_id())) +						>> CYC2NS_SCALE_FACTOR; +	us = ns / 1000; +	return us;  }  /* - * wait for completion of a broadcast message - * - * return COMPLETE, RETRY or GIVEUP + * wait for all cpus on this hub to finish their sends and go quiet + * leaves uvhub_quiesce set so that no new broadcasts are started by + * bau_flush_send_and_wait() + */ +static inline void +quiesce_local_uvhub(struct bau_control *hmaster) +{ +	atomic_add_short_return(1, (struct atomic_short *) +		 &hmaster->uvhub_quiesce); +} + +/* + * mark this quiet-requestor as done + */ +static inline void +end_uvhub_quiesce(struct bau_control *hmaster) +{ +	atomic_add_short_return(-1, (struct atomic_short *) +		&hmaster->uvhub_quiesce); +} + +/* + * Wait for completion of a broadcast software ack message + * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP   */  static int uv_wait_completion(struct bau_desc *bau_desc, -			      unsigned long mmr_offset, int right_shift) +	unsigned long mmr_offset, int right_shift, int this_cpu, +	struct bau_control *bcp, struct bau_control *smaster, long try)  { -	int exams = 0; -	long destination_timeouts = 0; -	long source_timeouts = 0; +	int relaxes = 0;  	unsigned long descriptor_status; +	unsigned long mmr; +	unsigned long mask; +	cycles_t ttime; +	cycles_t timeout_time; +	struct ptc_stats *stat = &per_cpu(ptcstats, this_cpu); +	struct bau_control *hmaster; +	hmaster = bcp->uvhub_master; +	timeout_time = get_cycles() + bcp->timeout_interval; + +	/* spin on the status MMR, waiting for it to go idle */  	while ((descriptor_status = (((unsigned long)  		uv_read_local_mmr(mmr_offset) >>  			right_shift) & UV_ACT_STATUS_MASK)) !=  			DESC_STATUS_IDLE) { -		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { -			source_timeouts++; -			if (source_timeouts > SOURCE_TIMEOUT_LIMIT) -				source_timeouts = 0; -			__get_cpu_var(ptcstats).s_retry++; -			return FLUSH_RETRY; -		}  		/* -		 * spin here looking for progress at the destinations +		 * Our software ack messages may be blocked because there are +		 * no swack resources available.  As long as none of them +		 * has timed out hardware will NACK our message and its +		 * state will stay IDLE.  		 */ -		if (descriptor_status == DESC_STATUS_DESTINATION_TIMEOUT) { -			destination_timeouts++; -			if (destination_timeouts > DESTINATION_TIMEOUT_LIMIT) { -				/* -				 * returns number of cpus not responding -				 */ -				if (uv_examine_destinations -				    (&bau_desc->distribution) == 0) { -					__get_cpu_var(ptcstats).d_retry++; -					return FLUSH_RETRY; -				} -				exams++; -				if (exams >= uv_bau_retry_limit) { -					printk(KERN_DEBUG -					       "uv_flush_tlb_others"); -					printk("giving up on cpu %d\n", -					       smp_processor_id()); +		if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) { +			stat->s_stimeout++; +			return FLUSH_GIVEUP; +		} else if (descriptor_status == +					DESC_STATUS_DESTINATION_TIMEOUT) { +			stat->s_dtimeout++; +			ttime = get_cycles(); + +			/* +			 * Our retries may be blocked by all destination +			 * swack resources being consumed, and a timeout +			 * pending.  In that case hardware returns the +			 * ERROR that looks like a destination timeout. +			 */ +			if (cycles_2_us(ttime - bcp->send_message) < BIOS_TO) { +				bcp->conseccompletes = 0; +				return FLUSH_RETRY_PLUGGED; +			} + +			bcp->conseccompletes = 0; +			return FLUSH_RETRY_TIMEOUT; +		} else { +			/* +			 * descriptor_status is still BUSY +			 */ +			cpu_relax(); +			relaxes++; +			if (relaxes >= 10000) { +				relaxes = 0; +				if (get_cycles() > timeout_time) { +					quiesce_local_uvhub(hmaster); + +					/* single-thread the register change */ +					spin_lock(&hmaster->masks_lock); +					mmr = uv_read_local_mmr(mmr_offset); +					mask = 0UL; +					mask |= (3UL < right_shift); +					mask = ~mask; +					mmr &= mask; +					uv_write_local_mmr(mmr_offset, mmr); +					spin_unlock(&hmaster->masks_lock); +					end_uvhub_quiesce(hmaster); +					stat->s_busy++;  					return FLUSH_GIVEUP;  				} -				/* -				 * delays can hang the simulator -				   udelay(1000); -				 */ -				destination_timeouts = 0;  			}  		} -		cpu_relax();  	} +	bcp->conseccompletes++;  	return FLUSH_COMPLETE;  } +static inline cycles_t +sec_2_cycles(unsigned long sec) +{ +	unsigned long ns; +	cycles_t cyc; + +	ns = sec * 1000000000; +	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); +	return cyc; +} + +/* + * conditionally add 1 to *v, unless *v is >= u + * return 0 if we cannot add 1 to *v because it is >= u + * return 1 if we can add 1 to *v because it is < u + * the add is atomic + * + * This is close to atomic_add_unless(), but this allows the 'u' value + * to be lowered below the current 'v'.  atomic_add_unless can only stop + * on equal. + */ +static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u) +{ +	spin_lock(lock); +	if (atomic_read(v) >= u) { +		spin_unlock(lock); +		return 0; +	} +	atomic_inc(v); +	spin_unlock(lock); +	return 1; +} +  /**   * uv_flush_send_and_wait   * - * Send a broadcast and wait for a broadcast message to complete. + * Send a broadcast and wait for it to complete.   * - * The flush_mask contains the cpus the broadcast was sent to. + * The flush_mask contains the cpus the broadcast is to be sent to, plus + * cpus that are on the local uvhub.   * - * Returns NULL if all remote flushing was done. The mask is zeroed. + * Returns NULL if all flushing represented in the mask was done. The mask + * is zeroed.   * Returns @flush_mask if some remote flushing remains to be done. The - * mask will have some bits still set. + * mask will have some bits still set, representing any cpus on the local + * uvhub (not current cpu) and any on remote uvhubs if the broadcast failed.   */ -const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode, -					     struct bau_desc *bau_desc, -					     struct cpumask *flush_mask) +const struct cpumask *uv_flush_send_and_wait(struct bau_desc *bau_desc, +					     struct cpumask *flush_mask, +					     struct bau_control *bcp)  { -	int completion_status = 0;  	int right_shift; -	int tries = 0; -	int pnode; +	int uvhub;  	int bit; +	int completion_status = 0; +	int seq_number = 0; +	long try = 0; +	int cpu = bcp->uvhub_cpu; +	int this_cpu = bcp->cpu; +	int this_uvhub = bcp->uvhub;  	unsigned long mmr_offset;  	unsigned long index;  	cycles_t time1;  	cycles_t time2; +	struct ptc_stats *stat = &per_cpu(ptcstats, bcp->cpu); +	struct bau_control *smaster = bcp->socket_master; +	struct bau_control *hmaster = bcp->uvhub_master; + +	/* +	 * Spin here while there are hmaster->max_concurrent or more active +	 * descriptors. This is the per-uvhub 'throttle'. +	 */ +	if (!atomic_inc_unless_ge(&hmaster->uvhub_lock, +			&hmaster->active_descriptor_count, +			hmaster->max_concurrent)) { +		stat->s_throttles++; +		do { +			cpu_relax(); +		} while (!atomic_inc_unless_ge(&hmaster->uvhub_lock, +			&hmaster->active_descriptor_count, +			hmaster->max_concurrent)); +	} + +	while (hmaster->uvhub_quiesce) +		cpu_relax();  	if (cpu < UV_CPUS_PER_ACT_STATUS) {  		mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0; @@ -268,24 +557,108 @@ const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,  	}  	time1 = get_cycles();  	do { -		tries++; +		/* +		 * Every message from any given cpu gets a unique message +		 * sequence number. But retries use that same number. +		 * Our message may have timed out at the destination because +		 * all sw-ack resources are in use and there is a timeout +		 * pending there.  In that case, our last send never got +		 * placed into the queue and we need to persist until it +		 * does. +		 * +		 * Make any retry a type MSG_RETRY so that the destination will +		 * free any resource held by a previous message from this cpu. +		 */ +		if (try == 0) { +			/* use message type set by the caller the first time */ +			seq_number = bcp->message_number++; +		} else { +			/* use RETRY type on all the rest; same sequence */ +			bau_desc->header.msg_type = MSG_RETRY; +			stat->s_retry_messages++; +		} +		bau_desc->header.sequence = seq_number;  		index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) | -			cpu; +			bcp->uvhub_cpu; +		bcp->send_message = get_cycles(); +  		uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index); + +		try++;  		completion_status = uv_wait_completion(bau_desc, mmr_offset, -					right_shift); -	} while (completion_status == FLUSH_RETRY); +			right_shift, this_cpu, bcp, smaster, try); + +		if (completion_status == FLUSH_RETRY_PLUGGED) { +			/* +			 * Our retries may be blocked by all destination swack +			 * resources being consumed, and a timeout pending. In +			 * that case hardware immediately returns the ERROR +			 * that looks like a destination timeout. +			 */ +			udelay(TIMEOUT_DELAY); +			bcp->plugged_tries++; +			if (bcp->plugged_tries >= PLUGSB4RESET) { +				bcp->plugged_tries = 0; +				quiesce_local_uvhub(hmaster); +				spin_lock(&hmaster->queue_lock); +				uv_reset_with_ipi(&bau_desc->distribution, +							this_cpu); +				spin_unlock(&hmaster->queue_lock); +				end_uvhub_quiesce(hmaster); +				bcp->ipi_attempts++; +				stat->s_resets_plug++; +			} +		} else if (completion_status == FLUSH_RETRY_TIMEOUT) { +			hmaster->max_concurrent = 1; +			bcp->timeout_tries++; +			udelay(TIMEOUT_DELAY); +			if (bcp->timeout_tries >= TIMEOUTSB4RESET) { +				bcp->timeout_tries = 0; +				quiesce_local_uvhub(hmaster); +				spin_lock(&hmaster->queue_lock); +				uv_reset_with_ipi(&bau_desc->distribution, +								this_cpu); +				spin_unlock(&hmaster->queue_lock); +				end_uvhub_quiesce(hmaster); +				bcp->ipi_attempts++; +				stat->s_resets_timeout++; +			} +		} +		if (bcp->ipi_attempts >= 3) { +			bcp->ipi_attempts = 0; +			completion_status = FLUSH_GIVEUP; +			break; +		} +		cpu_relax(); +	} while ((completion_status == FLUSH_RETRY_PLUGGED) || +		 (completion_status == FLUSH_RETRY_TIMEOUT));  	time2 = get_cycles(); -	__get_cpu_var(ptcstats).sflush += (time2 - time1); -	if (tries > 1) -		__get_cpu_var(ptcstats).retriesok++; -	if (completion_status == FLUSH_GIVEUP) { +	if ((completion_status == FLUSH_COMPLETE) && (bcp->conseccompletes > 5) +	    && (hmaster->max_concurrent < hmaster->max_concurrent_constant)) +			hmaster->max_concurrent++; + +	/* +	 * hold any cpu not timing out here; no other cpu currently held by +	 * the 'throttle' should enter the activation code +	 */ +	while (hmaster->uvhub_quiesce) +		cpu_relax(); +	atomic_dec(&hmaster->active_descriptor_count); + +	/* guard against cycles wrap */ +	if (time2 > time1) +		stat->s_time += (time2 - time1); +	else +		stat->s_requestor--; /* don't count this one */ +	if (completion_status == FLUSH_COMPLETE && try > 1) +		stat->s_retriesok++; +	else if (completion_status == FLUSH_GIVEUP) {  		/*  		 * Cause the caller to do an IPI-style TLB shootdown on -		 * the cpu's, all of which are still in the mask. +		 * the target cpu's, all of which are still in the mask.  		 */ -		__get_cpu_var(ptcstats).ptc_i++; +		stat->s_giveup++;  		return flush_mask;  	} @@ -294,18 +667,17 @@ const struct cpumask *uv_flush_send_and_wait(int cpu, int this_pnode,  	 * use the IPI method of shootdown on them.  	 */  	for_each_cpu(bit, flush_mask) { -		pnode = uv_cpu_to_pnode(bit); -		if (pnode == this_pnode) +		uvhub = uv_cpu_to_blade_id(bit); +		if (uvhub == this_uvhub)  			continue;  		cpumask_clear_cpu(bit, flush_mask);  	}  	if (!cpumask_empty(flush_mask))  		return flush_mask; +  	return NULL;  } -static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask); -  /**   * uv_flush_tlb_others - globally purge translation cache of a virtual   * address or all TLB's @@ -322,8 +694,8 @@ static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);   * The caller has derived the cpumask from the mm_struct.  This function   * is called only if there are bits set in the mask. (e.g. flush_tlb_page())   * - * The cpumask is converted into a nodemask of the nodes containing - * the cpus. + * The cpumask is converted into a uvhubmask of the uvhubs containing + * those cpus.   *   * Note that this function should be called with preemption disabled.   * @@ -335,52 +707,82 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,  					  struct mm_struct *mm,  					  unsigned long va, unsigned int cpu)  { -	struct cpumask *flush_mask = __get_cpu_var(uv_flush_tlb_mask); -	int i; -	int bit; -	int pnode; -	int uv_cpu; -	int this_pnode; +	int remotes; +	int tcpu; +	int uvhub;  	int locals = 0;  	struct bau_desc *bau_desc; +	struct cpumask *flush_mask; +	struct ptc_stats *stat; +	struct bau_control *bcp; -	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); +	if (nobau) +		return cpumask; -	uv_cpu = uv_blade_processor_id(); -	this_pnode = uv_hub_info->pnode; -	bau_desc = __get_cpu_var(bau_control).descriptor_base; -	bau_desc += UV_ITEMS_PER_DESCRIPTOR * uv_cpu; +	bcp = &per_cpu(bau_control, cpu); +	/* +	 * Each sending cpu has a per-cpu mask which it fills from the caller's +	 * cpu mask.  Only remote cpus are converted to uvhubs and copied. +	 */ +	flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu); +	/* +	 * copy cpumask to flush_mask, removing current cpu +	 * (current cpu should already have been flushed by the caller and +	 *  should never be returned if we return flush_mask) +	 */ +	cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu)); +	if (cpu_isset(cpu, *cpumask)) +		locals++;  /* current cpu was targeted */ -	bau_nodes_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); +	bau_desc = bcp->descriptor_base; +	bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu; -	i = 0; -	for_each_cpu(bit, flush_mask) { -		pnode = uv_cpu_to_pnode(bit); -		BUG_ON(pnode > (UV_DISTRIBUTION_SIZE - 1)); -		if (pnode == this_pnode) { +	bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE); +	remotes = 0; +	for_each_cpu(tcpu, flush_mask) { +		uvhub = uv_cpu_to_blade_id(tcpu); +		if (uvhub == bcp->uvhub) {  			locals++;  			continue;  		} -		bau_node_set(pnode - uv_partition_base_pnode, -				&bau_desc->distribution); -		i++; +		bau_uvhub_set(uvhub, &bau_desc->distribution); +		remotes++;  	} -	if (i == 0) { +	if (remotes == 0) {  		/* -		 * no off_node flushing; return status for local node +		 * No off_hub flushing; return status for local hub. +		 * Return the caller's mask if all were local (the current +		 * cpu may be in that mask).  		 */  		if (locals) -			return flush_mask; +			return cpumask;  		else  			return NULL;  	} -	__get_cpu_var(ptcstats).requestor++; -	__get_cpu_var(ptcstats).ntargeted += i; +	stat = &per_cpu(ptcstats, cpu); +	stat->s_requestor++; +	stat->s_ntargcpu += remotes; +	remotes = bau_uvhub_weight(&bau_desc->distribution); +	stat->s_ntarguvhub += remotes; +	if (remotes >= 16) +		stat->s_ntarguvhub16++; +	else if (remotes >= 8) +		stat->s_ntarguvhub8++; +	else if (remotes >= 4) +		stat->s_ntarguvhub4++; +	else if (remotes >= 2) +		stat->s_ntarguvhub2++; +	else +		stat->s_ntarguvhub1++;  	bau_desc->payload.address = va;  	bau_desc->payload.sending_cpu = cpu; -	return uv_flush_send_and_wait(uv_cpu, this_pnode, bau_desc, flush_mask); +	/* +	 * uv_flush_send_and_wait returns null if all cpu's were messaged, or +	 * the adjusted flush_mask if any cpu's were not messaged. +	 */ +	return uv_flush_send_and_wait(bau_desc, flush_mask, bcp);  }  /* @@ -389,87 +791,70 @@ const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,   *   * We received a broadcast assist message.   * - * Interrupts may have been disabled; this interrupt could represent + * Interrupts are disabled; this interrupt could represent   * the receipt of several messages.   * - * All cores/threads on this node get this interrupt. - * The last one to see it does the s/w ack. + * All cores/threads on this hub get this interrupt. + * The last one to see it does the software ack.   * (the resource will not be freed until noninterruptable cpus see this - *  interrupt; hardware will timeout the s/w ack and reply ERROR) + *  interrupt; hardware may timeout the s/w ack and reply ERROR)   */  void uv_bau_message_interrupt(struct pt_regs *regs)  { -	struct bau_payload_queue_entry *va_queue_first; -	struct bau_payload_queue_entry *va_queue_last; -	struct bau_payload_queue_entry *msg; -	struct pt_regs *old_regs = set_irq_regs(regs); -	cycles_t time1; -	cycles_t time2; -	int msg_slot; -	int sw_ack_slot; -	int fw;  	int count = 0; -	unsigned long local_pnode; - -	ack_APIC_irq(); -	exit_idle(); -	irq_enter(); - -	time1 = get_cycles(); - -	local_pnode = uv_blade_to_pnode(uv_numa_blade_id()); - -	va_queue_first = __get_cpu_var(bau_control).va_queue_first; -	va_queue_last = __get_cpu_var(bau_control).va_queue_last; +	cycles_t time_start; +	struct bau_payload_queue_entry *msg; +	struct bau_control *bcp; +	struct ptc_stats *stat; +	struct msg_desc msgdesc; -	msg = __get_cpu_var(bau_control).bau_msg_head; +	time_start = get_cycles(); +	bcp = &per_cpu(bau_control, smp_processor_id()); +	stat = &per_cpu(ptcstats, smp_processor_id()); +	msgdesc.va_queue_first = bcp->va_queue_first; +	msgdesc.va_queue_last = bcp->va_queue_last; +	msg = bcp->bau_msg_head;  	while (msg->sw_ack_vector) {  		count++; -		fw = msg->sw_ack_vector; -		msg_slot = msg - va_queue_first; -		sw_ack_slot = ffs(fw) - 1; - -		uv_bau_process_message(msg, msg_slot, sw_ack_slot); - +		msgdesc.msg_slot = msg - msgdesc.va_queue_first; +		msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1; +		msgdesc.msg = msg; +		uv_bau_process_message(&msgdesc, bcp);  		msg++; -		if (msg > va_queue_last) -			msg = va_queue_first; -		__get_cpu_var(bau_control).bau_msg_head = msg; +		if (msg > msgdesc.va_queue_last) +			msg = msgdesc.va_queue_first; +		bcp->bau_msg_head = msg;  	} +	stat->d_time += (get_cycles() - time_start);  	if (!count) -		__get_cpu_var(ptcstats).nomsg++; +		stat->d_nomsg++;  	else if (count > 1) -		__get_cpu_var(ptcstats).multmsg++; - -	time2 = get_cycles(); -	__get_cpu_var(ptcstats).dflush += (time2 - time1); - -	irq_exit(); -	set_irq_regs(old_regs); +		stat->d_multmsg++; +	ack_APIC_irq();  }  /*   * uv_enable_timeouts   * - * Each target blade (i.e. blades that have cpu's) needs to have + * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have   * shootdown message timeouts enabled.  The timeout does not cause   * an interrupt, but causes an error message to be returned to   * the sender.   */  static void uv_enable_timeouts(void)  { -	int blade; -	int nblades; +	int uvhub; +	int nuvhubs;  	int pnode;  	unsigned long mmr_image; -	nblades = uv_num_possible_blades(); +	nuvhubs = uv_num_possible_blades(); -	for (blade = 0; blade < nblades; blade++) { -		if (!uv_blade_nr_possible_cpus(blade)) +	for (uvhub = 0; uvhub < nuvhubs; uvhub++) { +		if (!uv_blade_nr_possible_cpus(uvhub))  			continue; -		pnode = uv_blade_to_pnode(blade); +		pnode = uv_blade_to_pnode(uvhub);  		mmr_image =  		    uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);  		/* @@ -479,16 +864,16 @@ static void uv_enable_timeouts(void)  		 * To program the period, the SOFT_ACK_MODE must be off.  		 */  		mmr_image &= ~((unsigned long)1 << -			       UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT); +		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);  		uv_write_global_mmr64  		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);  		/*  		 * Set the 4-bit period.  		 */  		mmr_image &= ~((unsigned long)0xf << -			UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT); +		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);  		mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD << -			     UV_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHIFT); +		     UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);  		uv_write_global_mmr64  		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);  		/* @@ -497,7 +882,7 @@ static void uv_enable_timeouts(void)  		 * indicated in bits 2:0 (7 causes all of them to timeout).  		 */  		mmr_image |= ((unsigned long)1 << -			      UV_ENABLE_INTD_SOFT_ACK_MODE_SHIFT); +		    UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);  		uv_write_global_mmr64  		    (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);  	} @@ -522,9 +907,20 @@ static void uv_ptc_seq_stop(struct seq_file *file, void *data)  {  } +static inline unsigned long long +millisec_2_cycles(unsigned long millisec) +{ +	unsigned long ns; +	unsigned long long cyc; + +	ns = millisec * 1000; +	cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id())); +	return cyc; +} +  /* - * Display the statistics thru /proc - * data points to the cpu number + * Display the statistics thru /proc. + * 'data' points to the cpu number   */  static int uv_ptc_seq_show(struct seq_file *file, void *data)  { @@ -535,78 +931,155 @@ static int uv_ptc_seq_show(struct seq_file *file, void *data)  	if (!cpu) {  		seq_printf(file, -		"# cpu requestor requestee one all sretry dretry ptc_i "); +			"# cpu sent stime numuvhubs numuvhubs16 numuvhubs8 "); +		seq_printf(file, +			"numuvhubs4 numuvhubs2 numuvhubs1 numcpus dto "); +		seq_printf(file, +			"retries rok resetp resett giveup sto bz throt "); +		seq_printf(file, +			"sw_ack recv rtime all ");  		seq_printf(file, -		"sw_ack sflush dflush sok dnomsg dmult starget\n"); +			"one mult none retry canc nocan reset rcan\n");  	}  	if (cpu < num_possible_cpus() && cpu_online(cpu)) {  		stat = &per_cpu(ptcstats, cpu); -		seq_printf(file, "cpu %d %ld %ld %ld %ld %ld %ld %ld ", -			   cpu, stat->requestor, -			   stat->requestee, stat->onetlb, stat->alltlb, -			   stat->s_retry, stat->d_retry, stat->ptc_i); -		seq_printf(file, "%lx %ld %ld %ld %ld %ld %ld\n", +		/* source side statistics */ +		seq_printf(file, +			"cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ", +			   cpu, stat->s_requestor, cycles_2_us(stat->s_time), +			   stat->s_ntarguvhub, stat->s_ntarguvhub16, +			   stat->s_ntarguvhub8, stat->s_ntarguvhub4, +			   stat->s_ntarguvhub2, stat->s_ntarguvhub1, +			   stat->s_ntargcpu, stat->s_dtimeout); +		seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ", +			   stat->s_retry_messages, stat->s_retriesok, +			   stat->s_resets_plug, stat->s_resets_timeout, +			   stat->s_giveup, stat->s_stimeout, +			   stat->s_busy, stat->s_throttles); +		/* destination side statistics */ +		seq_printf(file, +			   "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",  			   uv_read_global_mmr64(uv_cpu_to_pnode(cpu),  					UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE), -			   stat->sflush, stat->dflush, -			   stat->retriesok, stat->nomsg, -			   stat->multmsg, stat->ntargeted); +			   stat->d_requestee, cycles_2_us(stat->d_time), +			   stat->d_alltlb, stat->d_onetlb, stat->d_multmsg, +			   stat->d_nomsg, stat->d_retries, stat->d_canceled, +			   stat->d_nocanceled, stat->d_resets, +			   stat->d_rcanceled);  	}  	return 0;  }  /* + * -1: resetf the statistics   *  0: display meaning of the statistics - * >0: retry limit + * >0: maximum concurrent active descriptors per uvhub (throttle)   */  static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,  				 size_t count, loff_t *data)  { -	long newmode; +	int cpu; +	long input_arg;  	char optstr[64]; +	struct ptc_stats *stat; +	struct bau_control *bcp;  	if (count == 0 || count > sizeof(optstr))  		return -EINVAL;  	if (copy_from_user(optstr, user, count))  		return -EFAULT;  	optstr[count - 1] = '\0'; -	if (strict_strtoul(optstr, 10, &newmode) < 0) { +	if (strict_strtol(optstr, 10, &input_arg) < 0) {  		printk(KERN_DEBUG "%s is invalid\n", optstr);  		return -EINVAL;  	} -	if (newmode == 0) { +	if (input_arg == 0) {  		printk(KERN_DEBUG "# cpu:      cpu number\n"); +		printk(KERN_DEBUG "Sender statistics:\n"); +		printk(KERN_DEBUG +		"sent:     number of shootdown messages sent\n"); +		printk(KERN_DEBUG +		"stime:    time spent sending messages\n"); +		printk(KERN_DEBUG +		"numuvhubs: number of hubs targeted with shootdown\n"); +		printk(KERN_DEBUG +		"numuvhubs16: number times 16 or more hubs targeted\n"); +		printk(KERN_DEBUG +		"numuvhubs8: number times 8 or more hubs targeted\n"); +		printk(KERN_DEBUG +		"numuvhubs4: number times 4 or more hubs targeted\n"); +		printk(KERN_DEBUG +		"numuvhubs2: number times 2 or more hubs targeted\n"); +		printk(KERN_DEBUG +		"numuvhubs1: number times 1 hub targeted\n"); +		printk(KERN_DEBUG +		"numcpus:  number of cpus targeted with shootdown\n"); +		printk(KERN_DEBUG +		"dto:      number of destination timeouts\n"); +		printk(KERN_DEBUG +		"retries:  destination timeout retries sent\n"); +		printk(KERN_DEBUG +		"rok:   :  destination timeouts successfully retried\n"); +		printk(KERN_DEBUG +		"resetp:   ipi-style resource resets for plugs\n"); +		printk(KERN_DEBUG +		"resett:   ipi-style resource resets for timeouts\n"); +		printk(KERN_DEBUG +		"giveup:   fall-backs to ipi-style shootdowns\n"); +		printk(KERN_DEBUG +		"sto:      number of source timeouts\n");  		printk(KERN_DEBUG -		"requestor:  times this cpu was the flush requestor\n"); +		"bz:       number of stay-busy's\n");  		printk(KERN_DEBUG -		"requestee:  times this cpu was requested to flush its TLBs\n"); +		"throt:    number times spun in throttle\n"); +		printk(KERN_DEBUG "Destination side statistics:\n");  		printk(KERN_DEBUG -		"one:        times requested to flush a single address\n"); +		"sw_ack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");  		printk(KERN_DEBUG -		"all:        times requested to flush all TLB's\n"); +		"recv:     shootdown messages received\n");  		printk(KERN_DEBUG -		"sretry:     number of retries of source-side timeouts\n"); +		"rtime:    time spent processing messages\n");  		printk(KERN_DEBUG -		"dretry:     number of retries of destination-side timeouts\n"); +		"all:      shootdown all-tlb messages\n");  		printk(KERN_DEBUG -		"ptc_i:      times UV fell through to IPI-style flushes\n"); +		"one:      shootdown one-tlb messages\n");  		printk(KERN_DEBUG -		"sw_ack:     image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n"); +		"mult:     interrupts that found multiple messages\n");  		printk(KERN_DEBUG -		"sflush_us:  cycles spent in uv_flush_tlb_others()\n"); +		"none:     interrupts that found no messages\n");  		printk(KERN_DEBUG -		"dflush_us:  cycles spent in handling flush requests\n"); -		printk(KERN_DEBUG "sok:        successes on retry\n"); -		printk(KERN_DEBUG "dnomsg:     interrupts with no message\n"); +		"retry:    number of retry messages processed\n");  		printk(KERN_DEBUG -		"dmult:      interrupts with multiple messages\n"); -		printk(KERN_DEBUG "starget:    nodes targeted\n"); +		"canc:     number messages canceled by retries\n"); +		printk(KERN_DEBUG +		"nocan:    number retries that found nothing to cancel\n"); +		printk(KERN_DEBUG +		"reset:    number of ipi-style reset requests processed\n"); +		printk(KERN_DEBUG +		"rcan:     number messages canceled by reset requests\n"); +	} else if (input_arg == -1) { +		for_each_present_cpu(cpu) { +			stat = &per_cpu(ptcstats, cpu); +			memset(stat, 0, sizeof(struct ptc_stats)); +		}  	} else { -		uv_bau_retry_limit = newmode; -		printk(KERN_DEBUG "timeout retry limit:%d\n", -		       uv_bau_retry_limit); +		uv_bau_max_concurrent = input_arg; +		bcp = &per_cpu(bau_control, smp_processor_id()); +		if (uv_bau_max_concurrent < 1 || +		    uv_bau_max_concurrent > bcp->cpus_in_uvhub) { +			printk(KERN_DEBUG +				"Error: BAU max concurrent %d; %d is invalid\n", +				bcp->max_concurrent, uv_bau_max_concurrent); +			return -EINVAL; +		} +		printk(KERN_DEBUG "Set BAU max concurrent:%d\n", +		       uv_bau_max_concurrent); +		for_each_present_cpu(cpu) { +			bcp = &per_cpu(bau_control, cpu); +			bcp->max_concurrent = uv_bau_max_concurrent; +		}  	}  	return count; @@ -650,79 +1123,30 @@ static int __init uv_ptc_init(void)  }  /* - * begin the initialization of the per-blade control structures - */ -static struct bau_control * __init uv_table_bases_init(int blade, int node) -{ -	int i; -	struct bau_msg_status *msp; -	struct bau_control *bau_tabp; - -	bau_tabp = -	    kmalloc_node(sizeof(struct bau_control), GFP_KERNEL, node); -	BUG_ON(!bau_tabp); - -	bau_tabp->msg_statuses = -	    kmalloc_node(sizeof(struct bau_msg_status) * -			 DEST_Q_SIZE, GFP_KERNEL, node); -	BUG_ON(!bau_tabp->msg_statuses); - -	for (i = 0, msp = bau_tabp->msg_statuses; i < DEST_Q_SIZE; i++, msp++) -		bau_cpubits_clear(&msp->seen_by, (int) -				  uv_blade_nr_possible_cpus(blade)); - -	uv_bau_table_bases[blade] = bau_tabp; - -	return bau_tabp; -} - -/* - * finish the initialization of the per-blade control structures - */ -static void __init -uv_table_bases_finish(int blade, -		      struct bau_control *bau_tablesp, -		      struct bau_desc *adp) -{ -	struct bau_control *bcp; -	int cpu; - -	for_each_present_cpu(cpu) { -		if (blade != uv_cpu_to_blade_id(cpu)) -			continue; - -		bcp = (struct bau_control *)&per_cpu(bau_control, cpu); -		bcp->bau_msg_head	= bau_tablesp->va_queue_first; -		bcp->va_queue_first	= bau_tablesp->va_queue_first; -		bcp->va_queue_last	= bau_tablesp->va_queue_last; -		bcp->msg_statuses	= bau_tablesp->msg_statuses; -		bcp->descriptor_base	= adp; -	} -} - -/*   * initialize the sending side's sending buffers   */ -static struct bau_desc * __init +static void  uv_activation_descriptor_init(int node, int pnode)  {  	int i; +	int cpu;  	unsigned long pa;  	unsigned long m;  	unsigned long n; -	struct bau_desc *adp; -	struct bau_desc *ad2; +	struct bau_desc *bau_desc; +	struct bau_desc *bd2; +	struct bau_control *bcp;  	/*  	 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR) -	 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per blade +	 * per cpu; and up to 32 (UV_ADP_SIZE) cpu's per uvhub  	 */ -	adp = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)* +	bau_desc = (struct bau_desc *)kmalloc_node(sizeof(struct bau_desc)*  		UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node); -	BUG_ON(!adp); +	BUG_ON(!bau_desc); -	pa = uv_gpa(adp); /* need the real nasid*/ -	n = uv_gpa_to_pnode(pa); +	pa = uv_gpa(bau_desc); /* need the real nasid*/ +	n = pa >> uv_nshift;  	m = pa & uv_mmask;  	uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE, @@ -731,96 +1155,188 @@ uv_activation_descriptor_init(int node, int pnode)  	/*  	 * initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each  	 * cpu even though we only use the first one; one descriptor can -	 * describe a broadcast to 256 nodes. +	 * describe a broadcast to 256 uv hubs.  	 */ -	for (i = 0, ad2 = adp; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR); -		i++, ad2++) { -		memset(ad2, 0, sizeof(struct bau_desc)); -		ad2->header.sw_ack_flag = 1; +	for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR); +		i++, bd2++) { +		memset(bd2, 0, sizeof(struct bau_desc)); +		bd2->header.sw_ack_flag = 1;  		/* -		 * base_dest_nodeid is the first node in the partition, so -		 * the bit map will indicate partition-relative node numbers. -		 * note that base_dest_nodeid is actually a nasid. +		 * base_dest_nodeid is the nasid (pnode<<1) of the first uvhub +		 * in the partition. The bit map will indicate uvhub numbers, +		 * which are 0-N in a partition. Pnodes are unique system-wide.  		 */ -		ad2->header.base_dest_nodeid = uv_partition_base_pnode << 1; -		ad2->header.dest_subnodeid = 0x10; /* the LB */ -		ad2->header.command = UV_NET_ENDPOINT_INTD; -		ad2->header.int_both = 1; +		bd2->header.base_dest_nodeid = uv_partition_base_pnode << 1; +		bd2->header.dest_subnodeid = 0x10; /* the LB */ +		bd2->header.command = UV_NET_ENDPOINT_INTD; +		bd2->header.int_both = 1;  		/*  		 * all others need to be set to zero:  		 *   fairness chaining multilevel count replied_to  		 */  	} -	return adp; +	for_each_present_cpu(cpu) { +		if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu))) +			continue; +		bcp = &per_cpu(bau_control, cpu); +		bcp->descriptor_base = bau_desc; +	}  }  /*   * initialize the destination side's receiving buffers + * entered for each uvhub in the partition + * - node is first node (kernel memory notion) on the uvhub + * - pnode is the uvhub's physical identifier   */ -static struct bau_payload_queue_entry * __init -uv_payload_queue_init(int node, int pnode, struct bau_control *bau_tablesp) +static void +uv_payload_queue_init(int node, int pnode)  { -	struct bau_payload_queue_entry *pqp; -	unsigned long pa;  	int pn; +	int cpu;  	char *cp; +	unsigned long pa; +	struct bau_payload_queue_entry *pqp; +	struct bau_payload_queue_entry *pqp_malloc; +	struct bau_control *bcp;  	pqp = (struct bau_payload_queue_entry *) kmalloc_node(  		(DEST_Q_SIZE + 1) * sizeof(struct bau_payload_queue_entry),  		GFP_KERNEL, node);  	BUG_ON(!pqp); +	pqp_malloc = pqp;  	cp = (char *)pqp + 31;  	pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5); -	bau_tablesp->va_queue_first = pqp; + +	for_each_present_cpu(cpu) { +		if (pnode != uv_cpu_to_pnode(cpu)) +			continue; +		/* for every cpu on this pnode: */ +		bcp = &per_cpu(bau_control, cpu); +		bcp->va_queue_first = pqp; +		bcp->bau_msg_head = pqp; +		bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1); +	}  	/*  	 * need the pnode of where the memory was really allocated  	 */  	pa = uv_gpa(pqp); -	pn = uv_gpa_to_pnode(pa); +	pn = pa >> uv_nshift;  	uv_write_global_mmr64(pnode,  			      UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,  			      ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |  			      uv_physnodeaddr(pqp));  	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,  			      uv_physnodeaddr(pqp)); -	bau_tablesp->va_queue_last = pqp + (DEST_Q_SIZE - 1);  	uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,  			      (unsigned long) -			      uv_physnodeaddr(bau_tablesp->va_queue_last)); +			      uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1))); +	/* in effect, all msg_type's are set to MSG_NOOP */  	memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE); - -	return pqp;  }  /* - * Initialization of each UV blade's structures + * Initialization of each UV hub's structures   */ -static int __init uv_init_blade(int blade) +static void __init uv_init_uvhub(int uvhub, int vector)  {  	int node;  	int pnode; -	unsigned long pa;  	unsigned long apicid; -	struct bau_desc *adp; -	struct bau_payload_queue_entry *pqp; -	struct bau_control *bau_tablesp; -	node = blade_to_first_node(blade); -	bau_tablesp = uv_table_bases_init(blade, node); -	pnode = uv_blade_to_pnode(blade); -	adp = uv_activation_descriptor_init(node, pnode); -	pqp = uv_payload_queue_init(node, pnode, bau_tablesp); -	uv_table_bases_finish(blade, bau_tablesp, adp); +	