diff options
Diffstat (limited to 'arch/sparc/kernel/cpumap.c')
| -rw-r--r-- | arch/sparc/kernel/cpumap.c | 431 | 
1 files changed, 431 insertions, 0 deletions
diff --git a/arch/sparc/kernel/cpumap.c b/arch/sparc/kernel/cpumap.c new file mode 100644 index 00000000000..7430ed080b2 --- /dev/null +++ b/arch/sparc/kernel/cpumap.c @@ -0,0 +1,431 @@ +/* cpumap.c: used for optimizing CPU assignment + * + * Copyright (C) 2009 Hong H. Pham <hong.pham@windriver.com> + */ + +#include <linux/module.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/cpumask.h> +#include <linux/spinlock.h> +#include <asm/cpudata.h> +#include "cpumap.h" + + +enum { +	CPUINFO_LVL_ROOT = 0, +	CPUINFO_LVL_NODE, +	CPUINFO_LVL_CORE, +	CPUINFO_LVL_PROC, +	CPUINFO_LVL_MAX, +}; + +enum { +	ROVER_NO_OP              = 0, +	/* Increment rover every time level is visited */ +	ROVER_INC_ON_VISIT       = 1 << 0, +	/* Increment parent's rover every time rover wraps around */ +	ROVER_INC_PARENT_ON_LOOP = 1 << 1, +}; + +struct cpuinfo_node { +	int id; +	int level; +	int num_cpus;    /* Number of CPUs in this hierarchy */ +	int parent_index; +	int child_start; /* Array index of the first child node */ +	int child_end;   /* Array index of the last child node */ +	int rover;       /* Child node iterator */ +}; + +struct cpuinfo_level { +	int start_index; /* Index of first node of a level in a cpuinfo tree */ +	int end_index;   /* Index of last node of a level in a cpuinfo tree */ +	int num_nodes;   /* Number of nodes in a level in a cpuinfo tree */ +}; + +struct cpuinfo_tree { +	int total_nodes; + +	/* Offsets into nodes[] for each level of the tree */ +	struct cpuinfo_level level[CPUINFO_LVL_MAX]; +	struct cpuinfo_node  nodes[0]; +}; + + +static struct cpuinfo_tree *cpuinfo_tree; + +static u16 cpu_distribution_map[NR_CPUS]; +static DEFINE_SPINLOCK(cpu_map_lock); + + +/* Niagara optimized cpuinfo tree traversal. */ +static const int niagara_iterate_method[] = { +	[CPUINFO_LVL_ROOT] = ROVER_NO_OP, + +	/* Strands (or virtual CPUs) within a core may not run concurrently +	 * on the Niagara, as instruction pipeline(s) are shared.  Distribute +	 * work to strands in different cores first for better concurrency. +	 * Go to next NUMA node when all cores are used. +	 */ +	[CPUINFO_LVL_NODE] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP, + +	/* Strands are grouped together by proc_id in cpuinfo_sparc, i.e. +	 * a proc_id represents an instruction pipeline.  Distribute work to +	 * strands in different proc_id groups if the core has multiple +	 * instruction pipelines (e.g. the Niagara 2/2+ has two). +	 */ +	[CPUINFO_LVL_CORE] = ROVER_INC_ON_VISIT, + +	/* Pick the next strand in the proc_id group. */ +	[CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT, +}; + +/* Generic cpuinfo tree traversal.  Distribute work round robin across NUMA + * nodes. + */ +static const int generic_iterate_method[] = { +	[CPUINFO_LVL_ROOT] = ROVER_INC_ON_VISIT, +	[CPUINFO_LVL_NODE] = ROVER_NO_OP, +	[CPUINFO_LVL_CORE] = ROVER_INC_PARENT_ON_LOOP, +	[CPUINFO_LVL_PROC] = ROVER_INC_ON_VISIT|ROVER_INC_PARENT_ON_LOOP, +}; + + +static int cpuinfo_id(int cpu, int level) +{ +	int id; + +	switch (level) { +	case CPUINFO_LVL_ROOT: +		id = 0; +		break; +	case CPUINFO_LVL_NODE: +		id = cpu_to_node(cpu); +		break; +	case CPUINFO_LVL_CORE: +		id = cpu_data(cpu).core_id; +		break; +	case CPUINFO_LVL_PROC: +		id = cpu_data(cpu).proc_id; +		break; +	default: +		id = -EINVAL; +	} +	return id; +} + +/* + * Enumerate the CPU information in __cpu_data to determine the start index, + * end index, and number of nodes for each level in the cpuinfo tree.  The + * total number of cpuinfo nodes required to build the tree is returned. + */ +static int enumerate_cpuinfo_nodes(struct cpuinfo_level *tree_level) +{ +	int prev_id[CPUINFO_LVL_MAX]; +	int i, n, num_nodes; + +	for (i = CPUINFO_LVL_ROOT; i < CPUINFO_LVL_MAX; i++) { +		struct cpuinfo_level *lv = &tree_level[i]; + +		prev_id[i] = -1; +		lv->start_index = lv->end_index = lv->num_nodes = 0; +	} + +	num_nodes = 1; /* Include the root node */ + +	for (i = 0; i < num_possible_cpus(); i++) { +		if (!cpu_online(i)) +			continue; + +		n = cpuinfo_id(i, CPUINFO_LVL_NODE); +		if (n > prev_id[CPUINFO_LVL_NODE]) { +			tree_level[CPUINFO_LVL_NODE].num_nodes++; +			prev_id[CPUINFO_LVL_NODE] = n; +			num_nodes++; +		} +		n = cpuinfo_id(i, CPUINFO_LVL_CORE); +		if (n > prev_id[CPUINFO_LVL_CORE]) { +			tree_level[CPUINFO_LVL_CORE].num_nodes++; +			prev_id[CPUINFO_LVL_CORE] = n; +			num_nodes++; +		} +		n = cpuinfo_id(i, CPUINFO_LVL_PROC); +		if (n > prev_id[CPUINFO_LVL_PROC]) { +			tree_level[CPUINFO_LVL_PROC].num_nodes++; +			prev_id[CPUINFO_LVL_PROC] = n; +			num_nodes++; +		} +	} + +	tree_level[CPUINFO_LVL_ROOT].num_nodes = 1; + +	n = tree_level[CPUINFO_LVL_NODE].num_nodes; +	tree_level[CPUINFO_LVL_NODE].start_index = 1; +	tree_level[CPUINFO_LVL_NODE].end_index   = n; + +	n++; +	tree_level[CPUINFO_LVL_CORE].start_index = n; +	n += tree_level[CPUINFO_LVL_CORE].num_nodes; +	tree_level[CPUINFO_LVL_CORE].end_index   = n - 1; + +	tree_level[CPUINFO_LVL_PROC].start_index = n; +	n += tree_level[CPUINFO_LVL_PROC].num_nodes; +	tree_level[CPUINFO_LVL_PROC].end_index   = n - 1; + +	return num_nodes; +} + +/* Build a tree representation of the CPU hierarchy using the per CPU + * information in __cpu_data.  Entries in __cpu_data[0..NR_CPUS] are + * assumed to be sorted in ascending order based on node, core_id, and + * proc_id (in order of significance). + */ +static struct cpuinfo_tree *build_cpuinfo_tree(void) +{ +	struct cpuinfo_tree *new_tree; +	struct cpuinfo_node *node; +	struct cpuinfo_level tmp_level[CPUINFO_LVL_MAX]; +	int num_cpus[CPUINFO_LVL_MAX]; +	int level_rover[CPUINFO_LVL_MAX]; +	int prev_id[CPUINFO_LVL_MAX]; +	int n, id, cpu, prev_cpu, last_cpu, level; + +	n = enumerate_cpuinfo_nodes(tmp_level); + +	new_tree = kzalloc(sizeof(struct cpuinfo_tree) + +	                   (sizeof(struct cpuinfo_node) * n), GFP_ATOMIC); +	if (!new_tree) +		return NULL; + +	new_tree->total_nodes = n; +	memcpy(&new_tree->level, tmp_level, sizeof(tmp_level)); + +	prev_cpu = cpu = first_cpu(cpu_online_map); + +	/* Initialize all levels in the tree with the first CPU */ +	for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; level--) { +		n = new_tree->level[level].start_index; + +		level_rover[level] = n; +		node = &new_tree->nodes[n]; + +		id = cpuinfo_id(cpu, level); +		if (unlikely(id < 0)) { +			kfree(new_tree); +			return NULL; +		} +		node->id = id; +		node->level = level; +		node->num_cpus = 1; + +		node->parent_index = (level > CPUINFO_LVL_ROOT) +		    ? new_tree->level[level - 1].start_index : -1; + +		node->child_start = node->child_end = node->rover = +		    (level == CPUINFO_LVL_PROC) +		    ? cpu : new_tree->level[level + 1].start_index; + +		prev_id[level] = node->id; +		num_cpus[level] = 1; +	} + +	for (last_cpu = (num_possible_cpus() - 1); last_cpu >= 0; last_cpu--) { +		if (cpu_online(last_cpu)) +			break; +	} + +	while (++cpu <= last_cpu) { +		if (!cpu_online(cpu)) +			continue; + +		for (level = CPUINFO_LVL_PROC; level >= CPUINFO_LVL_ROOT; +		     level--) { +			id = cpuinfo_id(cpu, level); +			if (unlikely(id < 0)) { +				kfree(new_tree); +				return NULL; +			} + +			if ((id != prev_id[level]) || (cpu == last_cpu)) { +				prev_id[level] = id; +				node = &new_tree->nodes[level_rover[level]]; +				node->num_cpus = num_cpus[level]; +				num_cpus[level] = 1; + +				if (cpu == last_cpu) +					node->num_cpus++; + +				/* Connect tree node to parent */ +				if (level == CPUINFO_LVL_ROOT) +					node->parent_index = -1; +				else +					node->parent_index = +					    level_rover[level - 1]; + +				if (level == CPUINFO_LVL_PROC) { +					node->child_end = +					    (cpu == last_cpu) ? cpu : prev_cpu; +				