node = uvhub_to_first_node(uvhub); +	pnode = uv_blade_to_pnode(uvhub); +	uv_activation_descriptor_init(node, pnode); +	uv_payload_queue_init(node, pnode);  	/*  	 * the below initialization can't be in firmware because the  	 * messaging IRQ will be determined by the OS  	 */ -	apicid = blade_to_first_apicid(blade); -	pa = uv_read_global_mmr64(pnode, UVH_BAU_DATA_CONFIG); +	apicid = uvhub_to_first_apicid(uvhub);  	uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG, -				      ((apicid << 32) | UV_BAU_MESSAGE)); -	return 0; +				      ((apicid << 32) | vector)); +} + +/* + * initialize the bau_control structure for each cpu + */ +static void uv_init_per_cpu(int nuvhubs) +{ +	int i, j, k; +	int cpu; +	int pnode; +	int uvhub; +	short socket = 0; +	struct bau_control *bcp; +	struct uvhub_desc *bdp; +	struct socket_desc *sdp; +	struct bau_control *hmaster = NULL; +	struct bau_control *smaster = NULL; +	struct socket_desc { +		short num_cpus; +		short cpu_number[16]; +	}; +	struct uvhub_desc { +		short num_sockets; +		short num_cpus; +		short uvhub; +		short pnode; +		struct socket_desc socket[2]; +	}; +	struct uvhub_desc *uvhub_descs; + +	uvhub_descs = (struct uvhub_desc *) +		kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL); +	memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc)); +	for_each_present_cpu(cpu) { +		bcp = &per_cpu(bau_control, cpu); +		memset(bcp, 0, sizeof(struct bau_control)); +		spin_lock_init(&bcp->masks_lock); +		bcp->max_concurrent = uv_bau_max_concurrent; +		pnode = uv_cpu_hub_info(cpu)->pnode; +		uvhub = uv_cpu_hub_info(cpu)->numa_blade_id; +		bdp = &uvhub_descs[uvhub]; +		bdp->num_cpus++; +		bdp->uvhub = uvhub; +		bdp->pnode = pnode; +		/* time interval to catch a hardware stay-busy bug */ +		bcp->timeout_interval = millisec_2_cycles(3); +		/* kludge: assume uv_hub.h is constant */ +		socket = (cpu_physical_id(cpu)>>5)&1; +		if (socket >= bdp->num_sockets) +			bdp->num_sockets = socket+1; +		sdp = &bdp->socket[socket]; +		sdp->cpu_number[sdp->num_cpus] = cpu; +		sdp->num_cpus++; +	} +	socket = 0; +	for_each_possible_blade(uvhub) { +		bdp = &uvhub_descs[uvhub]; +		for (i = 0; i < bdp->num_sockets; i++) { +			sdp = &bdp->socket[i]; +			for (j = 0; j < sdp->num_cpus; j++) { +				cpu = sdp->cpu_number[j]; +				bcp = &per_cpu(bau_control, cpu); +				bcp->cpu = cpu; +				if (j == 0) { +					smaster = bcp; +					if (i == 0) +						hmaster = bcp; +				} +				bcp->cpus_in_uvhub = bdp->num_cpus; +				bcp->cpus_in_socket = sdp->num_cpus; +				bcp->socket_master = smaster; +				bcp->uvhub_master = hmaster; +				for (k = 0; k < DEST_Q_SIZE; k++) +					bcp->socket_acknowledge_count[k] = 0; +				bcp->uvhub_cpu = +				  uv_cpu_hub_info(cpu)->blade_processor_id; +			} +			socket++; +		} +	} +	kfree(uvhub_descs);  }  /* @@ -828,38 +1344,54 @@ static int __init uv_init_blade(int blade)   */  static int __init uv_bau_init(void)  { -	int blade; -	int nblades; +	int uvhub; +	int pnode; +	int nuvhubs;  	int cur_cpu; +	int vector; +	unsigned long mmr;  	if (!is_uv_system())  		return 0; +	if (nobau) +		return 0; +  	for_each_possible_cpu(cur_cpu)  		zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),  				       GFP_KERNEL, cpu_to_node(cur_cpu)); -	uv_bau_retry_limit = 1; +	uv_bau_max_concurrent = MAX_BAU_CONCURRENT; +	uv_nshift = uv_hub_info->m_val;  	uv_mmask = (1UL << uv_hub_info->m_val) - 1; -	nblades = uv_num_possible_blades(); +	nuvhubs = uv_num_possible_blades(); -	uv_bau_table_bases = (struct bau_control **) -	    kmalloc(nblades * sizeof(struct bau_control *), GFP_KERNEL); -	BUG_ON(!uv_bau_table_bases); +	uv_init_per_cpu(nuvhubs);  	uv_partition_base_pnode = 0x7fffffff; -	for (blade = 0; blade < nblades; blade++) -		if (uv_blade_nr_possible_cpus(blade) && -			(uv_blade_to_pnode(blade) < uv_partition_base_pnode)) -			uv_partition_base_pnode = uv_blade_to_pnode(blade); -	for (blade = 0; blade < nblades; blade++) -		if (uv_blade_nr_possible_cpus(blade)) -			uv_init_blade(blade); +	for (uvhub = 0; uvhub < nuvhubs; uvhub++) +		if (uv_blade_nr_possible_cpus(uvhub) && +			(uv_blade_to_pnode(uvhub) < uv_partition_base_pnode)) +			uv_partition_base_pnode = uv_blade_to_pnode(uvhub); + +	vector = UV_BAU_MESSAGE; +	for_each_possible_blade(uvhub) +		if (uv_blade_nr_possible_cpus(uvhub)) +			uv_init_uvhub(uvhub, vector); -	alloc_intr_gate(UV_BAU_MESSAGE, uv_bau_message_intr1);  	uv_enable_timeouts(); +	alloc_intr_gate(vector, uv_bau_message_intr1); + +	for_each_possible_blade(uvhub) { +		pnode = uv_blade_to_pnode(uvhub); +		/* INIT the bau */ +		uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_ACTIVATION_CONTROL, +				      ((unsigned long)1 << 63)); +		mmr = 1; /* should be 1 to broadcast to both sockets */ +		uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST, mmr); +	}  	return 0;  } -__initcall(uv_bau_init); -__initcall(uv_ptc_init); +core_initcall(uv_bau_init); +core_initcall(uv_ptc_init);  |