} else { +					node->child_end = +					    level_rover[level + 1] - 1; +				} + +				/* Initialize the next node in the same level */ +				n = ++level_rover[level]; +				if (n <= new_tree->level[level].end_index) { +					node = &new_tree->nodes[n]; +					node->id = id; +					node->level = level; + +					/* Connect node to child */ +					node->child_start = node->child_end = +					node->rover = +					    (level == CPUINFO_LVL_PROC) +					    ? cpu : level_rover[level + 1]; +				} +			} else +				num_cpus[level]++; +		} +		prev_cpu = cpu; +	} + +	return new_tree; +} + +static void increment_rover(struct cpuinfo_tree *t, int node_index, +                            int root_index, const int *rover_inc_table) +{ +	struct cpuinfo_node *node = &t->nodes[node_index]; +	int top_level, level; + +	top_level = t->nodes[root_index].level; +	for (level = node->level; level >= top_level; level--) { +		node->rover++; +		if (node->rover <= node->child_end) +			return; + +		node->rover = node->child_start; +		/* If parent's rover does not need to be adjusted, stop here. */ +		if ((level == top_level) || +		    !(rover_inc_table[level] & ROVER_INC_PARENT_ON_LOOP)) +			return; + +		node = &t->nodes[node->parent_index]; +	} +} + +static int iterate_cpu(struct cpuinfo_tree *t, unsigned int root_index) +{ +	const int *rover_inc_table; +	int level, new_index, index = root_index; + +	switch (sun4v_chip_type) { +	case SUN4V_CHIP_NIAGARA1: +	case SUN4V_CHIP_NIAGARA2: +		rover_inc_table = niagara_iterate_method; +		break; +	default: +		rover_inc_table = generic_iterate_method; +	} + +	for (level = t->nodes[root_index].level; level < CPUINFO_LVL_MAX; +	     level++) { +		new_index = t->nodes[index].rover; +		if (rover_inc_table[level] & ROVER_INC_ON_VISIT) +			increment_rover(t, index, root_index, rover_inc_table); + +		index = new_index; +	} +	return index; +} + +static void _cpu_map_rebuild(void) +{ +	int i; + +	if (cpuinfo_tree) { +		kfree(cpuinfo_tree); +		cpuinfo_tree = NULL; +	} + +	cpuinfo_tree = build_cpuinfo_tree(); +	if (!cpuinfo_tree) +		return; + +	/* Build CPU distribution map that spans all online CPUs.  No need +	 * to check if the CPU is online, as that is done when the cpuinfo +	 * tree is being built. +	 */ +	for (i = 0; i < cpuinfo_tree->nodes[0].num_cpus; i++) +		cpu_distribution_map[i] = iterate_cpu(cpuinfo_tree, 0); +} + +/* Fallback if the cpuinfo tree could not be built.  CPU mapping is linear + * round robin. + */ +static int simple_map_to_cpu(unsigned int index) +{ +	int i, end, cpu_rover; + +	cpu_rover = 0; +	end = index % num_online_cpus(); +	for (i = 0; i < num_possible_cpus(); i++) { +		if (cpu_online(cpu_rover)) { +			if (cpu_rover >= end) +				return cpu_rover; + +			cpu_rover++; +		} +	} + +	/* Impossible, since num_online_cpus() <= num_possible_cpus() */ +	return first_cpu(cpu_online_map); +} + +static int _map_to_cpu(unsigned int index) +{ +	struct cpuinfo_node *root_node; + +	if (unlikely(!cpuinfo_tree)) { +		_cpu_map_rebuild(); +		if (!cpuinfo_tree) +			return simple_map_to_cpu(index); +	} + +	root_node = &cpuinfo_tree->nodes[0]; +#ifdef CONFIG_HOTPLUG_CPU +	if (unlikely(root_node->num_cpus != num_online_cpus())) { +		_cpu_map_rebuild(); +		if (!cpuinfo_tree) +			return simple_map_to_cpu(index); +	} +#endif +	return cpu_distribution_map[index % root_node->num_cpus]; +} + +int map_to_cpu(unsigned int index) +{ +	int mapped_cpu; +	unsigned long flag; + +	spin_lock_irqsave(&cpu_map_lock, flag); +	mapped_cpu = _map_to_cpu(index); + +#ifdef CONFIG_HOTPLUG_CPU +	while (unlikely(!cpu_online(mapped_cpu))) +		mapped_cpu = _map_to_cpu(index); +#endif +	spin_unlock_irqrestore(&cpu_map_lock, flag); +	return mapped_cpu; +} +EXPORT_SYMBOL(map_to_cpu); + +void cpu_map_rebuild(void) +{ +	unsigned long flag; + +	spin_lock_irqsave(&cpu_map_lock, flag); +	_cpu_map_rebuild(); +	spin_unlock_irqrestore(&cpu_map_lock, flag); +}  |